Weak* topology and its application

M. Doležal, J. Grebík, J. Hladký, I. Rocha, and V. Rozhoň

March 30, 2018

Graphons and cut distance convergence

Represent graphs as adjacency matrices:

Graphons and cut distance convergence

Represent graphs as adjacency matrices:

Graphons and cut distance convergence

Represent graphs as adjacency matrices:

But one has to be careful:

Cut distance topology

1) Compare the number of edges inside any vertex set:

$$
d_{\square}(U, V)=\sup _{S, T \subseteq[0,1]}\left|\int_{S \times T} U(x, y)-V(x, y)\right|
$$

2) Minimise over permutations of the adjacency matrix:

$$
\delta_{\square}(U, V)=\inf _{\pi} d_{\square}\left(U, V^{\pi}\right) .
$$

where $\pi:[0,1] \rightarrow[0,1]$ runs over all measure preserving bijections and $U^{\pi}(x, y)=U(\pi(x), \pi(y))$.

Cut distance topology

1) Compare the number of edges inside any vertex set:

$$
d_{\square}(U, V)=\sup _{S, T \subseteq[0,1]}\left|\int_{S \times T} U(x, y)-V(x, y)\right|
$$

2) Minimise over permutations of the adjacency matrix:

$$
\delta_{\square}(U, V)=\inf _{\pi} d_{\square}\left(U, V^{\pi}\right) .
$$

where $\pi:[0,1] \rightarrow[0,1]$ runs over all measure preserving bijections and $U^{\pi}(x, y)=U(\pi(x), \pi(y))$.

Lovász-Szegedy'06: For every sequence U_{1}, U_{2}, \ldots there exist $\pi_{n_{1}}, \pi_{n_{2}}, \ldots$ and V such that $U_{n_{1}}^{\pi_{n_{1}}}, U_{n_{2}}^{\pi_{n_{2}}}, \ldots \xrightarrow{d_{\square}} V$.

Weak* convergence

$$
U_{1}, U_{2}, \ldots \xrightarrow{w^{*}} V \Longleftrightarrow \forall S, T \subseteq[0,1]: \lim _{n \rightarrow \infty} \int_{S \times T} U_{n}=\int_{S \times T} V .
$$

Weak* convergence

$U_{1}, U_{2}, \ldots \xrightarrow{w^{*}} V \Longleftrightarrow \forall S, T \subseteq[0,1]: \lim _{n \rightarrow \infty} \int_{S \times T} U_{n}=\int_{S \times T} V$.

Observation: For every sequence U_{1}, U_{2}, \ldots there exist $\pi_{n_{1}}, \pi_{n_{2}}, \ldots$ and V such that $U_{n_{1}}^{\pi_{n_{1}}}, U_{n_{2}}^{\pi_{n_{2}}}, \ldots \xrightarrow{w^{*}} V$.

Weak* convergence: averaging

$$
U \succeq V \Longleftrightarrow \exists \pi_{1}, \pi_{2}, \ldots: U^{\pi_{1}}, U^{\pi_{2}}, \ldots \xrightarrow{w *} V
$$

Weak* convergence: averaging

$$
U \succeq V \Longleftrightarrow \exists \pi_{1}, \pi_{2}, \ldots: U^{\pi_{1}}, U^{\pi_{2}}, \ldots \xrightarrow{w *} V
$$

Weak* convergence: averaging

$$
U \succeq V \Longleftrightarrow \exists \pi_{1}, \pi_{2}, \ldots: U^{\pi_{1}}, U^{\pi_{2}}, \ldots \xrightarrow{w *} V
$$

Weak* convergence: averaging

$$
U \succeq V \Longleftrightarrow \exists \pi_{1}, \pi_{2}, \ldots: U^{\pi_{1}}, U^{\pi_{2}}, \ldots \xrightarrow{w *} V
$$

Weak* convergence: structuredness order

- The relation \succeq is a preorder.
- $U \succeq V$ and $V \succeq U$ $\delta_{\square}(U, V)=0$
- Maximal elements are zero-one graphons, minimal are constant graphons.

Weak* convergence: compatible parameters

What functions $\Theta: \mathcal{W}_{0} \rightarrow \mathbb{R}$ are compatible with the structuredness order, i.e., $U \succeq V$ implies $\Theta(U) \geq \Theta(V)$?

Weak* convergence: compatible parameters

What functions $\Theta: \mathcal{W}_{0} \rightarrow \mathbb{R}$ are compatible with the structuredness order, i.e., $U \succeq V$ implies $\Theta(U) \geq \Theta(V)$?

Suppose that Θ satisfies:

- Θ is continuous in L_{1},
- $\Theta(U)=\Theta\left(U^{\pi}\right)$ for measure preserving bijection π,
- $\frac{1}{2} \Theta(U)+\frac{1}{2} \Theta(V) \geq \Theta\left(\frac{U+V}{2}\right)$.

Then it is compatible with structuredness order.

Weak* convergence: compatible parameters

What functions $\Theta: \mathcal{W}_{0} \rightarrow \mathbb{R}$ are compatible with the structuredness order, i.e., $U \succeq V$ implies $\Theta(U) \geq \Theta(V)$?

Suppose that Θ satisfies:

- Θ is continuous in L_{1},
- $\Theta(U)=\Theta\left(U^{\pi}\right)$ for measure preserving bijection π,
- $\frac{1}{2} \Theta(U)+\frac{1}{2} \Theta(V) \geq \Theta\left(\frac{U+V}{2}\right)$.

Then it is compatible with structuredness order.

1) It suffices to show that the value of Θ does not increase after averaging any graphon on any partition, i.e., $\Theta\left(U^{\bowtie \mathcal{P}}\right) \leq \Theta(U)$. 2) Approximate $U^{\ltimes \mathcal{P}}$ by versions of U, i.e.,
$U^{\ltimes \mathcal{P}} \stackrel{L_{1}}{\approx} \frac{1}{n}\left(U^{\pi_{1}}+\cdots+U^{\pi_{n}}\right)$ and use convexity.

Weak* convergence: compatible parameters

Note that the parameter $t(H, \cdot)$ is both continuous in L_{1} and $t(H, U)=t(H, V)$ if $\delta_{\square}(U, V)=0$.

$$
t(H, U)=\int_{[0,1]^{|V(H)|}} \prod_{i j \in E(H)} U\left(x_{i}, x_{j}\right)
$$

Weak* convergence: compatible parameters

Note that the parameter $t(H, \cdot)$ is both continuous in L_{1} and $t(H, U)=t(H, V)$ if $\delta_{\square}(U, V)=0$.

$$
t(H, U)=\int_{[0,1]^{|V(H)|}} \prod_{i j \in E(H)} U\left(x_{i}, x_{j}\right)
$$

A graph H is called weakly norming, if $t(H, \cdot)^{1 /|E(H)|}$ is convex.

Theorem (Hatami'10)

Hypercubes, complete bipartite graphs, even cycles,... are weakly norming, thus compatible. Nonbipartite graphs, nonstar trees,... are not weakly norming.

Weak* convergence: compatible parameters

Note that the parameter $t(H, \cdot)$ is both continuous in L_{1} and $t(H, U)=t(H, V)$ if $\delta_{\square}(U, V)=0$.

$$
t(H, U)=\int_{[0,1]^{|V(H)|}} \prod_{i j \in E(H)} U\left(x_{i}, x_{j}\right)
$$

A graph H is called weakly norming, if $t(H, \cdot)^{1 /|E(H)|}$ is convex.

Theorem (Hatami'10)

Hypercubes, complete bipartite graphs, even cycles,... are weakly norming, thus compatible. Nonbipartite graphs, nonstar trees,... are not weakly norming.

A graph H is called Sidorenko, if $t(H, \cdot)$ is minimised by constant graphons.
Each weakly norming graph is compatible with structuredness order and thus Sidorenko.

Weak* convergence: compatible parameters

Theorem (Král', Martins, Pach, Wrochna'18+)

There are edge-transitive graphs that are not compatible, thus not weakly norming

Question (Král', Martins, Pach, Wrochna'18+)

Is it true that every connected graph H is weakly norming if and only if it is compatible with structuredness order?

Weak* convergence: compatible parameters

Idea of proof: for connected H compute its homomorphism density in these two graphons.

Weak* convergence: compatible parameters

Idea of proof: for connected H compute its homomorphism density in these two graphons.

We get $t(H, U)^{1 /|E(H)|}+t(H, V)^{1 /|E(H)|} \geq \frac{1}{4} t(H, U+V)^{1 /|E(H)|}$.

Weak* convergence: compatible parameters

Idea of proof: for connected H compute its homomorphism density in these two graphons.

We get $t(H, U)^{1 /|E(H)|}+t(H, V)^{1 /|E(H)|} \geq \frac{1}{4} t(H, U+V)^{1 /|E(H)|}$. Recover the constant loss via tensor power trick.

