Weak* topology and its application

M. Doležal, J. Grebík, J. Hladký, I. Rocha, and V. Rozhoň

March 30, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Graphons and cut distance convergence

Represent graphs as adjacency matrices:

Represent graphs as adjacency matrices:

ヘロト ヘ週ト ヘヨト ヘヨト

Represent graphs as adjacency matrices:

But one has to be careful:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Cut distance topology

1) Compare the number of edges inside any vertex set:

$$d_{\Box}(U,V) = \sup_{S,T \subseteq [0,1]} \left| \int_{S \times T} U(x,y) - V(x,y) \right|$$

2) Minimise over permutations of the adjacency matrix:

$$\delta_{\Box}(U,V) = \inf_{\pi} d_{\Box}(U,V^{\pi}) .$$

where $\pi : [0,1] \rightarrow [0,1]$ runs over all measure preserving bijections and $U^{\pi}(x,y) = U(\pi(x),\pi(y))$.

Cut distance topology

1) Compare the number of edges inside any vertex set:

$$d_{\Box}(U,V) = \sup_{S,T \subseteq [0,1]} \left| \int_{S \times T} U(x,y) - V(x,y) \right|$$

2) Minimise over permutations of the adjacency matrix:

$$\delta_{\Box}(U,V) = \inf_{\pi} d_{\Box}(U,V^{\pi}) .$$

where $\pi : [0,1] \rightarrow [0,1]$ runs over all measure preserving bijections and $U^{\pi}(x,y) = U(\pi(x),\pi(y))$.

Lovász-Szegedy'06: For every sequence U_1, U_2, \ldots there exist $\pi_{n_1}, \pi_{n_2}, \ldots$ and V such that $U_{n_1}^{\pi_{n_1}}, U_{n_2}^{\pi_{n_2}}, \ldots \xrightarrow{d_{\Box}} V$.

$$U_1, U_2, \ldots \xrightarrow{w^*} V \iff \forall S, T \subseteq [0,1] : \lim_{n \to \infty} \int_{S \times T} U_n = \int_{S \times T} V.$$

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| のへ⊙

$$U_1, U_2, \ldots \xrightarrow{w^*} V \iff \forall S, T \subseteq [0, 1] : \lim_{n \to \infty} \int_{S \times T} U_n = \int_{S \times T} V.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observation: For every sequence U_1, U_2, \ldots there exist $\pi_{n_1}, \pi_{n_2}, \ldots$ and V such that $U_{n_1}^{\pi_{n_1}}, U_{n_2}^{\pi_{n_2}}, \ldots \xrightarrow{w^*} V$.

Weak* convergence: averaging

$U \succeq V \iff \exists \pi_1, \pi_2, \ldots : U^{\pi_1}, U^{\pi_2}, \ldots \xrightarrow{w*} V$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$U \succeq V \iff \exists \pi_1, \pi_2, \ldots : U^{\pi_1}, U^{\pi_2}, \ldots \xrightarrow{w*} V$$

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

$U \succeq V \iff \exists \pi_1, \pi_2, \ldots : U^{\pi_1}, U^{\pi_2}, \ldots \xrightarrow{w*} V$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$U \succeq V \iff \exists \pi_1, \pi_2, \ldots : U^{\pi_1}, U^{\pi_2}, \ldots \xrightarrow{w*} V$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Weak* convergence: structuredness order

- The relation \succeq is a preorder.
- $U \succeq V$ and $V \succeq U \iff \delta_{\Box}(U, V) = 0$
- Maximal elements are zero-one graphons, minimal are constant graphons.

What functions $\Theta : \mathcal{W}_0 \to \mathbb{R}$ are compatible with the structuredness order, i.e., $U \succeq V$ implies $\Theta(U) \ge \Theta(V)$?

What functions $\Theta : \mathcal{W}_0 \to \mathbb{R}$ are compatible with the structuredness order, i.e., $U \succeq V$ implies $\Theta(U) \ge \Theta(V)$?

Suppose that Θ satisfies:

- Θ is continuous in L_1 ,
- $\Theta(U) = \Theta(U^{\pi})$ for measure preserving bijection π ,

• $\frac{1}{2}\Theta(U) + \frac{1}{2}\Theta(V) \ge \Theta\left(\frac{U+V}{2}\right).$

Then it is compatible with structuredness order.

What functions $\Theta : \mathcal{W}_0 \to \mathbb{R}$ are compatible with the structuredness order, i.e., $U \succeq V$ implies $\Theta(U) \ge \Theta(V)$?

Suppose that Θ satisfies:

- Θ is continuous in L_1 ,
- $\Theta(U) = \Theta(U^{\pi})$ for measure preserving bijection π ,
- $\frac{1}{2}\Theta(U) + \frac{1}{2}\Theta(V) \ge \Theta\left(\frac{U+V}{2}\right).$

Then it is compatible with structuredness order.

 It suffices to show that the value of Θ does not increase after averaging any graphon on any partition, i.e., Θ(U^{MP}) ≤ Θ(U).
Approximate U^{MP} by versions of U, i.e., U^{MP} ^L₁ 1/₂ (U^{π1} + ··· + U^{πn}) and use convexity.

Weak* convergence: compatible parameters

Note that the parameter $t(H, \cdot)$ is both continuous in L_1 and t(H, U) = t(H, V) if $\delta_{\Box}(U, V) = 0$.

$$t(H, U) = \int_{[0,1]^{|V(H)|}} \prod_{ij \in E(H)} U(x_i, x_j)$$

Weak* convergence: compatible parameters

Note that the parameter $t(H, \cdot)$ is both continuous in L_1 and t(H, U) = t(H, V) if $\delta_{\Box}(U, V) = 0$.

$$t(H, U) = \int_{[0,1]^{|V(H)|}} \prod_{ij \in E(H)} U(x_i, x_j)$$

A graph H is called weakly norming, if $t(H, \cdot)^{1/|E(H)|}$ is convex.

Theorem (Hatami'10)

Hypercubes, complete bipartite graphs, even cycles,... are weakly norming, thus compatible. Nonbipartite graphs, nonstar trees,... are not weakly norming.

Weak* convergence: compatible parameters

Note that the parameter $t(H, \cdot)$ is both continuous in L_1 and t(H, U) = t(H, V) if $\delta_{\Box}(U, V) = 0$.

$$t(H, U) = \int_{[0,1]^{|V(H)|}} \prod_{ij \in E(H)} U(x_i, x_j)$$

A graph H is called weakly norming, if $t(H, \cdot)^{1/|E(H)|}$ is convex.

Theorem (Hatami'10)

Hypercubes, complete bipartite graphs, even cycles,... are weakly norming, thus compatible. Nonbipartite graphs, nonstar trees,... are not weakly norming.

A graph H is called Sidorenko, if $t(H, \cdot)$ is minimised by constant graphons.

Each weakly norming graph is compatible with structuredness order and thus Sidorenko.

Theorem (Král', Martins, Pach, Wrochna'18+)

There are edge-transitive graphs that are not compatible, thus not weakly norming

Question (Král', Martins, Pach, Wrochna'18+)

Is it true that every connected graph H is weakly norming if and only if it is compatible with structuredness order?

Idea of proof: for connected H compute its homomorphism density in these two graphons.

Idea of proof: for connected H compute its homomorphism density in these two graphons.

We get $t(H, U)^{1/|E(H)|} + t(H, V)^{1/|E(H)|} \ge \frac{1}{4}t(H, U+V)^{1/|E(H)|}$.

Idea of proof: for connected H compute its homomorphism density in these two graphons.

We get $t(H, U)^{1/|E(H)|} + t(H, V)^{1/|E(H)|} \ge \frac{1}{4}t(H, U+V)^{1/|E(H)|}$. Recover the constant loss via tensor power trick.