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Extremal graph theory

Definition (Extremal graph theory, Bollobás 1976)
Extremal graph theory, in its strictest sense, is a branch of graph theory
developed and loved by Hungarians.

Alternative definition: substructures in graphs
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Extremal graph theory

Theorem (Mantel 1907)

Graph G has n vertices. If G has more than n2/4 edges then it contains a
triangle.

Generalisations?

Density of edges vs. density of triangles (Razborov 2008)

(image from the book of Lovász)
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Extremal graph theory

Theorem (Mantel 1907)

Graph G has n vertices. If G has more than n2/4 edges then it contains a
triangle.

Generalisations?
Other cliques (Turán 1941), asymptotically for all non-bipartite graphs
(Erdős-Stone 1946)

The answer for C4 is of order n3/2, lower bound via finite projective planes.
What is the answer for trees?
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(Erdős-Stone 1946)
The answer for C4 is of order n3/2, lower bound via finite projective planes.
What is the answer for trees?

Václav Rozhoň Embedding trees in dense graphs February 14, 2019 4 / 11



Erdős-Sós conjecture

Fix any tree T on k vertices. There are graphs with average degree k − 2
that do not contain T .

Average degree of 2k suffices.

Conjecture (Erdős-Sós)
Any graph with average degree greater than k − 2 contains any tree on k
vertices as a subgraph.

Partial results:

special trees (paths – Erdős, Gallai 1959)

special graphs (without C4 – Saclé, Wozniak 1997)

n and k differ by constant (Görlich, Żak 2016)
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Erdős-Sós conjecture

Theorem (announced by Ajtai, Komlós, Simonovits, Szemerédi)
The conjecture holds for k ≥ k0.

One can get reasonably close if the size of the tree is comparable with the
size of the graph. Below ∆ is maximum degree and deg average degree.

Theorem (R. 2019), also (Besomi, Pavez-Signé, Stein 2019+)
Let T be a class of trees such that ∀T ∈ T : ∆(T ) ∈ o(|T |).
Then any graph G with deg(G ) = |T |+ o(|G |) contains any T ∈ T .
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Loebl-Komlós-Sós

Conjecture (Loebl, Komlós, Sós 1995)
If at least n/2 vertices of G have degree at least k, then G contains any
tree with k + 1 vertices as a subgraph.

Long strand of results of increasing strength: 1 + ε approximation by
Hladký, Komlós, Piguet, Simonovits, Stein, Szemerédi from 2017.

Conjecture ( Simonovits)
If at least rn vertices of G have degree at least k , then G contains any
tree with k + 1 vertices and at most r(k + 1) vertices in one colour class
as a subgraph.

Václav Rozhoň Embedding trees in dense graphs February 14, 2019 7 / 11



Loebl-Komlós-Sós

Conjecture (Loebl, Komlós, Sós 1995)
If at least n/2 vertices of G have degree at least k, then G contains any
tree with k + 1 vertices as a subgraph.

Long strand of results of increasing strength: 1 + ε approximation by
Hladký, Komlós, Piguet, Simonovits, Stein, Szemerédi from 2017.

Conjecture ( Simonovits)
If at least rn vertices of G have degree at least k , then G contains any
tree with k + 1 vertices and at most r(k + 1) vertices in one colour class
as a subgraph.

Václav Rozhoň Embedding trees in dense graphs February 14, 2019 7 / 11



Loebl-Komlós-Sós

Conjecture (Loebl, Komlós, Sós 1995)
If at least n/2 vertices of G have degree at least k, then G contains any
tree with k + 1 vertices as a subgraph.

Long strand of results of increasing strength: 1 + ε approximation by
Hladký, Komlós, Piguet, Simonovits, Stein, Szemerédi from 2017.

Conjecture ( Simonovits)
If at least rn vertices of G have degree at least k , then G contains any
tree with k + 1 vertices and at most r(k + 1) vertices in one colour class
as a subgraph.

Václav Rozhoň Embedding trees in dense graphs February 14, 2019 7 / 11



Loebl-Komlós-Sós

Conjecture (Loebl, Komlós, Sós, Simonovits)
If at least rn vertices of G have degree at least k , then G contains any
tree with k + 1 vertices and at most r(k + 1) vertices in one colour class
as a subgraph.

Theorem (Klimošová, Piguet, R. 2019+)
If at least rn vertices of G have degree at least k+o(n), then G contains
any tree with k + 1 vertices and at most r(k + 1) vertices in one colour
class as a subgraph.

Turns out that one can get this ’r ’ trade-off also in the proof of previous
Erdős-Sós result.
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General technique

Expansion of the host graph can compensate
for the lack of degree.

(Pseudo)random graphs have good expansion.

Szemerédi regularity lemma: dense graph =
cluster graph + pseudorandomness (but we
have to pay ε fraction of edges).

This enables us to embed any small subtree
(ε′n for very small ε′).

Aim is to find suitable decomposition of the
tree such that small subtrees are embedded by
Szemerédi and the macro structure by us.

We reduced the problem to a certain fractional
variant of itself. But now we have much
simpler tree structure to work with.
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Proof of the Erdős-Sós result

Proof.
Condition on the maximum degree actually gives even simpler
decomposition. After decomposition of G and T look at a high degree
cluster of G and a maximal matching in its neighbourhood. Provide
(almost) greedy algorithm for embedding.
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Proof of the Loebl-Komlós-Sós result

Proof.
After decomposition of G and T ’discharge’ into several configurations,
embedding for each one being straightforward.
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