Embedding trees in dense graphs

Václav Rozhoň

February 14, 2019

joint work with T. Klimošová and D. Piguet

Václav Rozhoň

Embedding trees in dense graphs

February 14, 2019 1 / 11

Definition (Extremal graph theory, Bollobás 1976)

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

Definition (Extremal graph theory, Bollobás 1976)

Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians.

Alternative definition: substructures in graphs

Extremal graph theory

Theorem (Mantel 1907)

Graph G has n vertices. If G has more than $n^2/4$ edges then it contains a triangle.

Generalisations?

Extremal graph theory

Theorem (Mantel 1907)

Graph G has n vertices. If G has more than $n^2/4$ edges then it contains a triangle.

Generalisations?

Density of edges vs. density of triangles (Razborov 2008)

Theorem (Mantel 1907)

Graph G has n vertices. If G has more than $n^2/4$ edges then it contains a triangle.

Generalisations? Other cliques (Turán 1941), asymptotically for all non-bipartite graphs (Erdős-Stone 1946)

Theorem (Mantel 1907)

Graph G has n vertices. If G has more than $n^2/4$ edges then it contains a triangle.

Generalisations? Other cliques (Turán 1941), asymptotically for all non-bipartite graphs (Erdős-Stone 1946) The answer for C_4 is of order $n^{3/2}$, lower bound via finite projective planes.

Theorem (Mantel 1907)

Graph G has n vertices. If G has more than $n^2/4$ edges then it contains a triangle.

Generalisations? Other cliques (Turán 1941), asymptotically for all non-bipartite graphs (Erdős-Stone 1946) The answer for C_4 is of order $n^{3/2}$, lower bound via finite projective planes. What is the answer for trees? Fix any tree T on k vertices. There are graphs with average degree k - 2 that do not contain T.

Fix any tree T on k vertices. There are graphs with average degree k - 2 that do not contain T. Average degree of 2k suffices. Fix any tree T on k vertices. There are graphs with average degree k - 2 that do not contain T.

Average degree of 2k suffices.

Conjecture (Erdős-Sós)

Any graph with average degree greater than k - 2 contains any tree on k vertices as a subgraph.

Fix any tree T on k vertices. There are graphs with average degree k - 2 that do not contain T.

Average degree of 2k suffices.

Conjecture (Erdős-Sós)

Any graph with average degree greater than k - 2 contains any tree on k vertices as a subgraph.

Partial results:

- special trees (paths Erdős, Gallai 1959)
- special graphs (without C₄ Saclé, Wozniak 1997)
- n and k differ by constant (Görlich, Żak 2016)

Theorem (announced by Ajtai, Komlós, Simonovits, Szemerédi)

The conjecture holds for $k \ge k_0$.

Theorem (announced by Ajtai, Komlós, Simonovits, Szemerédi)

The conjecture holds for $k \ge k_0$.

One can get reasonably close if the size of the tree is comparable with the size of the graph. Below Δ is maximum degree and $\overline{\deg}$ average degree.

Theorem (R. 2019), also (Besomi, Pavez-Signé, Stein 2019+)

Let \mathcal{T} be a class of trees such that $\forall T \in \mathcal{T} : \Delta(T) \in o(|T|)$. Then any graph G with $d\overline{eg}(G) = |T| + o(|G|)$ contains any $T \in \mathcal{T}$.

Conjecture (Loebl, Komlós, Sós 1995)

If at least n/2 vertices of G have degree at least k, then G contains any tree with k + 1 vertices as a subgraph.

Conjecture (Loebl, Komlós, Sós 1995)

If at least n/2 vertices of G have degree at least k, then G contains any tree with k + 1 vertices as a subgraph.

Long strand of results of increasing strength: $1 + \varepsilon$ approximation by Hladký, Komlós, Piguet, Simonovits, Stein, Szemerédi from 2017.

Conjecture (Loebl, Komlós, Sós 1995)

If at least n/2 vertices of G have degree at least k, then G contains any tree with k + 1 vertices as a subgraph.

Long strand of results of increasing strength: $1 + \varepsilon$ approximation by Hladký, Komlós, Piguet, Simonovits, Stein, Szemerédi from 2017.

Conjecture (Simonovits)

If at least rn vertices of G have degree at least k, then G contains any tree with k + 1 vertices and at most r(k + 1) vertices in one colour class as a subgraph.

Conjecture (Loebl, Komlós, Sós, Simonovits)

If at least *rn* vertices of *G* have degree at least *k*, then *G* contains any tree with k + 1 vertices and at most r(k + 1) vertices in one colour class as a subgraph.

Theorem (Klimošová, Piguet, R. 2019+)

If at least *rn* vertices of *G* have degree at least k+o(n), then *G* contains any tree with k + 1 vertices and at most r(k + 1) vertices in one colour class as a subgraph.

Conjecture (Loebl, Komlós, Sós, Simonovits)

If at least *rn* vertices of *G* have degree at least *k*, then *G* contains any tree with k + 1 vertices and at most r(k + 1) vertices in one colour class as a subgraph.

Theorem (Klimošová, Piguet, R. 2019+)

If at least *rn* vertices of *G* have degree at least k+o(n), then *G* contains any tree with k + 1 vertices and at most r(k + 1) vertices in one colour class as a subgraph.

Turns out that one can get this 'r' trade-off also in the proof of previous Erdős-Sós result.

• Expansion of the host graph can compensate for the lack of degree.

- Expansion of the host graph can compensate for the lack of degree.
- (Pseudo)random graphs have good expansion.

- Expansion of the host graph can compensate for the lack of degree.
- (Pseudo)random graphs have good expansion.
- Szemerédi regularity lemma: dense graph = cluster graph + pseudorandomness (but we have to pay ε fraction of edges).

- Expansion of the host graph can compensate for the lack of degree.
- (Pseudo)random graphs have good expansion.
- Szemerédi regularity lemma: dense graph = cluster graph + pseudorandomness (but we have to pay ε fraction of edges).
- This enables us to embed any small subtree (ε'n for very small ε').

- Expansion of the host graph can compensate for the lack of degree.
- (Pseudo)random graphs have good expansion.
- Szemerédi regularity lemma: dense graph = cluster graph + pseudorandomness (but we have to pay ε fraction of edges).
- This enables us to embed any small subtree (ε'n for very small ε').
- Aim is to find suitable decomposition of the tree such that small subtrees are embedded by Szemerédi and the macro structure by us.

- Expansion of the host graph can compensate for the lack of degree.
- (Pseudo)random graphs have good expansion.
- Szemerédi regularity lemma: dense graph = cluster graph + pseudorandomness (but we have to pay ε fraction of edges).
- This enables us to embed any small subtree $(\varepsilon' n \text{ for very small } \varepsilon').$
- Aim is to find suitable decomposition of the tree such that small subtrees are embedded by Szemerédi and the macro structure by us.
- We reduced the problem to a certain fractional variant of itself. But now we have much simpler tree structure to work with.

Proof.

Condition on the maximum degree actually gives even simpler decomposition. After decomposition of G and T look at a high degree cluster of G and a maximal matching in its neighbourhood. Provide (almost) greedy algorithm for embedding.

Proof of the Loebl-Komlós-Sós result

Proof.

After decomposition of G and T 'discharge' into several configurations, embedding for each one being straightforward.

Embedding trees in dense graphs

Image: A math a math