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Václav Rozhoň 1,4
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Abstract

Loebl, Komlós, and Sós conjectured that any graph such that at least half of its
vertices have degree at least k contains every tree of order at most k + 1. We
propose a skew version of this conjecture. We consider the class of trees of order
at most k + 1 of given skew, that is, such that the sizes of the colour classes of the
trees have a given ratio. We show that our conjecture is asymptotically correct for



dense graphs. The proof relies on the regularity method. Our result implies bounds
on Ramsey number of several trees of given skew.
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1 Introduction and results

Many problems in extremal graph theory ask whether a certain density condi-
tion imposed on a host graph forces the containment of a given subgraph H .
Typically, the density condition is expressed by the average or minimum de-
gree. For example, the Erdős-Stone Theorem [3] essentially determines the av-
erage degree condition guaranteeing the containment of a fixed non-bipartite
graph H . However, for a general bipartite graph H the problem is wide open.
One of the most notorious problems in this direction is the Erdős-Sós conjec-
ture from 1962, which determines the average degree forcing a copy of each tree
T of a given size k. A solution of this conjecture for large k has been announced
in the early 1990’s by Ajtai, Komlós, Simonovits, and Szemerédi [1]. A trivial
bound for the average degree guaranteeing containment of T is 2k. Indeed,
we can find a subgraph of minimum degree at least k and then embed T using
the greedy procedure. A different approach to the problem is to relax the
condition of minimum degree by investigating how many vertices of degree k
guarantee the containment of a tree of order k + 1. The Loebl-Komlós-Sós
conjecture asserts that only half of the vertices need to have degree at least k.
The conjecture has been solved exactly for large dense graphs [2,9] and proved
to be asymptotically true for sparse graphs [4,5,6,7]. The Loebl-Komlós-Sós
conjecture is best possible when we consider the class of all trees of order k+1,
in particular, it is tight for paths. To observe this, consider a graph consisting
of a disjoint union of copies of a graph H of order k+1 consisting of a clique of
size ⌊k+1

2
⌋−1, an independent set on the remaining vertices, and the complete

bipartite graph between the two sets. Almost half of the vertices of this graph
have degree k, but it does not contain a path on k+1 vertices as a subgraph.

1 Piguet and Rozhoň were supported by the Czech Science Foundation, grant number GJ16-
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(k + 1)− (b(k + 1)c− 1)

br(k + 1)c− 1

Fig. 1. The graph showing the tightness of Conjecture 1.1 is a disjoint union of
graphs of order k + 1.

A natural question is whether fewer vertices of degree k suffice when one
considers only a restricted class of trees. Specifically, Simonovits asked [per-
sonal communication], whether it is the case for trees of given skew, that is,
the ratio of sizes of the smaller and the larger colour classes is bounded by a
constant smaller than 1. We propose the following conjecture.

Conjecture 1.1 Any graph of order n with at least rn vertices of degree at

least k contains every tree of order at most k + 1 with colour classes V1, V2

such that |V1| ≤ r · (k + 1).

We have verified that the conjecture holds both for trees of diameter at
most five and for paths on at most 2r(k + 1) vertices.

If true, the conjecture is best possible. Indeed, given r ∈ (0, 1/2], consider
a graph consisting of a disjoint union of copies of a graph H with k+1 vertices
consisting of a clique of size ⌊r(k+1)⌋−1, an independent set on the remaining
vertices and the complete bipartite graph between the two sets (see Figure 1).
Such a graph does not contain a path on 2⌊r(k + 1)⌋ vertices.

Considering the structure of the above mentioned graph witnessing the
tightness of our conjecture, it might seem feasible to strengthen the conjec-
ture by replacing the condition on the size of the smaller colour class by the
same condition on the size of the complement of a maximal independent set.
However, this is not possible; a complete bipartite graph K(k−1)/2,k does not
contain a bistar B(k−1)/2,(k−1)/2 (that is, two stars with (k − 1)/2 leaves with
their centres joined by an edge) for k ≥ 7 odd, even though almost 1/3 of
vertices of K(k−1)/2,k have degree at least k and the size of the complement
of a maximal independent set in B(k−1)/2,(k−1)/2 is 2, i.e., its relative size with
respect to the whole bistar is very small, in particular at most 1/4.

We prove that Conjecture 1.1 is asymptotically correct for dense graphs.



Theorem 1.2 Let 0 < r ≤ 1/2 and q > 0. Then for any ε > 0 there exists

n0 ∈ N such that for every n ≥ n0 and k ≥ qn, any graph of order n with

at least rn vertices of degree at least (1 + ε)k contains every tree of order at

most k with colour classes V1, V2 such that |V1| ≤ rk.

This extends the main result of [10], which is a special case of Theorem 1.2
for r = 1/2. While we use and extend some of their techniques, our analysis
is more complex.

2 Sketch of the proof

Let G be an inclusion-wise minimal graph satisfying the assumptions of The-
orem 1.2. Then the set of vertices of degree less than (1+ ε)k is independent.
We may assume that at least (1 + ε)rn vertices have degree at least (1 + ε)k
(by erasing a tiny fraction of vertices of degree less than (1 + ε)k we obtain a
graph satisfying the above just with a smaller ε than in Theorem 1.2). Let T
be a tree of order at most k with a colour class of size at most rk.

We follow a strategy based on the Regularity Method that is commonly
employed for embedding trees (e.g. [8,10]). In this approach, the goal always
is to find a matching structure in the cluster graph of G with favourable
properties. To embed T we shall then fill-up regular pairs of this matching
structure (or of clusters “adjacent” to this matching structure) with parts
of T . While we cannot go into details of the embedding here due to space
constraints, below we define the sets which form the building bricks of our
matching structure which allow successful embedding of T . Let us now give
details how the matching structure is obtained. This is the heart of our proof
and the combinatorial argument to this end is considerably more involved than
in the case of the ordinary Loebl-Komlós-Sós conjecture [10].

We apply the regularity lemma [11] on G. Erase all edges within clusters,
in irregular pairs, or in regular pairs of very small density. Slightly abusing
notation, we still call this graph G. We choose a suitable ε′ > 0 depending on ε
and call a cluster an L-cluster if the average degree of its vertices is at least
(1+ ε′)k and otherwise an S-cluster. Subdivide L-clusters and S-clusters into
few subclusters in a way that the size of the L-subclusters is approximately
(1 − r)/r times smaller than the size of the S-subclusters. Define a cluster
graph H with its vertex set being the set of the (sub)clusters of G and with
edges between vertices corresponding to (sub)clusters forming a regular pair
of substantial density. For v ∈ V (H), let dēg(v) denote the average degree of
the vertices in the cluster corresponding to v. Let L be the set of vertices v
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Fig. 2. The structure of the cluster graph H and the matching M.

with dēg(v) ≥ (1 + ε′)k, and let S be the remaining vertices of H. Then |L|
is slightly larger than |S|.

We consider a matching M between L and S that minimizes the number of
vertices v ∈ S \ V (M) with dēg(v) < (1+ ε′)rk. Let S0 denote the set of such
vertices and let S1 = S \ (V (M) ∪ S0) and SM = S ∩ V (M). Define B as the
set of clusters v ∈ V (M) for which there is an alternating path v1, v2, . . . , vℓ
with v1 ∈ S0, vℓ = v, v2i ∈ L, v2i+1 ∈ S, and v2iv2i+1 ∈ E(M) (see Figure 2).
Set LB = L ∩ B, LA = L \ LB, SB = S ∩ B, and SA = SM \ SB. Observe
that |SB| = |LB|. Therefore, as |L| is slightly larger than |S|, we deduce that
LA is non-empty. Also observe that from the definition of B it follows that
eH(LA,S0 ∪ SB) = 0. We consider two particular subsets of L:

L+ = {v ∈ L : dēg(v,SM ∪ S1) ≥ (1 + ε′)(1− r)k} ,

L∗ = {v ∈ L : dēg(v,L) ≥ (1 + ε′)rk} .

Observe that we have LA ⊆ L∗ ∪ L+. Finally, set N = N(L∗ ∩ LA) ∩ L. We
are now able to obtain the desired matching structure advertised above (the
exact structure is too technical to be described here), unless the cluster graph
has the following properties:

(i) e(LA,S1 ∪ L∗) = 0, hence N ⊆ LB,

(ii) dēg(v) < (1 + ε′)rk for all v ∈ SA,

(iii) dēg(v,S0) ≥ (1 + ε′)rk for all v ∈ N.

By contradiction, we show that H cannot satisfy all three properties.

From (1) we infer that dēg(v,SA) ≥ (1 + ε′)(1 − r)k for any vertex v ∈
L+ ∩ LA. As the edges between L+ ∩ LA and SA are skewed, (2) gives that
|L+ ∩ LA| < |SA|, and hence L∗ ∩ LA is non-empty.

Recall that vertices in L correspond to smaller clusters than vertices in S.
Using (3) we deduce that N can be only slightly bigger than r

1−r
|S0|. On

the other hand, by estimating the number of edges of the underlying graph G



between the sets corresponding to L+ ∩ LA and SA and the number of edges
between the sets corresponding to L∗ ∩ LA and N, we can calculate that N

needs to be substantially bigger than |L∗ ∩ LA|+
r

1−r
|S0|, a contradiction.

3 A bound on the Ramsey number of skew trees

The Ramsey number R(G1, . . . , Gm) is the least number such that any com-
plete graph on R(G1, . . . , Gm) vertices with its edges coloured with m colours
contains a monochromatic copy of Gi in colour i for some 1 ≤ i ≤ m. It is not
difficult to see that, if true, both the Loebl–Komlós–Sós conjecture and the
Erdős–Sós conjecture would imply that for any pair of trees T1, T2 on k+1 and
l+ 1 vertices, respectively, it holds that R(T1, T2) ≤ k+ l. This was shown to
be asymptotically true in [10] and even finer asymptotic bound was obtained
for T1 = T2 in [8].

Our Conjecture 1.1 generalizes this consequence for trees of given skew.
Suppose we have trees T1, . . . , Tm such that the size of the i-th tree is ki+1 and
the size of one of its colour class is at most (ki +1)/m. Assuming the validity
of Conjecture 1.1, we deduce R(T1, . . . , Tm) ≤ 2 +

∑m
i=1 (ki − 1). Indeed, for

every vertex v there exists a colour i such that v is incident with at least ki
edges of colour i. Moreover, there exists a colour c such that at least 1/m of
the vertices are incident with at least kc edges of colour c. Thus, the subgraph
formed by the edges of colour c satisfies the conditions of Conjecture 1.1.
Using Theorem 1.2, we prove this consequence to be asymptotically true.

Corollary 3.1 For trees T1, . . . , Tm with |Ti| = ki and such that one color

class of Ti has size at most ki/m for 1 ≤ i ≤ m we have

R(T1, . . . , Tm) ≤
m
∑

i=1

ki + o

(

m
∑

i=1

ki

)

.

This generalises the asymptotic bound from [10] and can be shown in a
very similar manner.

Note that, if true, the Erdős–Sós conjecture would imply the same bound
but without the additional restriction on the skew of the trees.

4 Conclusion

We believe that, similarly as in [2,9], one could use the stability method to
prove that Conjecture 1.1 holds for large dense graphs. Also methods de-



veloped in [1,4,5,6,7] could be applied to prove the (asymptotic) version of
Conjecture 1.1 for large values of k even when the host graph is sparse.
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The approximate Loebl–Komlós–Sós Conjecture I: The sparse decomposition.
SIAM J. Discrete Math., 31 (2017), 945–982.
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