Definition 1. Let (H, \mathcal{T}) be a Σ -span in (G, \mathcal{T}^*) . For $v \in V(G) \setminus V(H)$, a horn at v of cardinality σ and breadth θ is a set of paths P_1, \ldots, P_{σ} intersecting only in their common endpoint v, such that

- for each $i, V(P_i) \cap V(H)$ consists only of the other endpoint v_i of P_i , and
- $d(v_i, v_j) \ge \theta$ for every $i \ne j$.

Definition 2. An animal of strength (θ, σ) with χ horns and δ hairs is (H, \mathcal{T}, X, Y) , where

- (H, \mathcal{T}) is a Σ -span in (G, \mathcal{T}^*) of order at least θ ,
- $X \subseteq V(G) \setminus V(H)$, $|X| = \chi$, and there is a horn of cardinality σ and breadth θ at each vertex of X,
- $Y \subseteq V(H)$, $|Y| = \delta$ and for each $y \in Y$, there exists an *H*-path in G X joining y to some vertex v with $d(y, v) \ge \theta$, and
- for every distinct $y_1, y_2 \in Y$, we have $d(y_1, y_2) \ge \theta$.

Definition 3. Let (H, \mathcal{T}) be a Σ -span in (G, \mathcal{T}^*) and let $Y \subseteq V(H)$. A γ -envelope around Y is a set $\{\Lambda_y : y \in Y\}$, where

- Λ_y is a γ -zone around y,
- $\Lambda_{y_1} \cap \Lambda_{y_2}$ are disjoint for $y_1 \neq y_2$, and
- the drawing $H \cap (\Sigma \setminus \bigcup_{y} \Lambda_{y})$ is rigid.

Lemma 1 (8.1). $\forall \Sigma, \delta, \phi, \psi \exists \gamma, \theta$ such that if

- (H, \mathcal{T}) is a Σ -span in (G, \mathcal{T}^*) of order θ , and
- Y is a subset of V(H) with $|Y| = \delta$ and $d(y_1, y_2) = \theta$ for every distinct $y_1, y_2 \in Y$,

then either

- 1. there exists a $(\Sigma + handle)$ -span of order ϕ in (G, \mathcal{T}^*) , or
- 2. there is an *H*-path in *G* joining *s* with *t* such that $d(s,t) \ge \psi$ and $d(s,y) \ge \psi$ for each $y \in Y$, or

3. there is a γ -envelope $\{\Lambda_y : y \in Y\}$ such that if $H' = H \setminus \bigcup_y \Lambda_y$, then there exists a set $Z \subseteq V(G) \setminus V(H')$ with $|Z| \leq \frac{1}{2}\delta^2\phi^2$ that intersects every H'-path in G with ends s, t such that $d'(s, t) \geq 2\psi$.

Lemma 2 (8.3). $\forall \Sigma, \tau, \chi, \delta, \lambda, \zeta, \psi \exists \theta$ such that if (H, \mathcal{T}, X, Y) is an animal in (G, \mathcal{T}^*) of strength $(\theta, \zeta + \tau)$ with χ horns and δ hairs and $Z \subseteq V(G) \setminus V(H)$ with $X \subseteq Z$ and $|Z| \leq \zeta$, then either

- 1. there is an animal with χ horns and $\delta + 1$ hairs of strength (ψ, τ) , or
- 2. there is an *H*-path in G-Z with ends s_1 and s_2 and distinct $y_1, y_2 \in Y$ with $d(s_1, y_1), d(s_2, y_2) \leq \psi$, or
- 3. (H, \mathcal{T}) is a $(\lambda, 2\psi)$ -level Σ -span of order $\theta |Z|$ in G Z.

Lemma 3 (7.1). $\forall \Sigma, \tau, \chi, \delta, \lambda, \theta', \phi, \psi \exists \theta, \sigma$ such that if if (H, \mathcal{T}, X, Y) is an animal in (G, \mathcal{T}^*) of strength (θ, σ) with χ horns and δ hairs, then either

- 1. there exists a $(\Sigma + handle)$ -span of order ϕ in (G, \mathcal{T}^*) , or
- 2. there exists an animal in (G, \mathcal{T}^*) of strength (ψ, τ) with χ horns and $\delta + 1$ hairs, or
- 3. there exists $Z \subseteq V(G)$ with $|Z| \leq \chi + \frac{1}{2}\delta^2\phi^2$ and a $(\lambda, 2\psi)$ -level Σ -span of order θ' in G Z.

Lemma 4 (6.3). $\forall \Sigma, p, \tau, \chi, \psi \exists \theta, \delta$ such that there is an animal in (G, \mathcal{T}^*) of strength $(\theta, \tau + 1)$ with χ horns and δ hairs and \mathcal{T}^* does not control a K_p minor in G, then there exists an animal in (G, \mathcal{T}^*) of strength (ψ, τ) with $\chi + 1$ horns and no hairs.

Lemma 5 (5.5). $\forall \Sigma, p \exists \theta$ such that if there exists an animal in (G, \mathcal{T}^*) of strength $(\phi, 4p(p-1))$ with $\frac{1}{2}p(p-1)$ horns and no hairs, then \mathcal{T}^* controls a K_p -minor in G.

Theorem 6. $\forall L \exists \kappa, \rho, \zeta, \theta$ such that if \mathcal{T} is a tangle of order θ in G that does not control an L-minor, then there exists $Z \subseteq V(G)$ of size at most ζ and a $\mathcal{T} \setminus Z$ -central segregation of G - Z of type (κ, ρ) with a proper arrangement in a surface in that L cannot be drawn.