Definition 1. Let (H, \mathcal{T}) be a Σ-span in $\left(G, \mathcal{T}^{*}\right)$. For $v \in V(G) \backslash V(H)$, a horn at v of cardinality σ and breadth θ is a set of paths $P_{1}, \ldots, P_{\sigma}$ intersecting only in their common endpoint v, such that

- for each $i, V\left(P_{i}\right) \cap V(H)$ consists only of the other endpoint v_{i} of P_{i}, and
- $d\left(v_{i}, v_{j}\right) \geq \theta$ for every $i \neq j$.

Definition 2. An animal of strength (θ, σ) with χ horns and δ hairs is (H, \mathcal{T}, X, Y), where

- (H, \mathcal{T}) is a Σ-span in $\left(G, \mathcal{T}^{*}\right)$ of order at least θ,
- $X \subseteq V(G) \backslash V(H),|X|=\chi$, and there is a horn of cardinality σ and breadth θ at each vertex of X,
- $Y \subseteq V(H),|Y|=\delta$ and for each $y \in Y$, there exists an H-path in $G-X$ joining y to some vertex v with $d(y, v) \geq \theta$, and
- for every distinct $y_{1}, y_{2} \in Y$, we have $d\left(y_{1}, y_{2}\right) \geq \theta$.

Definition 3. Let (H, \mathcal{T}) be a Σ-span in $\left(G, \mathcal{T}^{*}\right)$ and let $Y \subseteq V(H)$. A γ-envelope around Y is a set $\left\{\Lambda_{y}: y \in Y\right\}$, where

- Λ_{y} is a γ-zone around y,
- $\Lambda_{y_{1}} \cap \Lambda_{y_{2}}$ are disjoint for $y_{1} \neq y_{2}$, and
- the drawing $H \cap\left(\Sigma \backslash \bigcup_{y} \Lambda_{y}\right)$ is rigid.

Lemma 1 (8.1). $\forall \Sigma, \delta, \phi, \psi \exists \gamma, \theta$ such that if

- (H, \mathcal{T}) is a Σ-span in $\left(G, \mathcal{T}^{*}\right)$ of order θ, and
- Y is a subset of $V(H)$ with $|Y|=\delta$ and $d\left(y_{1}, y_{2}\right)=\theta$ for every distinct $y_{1}, y_{2} \in Y$,
then either

1. there exists a $(\Sigma+$ handle $)$-span of order ϕ in $\left(G, \mathcal{T}^{*}\right)$, or
2. there is an H-path in G joining s with t such that $d(s, t) \geq \psi$ and $d(s, y) \geq \psi$ for each $y \in Y$, or
3. there is a γ-envelope $\left\{\Lambda_{y}: y \in Y\right\}$ such that if $H^{\prime}=H \backslash \bigcup_{y} \Lambda_{y}$, then there exists a set $Z \subseteq V(G) \backslash V\left(H^{\prime}\right)$ with $|Z| \leq \frac{1}{2} \delta^{2} \phi^{2}$ that intersects every H^{\prime}-path in G with ends s, t such that $d^{\prime}(s, t) \geq 2 \psi$.

Lemma 2 (8.3). $\forall \Sigma, \tau, \chi, \delta, \lambda, \zeta, \psi \exists \theta$ such that if (H, \mathcal{T}, X, Y) is an animal in $\left(G, \mathcal{T}^{*}\right)$ of strength $(\theta, \zeta+\tau)$ with χ horns and δ hairs and $Z \subseteq V(G) \backslash V(H)$ with $X \subseteq Z$ and $|Z| \leq \zeta$, then either

1. there is an animal with χ horns and $\delta+1$ hairs of strength (ψ, τ), or
2. there is an H-path in $G-Z$ with ends s_{1} and s_{2} and distinct $y_{1}, y_{2} \in Y$ with $d\left(s_{1}, y_{1}\right), d\left(s_{2}, y_{2}\right) \leq \psi$, or
3. (H, \mathcal{T}) is a $(\lambda, 2 \psi)$-level Σ-span of order $\theta-|Z|$ in $G-Z$.

Lemma 3 (7.1). $\forall \Sigma, \tau, \chi, \delta, \lambda, \theta^{\prime}, \phi, \psi \exists \theta, \sigma$ such that if if (H, \mathcal{T}, X, Y) is an animal in $\left(G, \mathcal{T}^{*}\right)$ of strength (θ, σ) with χ horns and δ hairs, then either

1. there exists a ($\Sigma+$ handle $)$-span of order ϕ in $\left(G, \mathcal{T}^{*}\right)$, or
2. there exists an animal in $\left(G, \mathcal{T}^{*}\right)$ of strength (ψ, τ) with χ horns and $\delta+1$ hairs, or
3. there exists $Z \subseteq V(G)$ with $|Z| \leq \chi+\frac{1}{2} \delta^{2} \phi^{2}$ and $a(\lambda, 2 \psi)$-level Σ-span of order θ^{\prime} in $G-Z$.

Lemma 4 (6.3). $\forall \Sigma, p, \tau, \chi, \psi \exists \theta, \delta$ such that there is an animal in $\left(G, \mathcal{T}^{*}\right)$ of strength $(\theta, \tau+1)$ with χ horns and δ hairs and \mathcal{T}^{*} does not control a K_{p} minor in G, then there exists an animal in $\left(G, \mathcal{T}^{*}\right)$ of strength (ψ, τ) with $\chi+1$ horns and no hairs.

Lemma 5 (5.5). $\forall \Sigma, p \exists \theta$ such that if there exists an animal in $\left(G, \mathcal{T}^{*}\right)$ of strength $(\phi, 4 p(p-1))$ with $\frac{1}{2} p(p-1)$ horns and no hairs, then \mathcal{T}^{*} controls a K_{p}-minor in G.

Theorem 6. $\forall L \exists \kappa, \rho, \zeta, \theta$ such that if \mathcal{T} is a tangle of order θ in G that does not control an L-minor, then there exists $Z \subseteq V(G)$ of size at most ζ and a $\mathcal{T} \backslash Z$-central segregation of $G-Z$ of type (κ, ρ) with a proper arrangement in a surface in that L cannot be drawn.

