A graph G is f-treewidth-fragile if for every integer k, there exists a partition of $V(G)$ to parts X_{1}, \ldots, X_{k} such that $\operatorname{tw}\left(G-X_{i}\right) \leq f(k)$ for $i=1, \ldots, k$. A graph class \mathcal{G} is f-treewidth-fragile if every graph in $G \in$ \mathcal{G} is f-treewidth-fragile. A class \mathcal{G} is treewidth-fragile if it is f-treewidthfragile for some function f, and it is effectively treewidth-fragile if there exists a polynomial-time algorithm taking $G \in \mathcal{G}$ and $k \geq 1$ as an input and outputing the corresponding partition X_{1}, \ldots, X_{k}. Our goal is to show that all proper minor-closed classes are (effectively) treewidth-fragile, and to give some applications.

1 Applications of treewidth-fragility

A property π of graphs is a-hereditary if for every graph G having the property π and for every $X \subseteq V(G)$, there exists $Y \subseteq V(G)$ such that $X \subseteq Y$ and $|Y| \leq a|X|$ and $G-Y$ has the property π. For example,

- the properties " G has no edges" and " G is 3-colorable" are 1-hereditary, and
- the property " G can be covered by vertex-disjoint triangles" is 3-hereditary.

Let $\alpha_{\pi}(G)$ denote the size of the largest set $X \subseteq V(G)$ such that $G[X]$ has the property π. We say that π is tractable in graphs of bounded treewidth if for every b, there exists a polynomial-time algorithm determining α_{π} for graphs of treewidth at most b.

Lemma 1. Suppose a class \mathcal{G} of graphs is effectively treewidth-fragile and a property π is a-hereditary for some $a \geq 1$ and tractable in graphs of bounded treewidth. Then for every $p \geq 1$, there exists a polynomial-time algorithm that for a graph $G \in \mathcal{G}$ returns $Z \subseteq V(G)$ such that $G[Z]$ has the property π and $|Z| \geq(1-1 / p) \alpha_{\pi}(G)$.

Proof. Without loss of generality, we can assume a and p are integers (by rounding them up if necessary). Let f be the function such that every graph from \mathcal{G} is f-treewidth-fragile. Let $k=a p$. In polynomial time, we can find a partition X_{1}, \ldots, X_{k} of $V(G)$ such that $\operatorname{tw}\left(G_{i}\right) \leq f(k)$ for $i=1, \ldots, k$. For $i=1, \ldots, k$, use the algorithm for bounded treewidth to find $Z_{i} \subseteq V\left(G-X_{i}\right)$ of size $\alpha_{\pi}\left(G-X_{i}\right)$ such that $G\left[Z_{i}\right]$ has the property π, and return the largest set Z among Z_{1}, \ldots, Z_{k}.

Consider a set $T \subseteq V(G)$ such that $G[T]$ has property π and $|T|=\alpha_{\pi}(G)$. For $i=1, \ldots, k$, let $X_{i}^{\prime}=X_{i} \cap T$; there exists i such that $\left|X_{i}^{\prime}\right| \leq|T| / k$. Since π is a-hereditary and $G[T]$ has the property π, there exists a set $X_{i}^{\prime \prime} \subseteq T$
such that $X_{i}^{\prime} \subseteq X_{i}^{\prime \prime},\left|X_{i}^{\prime \prime}\right| \leq a\left|X_{i}^{\prime}\right| \leq|T| / p$, and $G\left[T \backslash X_{i}^{\prime \prime}\right]$ has the property π. Since $T \backslash X_{i}^{\prime \prime} \subseteq V(G) \backslash X_{i}$, we have

$$
|Z| \geq\left|Z_{i}\right|=\alpha_{\pi}\left(G-X_{i}\right) \geq\left|T \backslash X_{i}^{\prime \prime}\right| \geq(1-1 / p)|T|=(1-1 / p) \alpha_{\pi}(G)
$$

as required.
Lemma 2. Suppose a class \mathcal{G} of graphs is effectively treewidth-fragile. Then the chromatic number can be approximated for graphs in \mathcal{G} up to a factor of 2.

Proof. Let f be the function such that every graph from \mathcal{G} is f-treewidthfragile. For $G \in \mathcal{G}$, let X_{1}, X_{2} be a partition of $V(G)$ such that $\operatorname{tw}(G-$ $\left.X_{1}\right), \operatorname{tw}\left(G-X_{2}\right) \leq f(2)$. Color the graphs $G-X_{1}$ and $G-X_{2}$ optimally by disjoint sets of colors, obtaining a coloring of G by

$$
\chi\left(G-X_{1}\right)+\chi\left(G-X_{2}\right) \leq \chi(G)+\chi(G)=2 \chi(G)
$$

colors.

2 Graphs on surfaces

Lemma 3. Suppose G is a graph drawn on a surface of Euler genus g. If G has radius r, then $\operatorname{tw}(G) \leq(2 g+3) r$.

Proof. Without loss of generality, G is a triangulation. Applying BFS to G, we obtain a rooted spanning tree T of G of depth r; let q be the root of T and for each vertex $v \in V(G)$, let $t(v)$ denote the set of at most r vertices on the path from v to q in T, including v but excluding q. Let G^{\star} be the dual of G, and let S be the spanning subgraph of G^{\star} whose edges correspond to those in $E(G) \backslash E(T)$. Each vertex f of G^{\star} corresponds to a face of G, bounded by a cycle $x y z$; let us define $t(f)=t(x) \cup t(y) \cup t(z)$ and note that $|t(f)| \leq 3 r$.

Note the graph S is connected. Indeed, we can "walk around" the tree T in G, passing along edges of S and visiting all faces of G (vertices of S). Let S_{0} be a spanning tree of S and let $X=E(S) \backslash E\left(S_{0}\right)$. We have

$$
\begin{aligned}
|X| & =|E(S)|-\left|E\left(S_{0}\right)\right|=(|E(G)|-|E(T)|)-\left|E\left(S_{0}\right)\right| \\
& =|E(G)|-(|V(G)|-1)-\left(\left|V\left(G^{\star}\right)\right|-1\right) \\
& =\left(|V(G)|+\left|V\left(G^{\star}\right)\right|+g-2\right)-(|V(G)|-1)-\left(\left|V\left(G^{\star}\right)\right|-1\right)=g .
\end{aligned}
$$

Let X^{\prime} be the set of vertices of G incident with the edges corresponding to X, and let $Z=\bigcup_{v \in X^{\prime}} t(v)$; we have $|Z| \leq 2 g r$. For $f \in V\left(G^{\star}\right)$, let us define
$\beta(f)=t(f) \cup Z \cup\{q\}$; we have $\beta(f) \leq(2 g+3) r+1$. Hence, it suffices to argue that $\left(S_{0}, \beta\right)$ is a tree decomposition of G.

For any edge $u v \in E(G)$, we have $\{u, v\} \subseteq\{q\} \cup t(u) \cup t(v) \subseteq \beta(f)$ for a face $f \in V\left(S_{0}\right)$ incident with this edge. Consider any vertex $v \in V(G)$. If $v \in\{q\} \cup Z$, then v appears in all bags of $\left(S_{0}, \beta\right)$. Otherwise, let T_{v} be the subtree of T rooted in v, and note that $v \in \beta(f)$ exactly for the faces f incident with vertices of T_{v}. Any two such faces are connected by a walk in S obtained by "walking around" T_{v}; the edges of this walk must belong to S_{0}, since $v \notin Z$ implies no edge of S corresponding to an edge of G incident with a vertex of T_{v} belongs to X. Therefore, $\{f: v \in \beta(f)\}$ induces a connected subtree of S_{0}.

3 Outgrowths

Recall:
Definition 4. A graph H is a vortex of depth d and boundary sequence v_{1}, \ldots, v_{k} if H has a path decomposition (T, β) of width at most d such that

- $T=v_{1} v_{2} \ldots v_{k}$, and
- $v_{i} \in \beta\left(v_{i}\right)$ for $i=1, \ldots, k$

Definition 5. For G_{0} drawn in a surface, a graph G is an outgrowth of G_{0} by m vortices of depth d if

- $G=G_{0} \cup H_{1} \cup H_{m}$, where $H_{i} \cap H_{j}=\emptyset$ for distinct i and j,
- for all i, H_{i} is a vortex of depth d intersecting G only in its boundary sequence,
- for some disjoint faces f_{1}, \ldots, f_{k} of G_{0}, the boundary sequence of H_{i} appears in order on the boundary of f_{i}.

Let us now generalize Lemma 3 .
Lemma 6. Suppose G is an outgrowth of graph G_{0} drawn on a surface of Euler genus g by (any number of) vortices of depth d. If G has radius r, then $t w(G)<(2(2 g+3) r+1)(d+1)$.

Proof. Let f_{1}, \ldots, f_{k} be the faces of G_{0} to which the vortices G_{1}, \ldots, G_{k} attach. For $i=1, \ldots, k$, let $\left(T_{i}, \beta_{i}\right)$ be the corresponding decomposition of G_{i}; we can assume T_{i} is a path in G_{0}. Let G_{0}^{\prime} be obtained from G_{0} by, for $i=1, \ldots, k$, adding a vertex adjacent to all vertices incident with f_{i}; note
that G_{0}^{\prime} has radius at most $2 r$. Let $\left(T, \beta_{0}\right)$ be the tree decomposition of G_{0} obtained by Lemma 3, we have $|\beta(x)| \leq 2(2 g+3) r+1$ for $x \in V(T)$. For $v \in V\left(G_{0}\right)$, if there exists (necessarily unique) index i such that $v \in V\left(T_{i}\right)$, let $\alpha(v)=\beta_{i}(v)$, otherwise let $\alpha(v)=\{v\}$. For $x \in V(T)$, let $\beta(x)=$ $\bigcup_{v \in \beta_{0}(x)} \alpha(v)$. Then (T, β) is a tree decomposition of G of width less than $(2(2 g+3) r+1)(d+1)$.

Indeed, consider any $v \in V(G)$. If there exists i such that $v \in V\left(G_{i}\right)$, then there exists a connected subpath $T_{v} \subseteq G_{0}$ of T_{i} such that $v \in \beta_{i}(x)$ exactly for $x \in V\left(T_{v}\right)$, and let T_{v}^{\prime} be the connected subtree of T induced by the vertices x such that $\beta_{0}(x) \cap V\left(T_{v}\right) \neq \emptyset$; otherwise, let $T_{v}^{\prime}=\varnothing$. If $v \in V\left(G_{0}\right)$, then let $T_{v}^{\prime \prime}$ be the connected subtree of T induced by the vertices x such that $v \in \beta_{0}(x)$; otherwise, let $T_{v}^{\prime \prime}=\varnothing$. Note that $\left.\{x \in V(T): v \in \beta(x)\}=V\left(T_{v}^{\prime} \cup T_{v}^{\prime \prime}\right)\right\}$, and that if $T_{v}^{\prime} \neq \varnothing \neq T_{v}^{\prime \prime}$, then $v \in V\left(T_{i}\right)$, and thus $T_{v}^{\prime} \cap T_{v}^{\prime \prime} \neq \emptyset$, implying that $T_{v}^{\prime} \cup T_{v}^{\prime \prime}$ is connected.

Let $\mathcal{G}_{g, d}$ be the class of outgrowths of graphs drawn on a surface of Euler genus g by (any number of) vortices of depth d. For a vortex with decomposition (T, β), a vertex x is boundary-universal if it is adjacent to all vertices of T. Let $\mathcal{G}_{g, d}^{\prime}$ be the class of outgrowths of graphs drawn on a surface of Euler genus g by (any number of) vortices of depth d, each of them containing a boundary-universal vertex.

Corollary 7. For any g, d, b, r, consider a graph $G \in \mathcal{G}_{g, d}^{\prime}$. If Z is the set of vertices of G at distance at least b and at most $b+r$ from some vertex v_{0} in the embedded part of G, then $t w(G[Z])<(2(2 g+3)(r+5)+1)(d+1)$

Proof. Without loss of generality, we can assume G is connected. Let G_{0} be the embedded part of G. For each vortex G_{i} of G, let $\left(T_{i}, \beta_{i}\right)$ be the corresponding decomposition. Let H be obtained from G as follows. Delete all vertices at distance greater than $b+r$ from v_{0} that are not in the boundary of any vortex, except for the boundary-universal vertices at distance exactly $b+r+1$ from v_{0}. For each vortex G_{i},
(a) if all vertices of T_{i} are at distance greater than $b+r$ from v_{0}, then delete $V\left(T_{i}\right)$, and
(b) if all vertices of T_{i} are at distance less than b from v_{0}, then contract G_{i} to a single vertex and do not consider it to be a vortex any more.

Finally, contract all edges joining vertices u and v at distance less than b from v_{0} such that at least one of u and v is not contained in a boundary of a vortex.

Let H^{\prime} be the subgraph of G induced by vertices at distance at least b and at most $b+r$ from v_{0} that are contained in vortices G_{i} such that all vertices of T_{i} are at distance less than b from v_{0} (i.e., the vortices eliminated in (b) above). Note that H^{\prime} is a union of components of $G[Z]$, treewidth of H^{\prime} is less than d, and $G\left[Z \backslash V\left(H^{\prime}\right)\right]$ is a subgraph of H. Hence, it suffices to argue that $\operatorname{tw}(H)<(2(2 g+3)(r+5)+1)(d+1)$. Note also that $H \in \mathcal{G}_{g, d}$, and thus by Lemma 6, it suffices to argue H has radius at most $r+5$

Indeed, consider any vertex $v^{\prime} \in V(H)$, and let v be one of vertices of G which have been contracted to v^{\prime}. Let P be a shortest path from v_{0} to v in G; the construction of H and the fact that vortices contain boundaryuniversal vertices implies that P has length at most $b+r+2$. Consider any edge $x y$ of P, where both x and y are at distance less than $b-2$ from v_{0}. If one of these vertices is a boundary vertex of a vortex, then since the vortex contains a boundary-universal vertex, all the vertices of the boundary are at distance less than b from v_{0}, and thus the vortex was contracted in (b) to a single vertex. Otherwise, the edge $x y$ was contracted in the last part of the construction of H. Therefore, P is contracted to a path of length at most $r+5$.

Corollary 8. For every g and d, then class $\mathcal{G}_{g, d}$ is treewidth-fragile.
Proof. Consider a graph $G \in \mathcal{G}_{g, d}$; without loss of generality, we can assume G is connected. For each vortex G_{i} of G, let $\left(T_{i}, \beta_{i}\right)$ be the corresponding decomposition, and let G^{\prime} be obtained by, for each i, adding a vertex v_{i} adjacent to all vertices of T_{i} to the graph and putting v_{i} to all bags of β_{i}; clearly, $G \in \mathcal{G}_{g, d+1}^{\prime}$. Let v_{0} be an arbitrary vertex of the embedded part of G^{\prime}.

Consider any integer $k \geq 1$. For $i=1, \ldots, k$, let X_{i}^{\prime} consist of vertices whose distance from v_{0} in G^{\prime} modulo k is $i-1$, and let $X_{i}=X_{i}^{\prime} \cap V(G)$. It suffices to argue that the treewidth of $G^{\prime}-X_{i}^{\prime} \supseteq G-X_{i}$ is bounded. This follows from Corollary 7 , since $G^{\prime}-X_{i}^{\prime}$ is a disjoint union of subgraphs induced by vertices at distances at least $t k+i$ and at most $t k+i+k-1$ for $t \in \mathbb{Z}$.

4 Apices and clique-sums

Recall:
Definition 9. G is obtained from H by adding a apices if $H=G-A$ for some set $A \subseteq V(G)$ of size a.

For a class \mathcal{G}, let $\mathcal{G}^{(a)}$ denote the class of graphs obtained from those in \mathcal{G} by adding at most a apices. For a function f, let $f^{(a)}(k)=f(k)+a$.

Observation 10. If \mathcal{G} is f-treewidth-fragile, then $\mathcal{G}^{(a)}$ is $f^{(a)}$-treewidthfragile.

Proof. Consider a graph $G \in \mathcal{G}^{(a)}$, and let A be a set of size at most a such that $G-A \in \mathcal{G}$. Let $X_{1}^{\prime}, \ldots, X_{k}^{\prime}$ be a partition of $V(G-A)$ such that $\operatorname{tw}\left(G-A-X_{i}^{\prime}\right) \leq f(k)$ for each i. Let $X_{1}=X_{1}^{\prime}, \ldots, X_{k-1}^{\prime}=X_{k-1}$, $X_{k}=X_{k}^{\prime} \cup A$. Then $\operatorname{tw}\left(G-X_{i}\right) \leq f(k)+a$ for each i.

Observation 11. If \mathcal{G} is f-treewidth-fragile, then $\omega(G) \leq 2 f(2)+2$ for every $G \in \mathcal{G}$.

Proof. Let X_{1}, X_{2} be a partition of $V(G)$ such that $\operatorname{tw}\left(G-X_{1}\right), \operatorname{tw}\left(G-X_{2}\right) \leq$ $f(2)$. Then
$\omega(G) \leq \omega\left(G-X_{1}\right)+\omega\left(G-X_{2}\right) \leq\left(\operatorname{tw}\left(G-X_{1}\right)+1\right)+\left(\operatorname{tw}\left(G-X_{2}\right)+1\right) \leq 2 f(2)+2$.

Lemma 12. Let \mathcal{G} be a class of graphs and let \mathcal{H} be the class of graphs obtained from those in \mathcal{G} by clique-sums. If \mathcal{G} is f-treewidth-fragile, then \mathcal{H} is $f^{(2 f(2)+2)}$-treewidth-fragile.

Proof. Note that for every $H \in \mathcal{H}$, we have $\omega(H) \leq 2 f(2)+2$. Consider any $k \geq 1$. We will inductively show a stronger claim: For every $H \in \mathcal{H}$ and a partition K_{1}, \ldots, K_{k} of a clique K in H, there exists a partition X_{1}, \ldots, X_{k} of H such that $\operatorname{tw}\left(H-X_{i}\right) \leq f(k)+2 f(2)+2$ and $K \cap X_{i}=K_{i}$ for each i. This is clear for graphs $G \in \mathcal{G}$: Take the partition obtained by f-treewidth-fragility of G and move all vertices of K to the appropriate part, increasing the treewidth of $G-X_{i}$ by at most $|K|$.

Suppose we now perform a clique-sum of $H_{1}, H_{2} \in \mathcal{H}$ on a clique Q, to obtain a graph H, and let K be a clique in H and K_{1}, \ldots, K_{k} its partition. We can by symmetry assume $K \subseteq V\left(H_{1}\right)$. Let $X_{1}^{\prime}, \ldots, X_{k}^{\prime}$ be the inductively obtained partition of $V\left(H_{1}\right)$ such that $\operatorname{tw}\left(H_{1}-X_{i}^{\prime}\right) \leq f(k)+2 f(2)+2$ and $K \cap X_{i}^{\prime}=K_{i}$ for each i. Let $Q_{i}=Q \cap X_{i}^{\prime}$ for each i, and let $X_{1}^{\prime \prime}, \ldots, X_{k}^{\prime \prime}$ be the inductively obtained partition of $V\left(H_{2}\right)$ such that $\operatorname{tw}\left(H_{2}-X_{i}^{\prime \prime}\right) \leq$ $f(k)+2 f(2)+2$ and $Q \cap X_{i}^{\prime \prime}=Q_{i}$ for each i. Letting $X_{i}=X_{i}^{\prime} \cup X_{i}^{\prime \prime}$, we obtain a partition of $V(H)$ such that $K \cap X_{i}=K_{i}$ for each i. Moreover, $H-X_{i}$ is a clique-sum of $H_{1}-X_{i}^{\prime}$ and $H_{2}-X_{i}^{\prime \prime}$, implying $\operatorname{tw}\left(H-X_{i}\right) \leq$ $f(k)+2 f(2)+2$.

5 Proper minor-closed classes

Recall:

Definition 13. A graph G is a-near-embeddable in a surface Σ if for some graph G_{0} drawn in Σ, G is obtained from an outgrowth of G_{0} by at most a vortices of depth a by adding at most a apices.

Theorem 14 (The Structure Theorem). For every proper minor-closed class \mathcal{G}, there exists a and g such that graphs in \mathcal{G} are clique-sums of graphs that are a-near-embeddable in surfaces of genus at most g.

Combining the structure theorem with Lemma 12, Observation 10, and Corollary 8, we obtain the following claim.

Corollary 15. Every proper minor-closed class is treewidth-fragile.

