
A graph G is f -treewidth-fragile if for every integer k, there exists a
partition of V (G) to parts X1, . . . , Xk such that tw(G − Xi) ≤ f(k) for
i = 1, . . . , k. A graph class G is f -treewidth-fragile if every graph in G ∈
G is f -treewidth-fragile. A class G is treewidth-fragile if it is f -treewidth-
fragile for some function f , and it is effectively treewidth-fragile if there exists
a polynomial-time algorithm taking G ∈ G and k ≥ 1 as an input and
outputing the corresponding partition X1, . . . , Xk. Our goal is to show that
all proper minor-closed classes are (effectively) treewidth-fragile, and to give
some applications.

1 Applications of treewidth-fragility

A property π of graphs is a-hereditary if for every graph G having the prop-
erty π and for every X ⊆ V (G), there exists Y ⊆ V (G) such that X ⊆ Y
and |Y | ≤ a|X| and G− Y has the property π. For example,

• the properties “G has no edges” and “G is 3-colorable” are 1-hereditary,
and

• the property “G can be covered by vertex-disjoint triangles” is 3-hereditary.

Let απ(G) denote the size of the largest set X ⊆ V (G) such that G[X] has
the property π. We say that π is tractable in graphs of bounded treewidth
if for every b, there exists a polynomial-time algorithm determining απ for
graphs of treewidth at most b.

Lemma 1. Suppose a class G of graphs is effectively treewidth-fragile and a
property π is a-hereditary for some a ≥ 1 and tractable in graphs of bounded
treewidth. Then for every p ≥ 1, there exists a polynomial-time algorithm
that for a graph G ∈ G returns Z ⊆ V (G) such that G[Z] has the property π
and |Z| ≥ (1− 1/p)απ(G).

Proof. Without loss of generality, we can assume a and p are integers (by
rounding them up if necessary). Let f be the function such that every graph
from G is f -treewidth-fragile. Let k = ap. In polynomial time, we can find a
partition X1, . . . , Xk of V (G) such that tw(Gi) ≤ f(k) for i = 1, . . . , k. For
i = 1, . . . , k, use the algorithm for bounded treewidth to find Zi ⊆ V (G−Xi)
of size απ(G−Xi) such that G[Zi] has the property π, and return the largest
set Z among Z1, . . . , Zk.

Consider a set T ⊆ V (G) such that G[T ] has property π and |T | = απ(G).
For i = 1, . . . , k, let X ′i = Xi∩T ; there exists i such that |X ′i| ≤ |T |/k. Since
π is a-hereditary and G[T ] has the property π, there exists a set X ′′i ⊆ T
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such that X ′i ⊆ X ′′i , |X ′′i | ≤ a|X ′i| ≤ |T |/p, and G[T \X ′′i ] has the property
π. Since T \X ′′i ⊆ V (G) \Xi, we have

|Z| ≥ |Zi| = απ(G−Xi) ≥ |T \X ′′i | ≥ (1− 1/p)|T | = (1− 1/p)απ(G),

as required.

Lemma 2. Suppose a class G of graphs is effectively treewidth-fragile. Then
the chromatic number can be approximated for graphs in G up to a factor of
2.

Proof. Let f be the function such that every graph from G is f -treewidth-
fragile. For G ∈ G, let X1, X2 be a partition of V (G) such that tw(G −
X1), tw(G−X2) ≤ f(2). Color the graphs G−X1 and G−X2 optimally by
disjoint sets of colors, obtaining a coloring of G by

χ(G−X1) + χ(G−X2) ≤ χ(G) + χ(G) = 2χ(G)

colors.

2 Graphs on surfaces

Lemma 3. Suppose G is a graph drawn on a surface of Euler genus g. If G
has radius r, then tw(G) ≤ (2g + 3)r.

Proof. Without loss of generality, G is a triangulation. Applying BFS to G,
we obtain a rooted spanning tree T of G of depth r; let q be the root of T
and for each vertex v ∈ V (G), let t(v) denote the set of at most r vertices
on the path from v to q in T , including v but excluding q. Let G? be the
dual of G, and let S be the spanning subgraph of G? whose edges correspond
to those in E(G) \ E(T ). Each vertex f of G? corresponds to a face of G,
bounded by a cycle xyz; let us define t(f) = t(x) ∪ t(y) ∪ t(z) and note that
|t(f)| ≤ 3r.

Note the graph S is connected. Indeed, we can “walk around” the tree T
in G, passing along edges of S and visiting all faces of G (vertices of S). Let
S0 be a spanning tree of S and let X = E(S) \ E(S0). We have

|X| = |E(S)| − |E(S0)| = (|E(G)| − |E(T )|)− |E(S0)|
= |E(G)| − (|V (G)| − 1)− (|V (G?)| − 1)

= (|V (G)|+ |V (G?)|+ g − 2)− (|V (G)| − 1)− (|V (G?)| − 1) = g.

Let X ′ be the set of vertices of G incident with the edges corresponding to
X, and let Z =

⋃
v∈X′ t(v); we have |Z| ≤ 2gr. For f ∈ V (G?), let us define
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β(f) = t(f) ∪ Z ∪ {q}; we have β(f) ≤ (2g + 3)r + 1. Hence, it suffices to
argue that (S0, β) is a tree decomposition of G.

For any edge uv ∈ E(G), we have {u, v} ⊆ {q} ∪ t(u) ∪ t(v) ⊆ β(f) for
a face f ∈ V (S0) incident with this edge. Consider any vertex v ∈ V (G).
If v ∈ {q} ∪ Z, then v appears in all bags of (S0, β). Otherwise, let Tv be
the subtree of T rooted in v, and note that v ∈ β(f) exactly for the faces f
incident with vertices of Tv. Any two such faces are connected by a walk in S
obtained by “walking around” Tv; the edges of this walk must belong to S0,
since v 6∈ Z implies no edge of S corresponding to an edge of G incident with
a vertex of Tv belongs to X. Therefore, {f : v ∈ β(f)} induces a connected
subtree of S0.

3 Outgrowths

Recall:

Definition 4. A graph H is a vortex of depth d and boundary sequence
v1, . . . , vk if H has a path decomposition (T, β) of width at most d such that

• T = v1v2 . . . vk, and

• vi ∈ β(vi) for i = 1, . . . , k

Definition 5. For G0 drawn in a surface, a graph G is an outgrowth of G0

by m vortices of depth d if

• G = G0 ∪H1 ∪Hm, where Hi ∩Hj = ∅ for distinct i and j,

• for all i, Hi is a vortex of depth d intersecting G only in its boundary
sequence,

• for some disjoint faces f1, . . . , fk of G0, the boundary sequence of Hi

appears in order on the boundary of fi.

Let us now generalize Lemma 3.

Lemma 6. Suppose G is an outgrowth of graph G0 drawn on a surface of
Euler genus g by (any number of) vortices of depth d. If G has radius r,
then tw(G) < (2(2g + 3)r + 1)(d+ 1).

Proof. Let f1, . . . , fk be the faces of G0 to which the vortices G1, . . . , Gk

attach. For i = 1, . . . , k, let (Ti, βi) be the corresponding decomposition of
Gi; we can assume Ti is a path in G0. Let G′0 be obtained from G0 by, for
i = 1, . . . , k, adding a vertex adjacent to all vertices incident with fi; note
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that G′0 has radius at most 2r. Let (T, β0) be the tree decomposition of G0

obtained by Lemma 3; we have |β(x)| ≤ 2(2g + 3)r + 1 for x ∈ V (T ). For
v ∈ V (G0), if there exists (necessarily unique) index i such that v ∈ V (Ti),
let α(v) = βi(v), otherwise let α(v) = {v}. For x ∈ V (T ), let β(x) =⋃
v∈β0(x) α(v). Then (T, β) is a tree decomposition of G of width less than

(2(2g + 3)r + 1)(d+ 1).
Indeed, consider any v ∈ V (G). If there exists i such that v ∈ V (Gi), then

there exists a connected subpath Tv ⊆ G0 of Ti such that v ∈ βi(x) exactly for
x ∈ V (Tv), and let T ′v be the connected subtree of T induced by the vertices x
such that β0(x)∩V (Tv) 6= ∅; otherwise, let T ′v = ∅. If v ∈ V (G0), then let T ′′v
be the connected subtree of T induced by the vertices x such that v ∈ β0(x);
otherwise, let T ′′v = ∅. Note that {x ∈ V (T ) : v ∈ β(x)} = V (T ′v ∪T ′′v )}, and
that if T ′v 6= ∅ 6= T ′′v , then v ∈ V (Ti), and thus T ′v ∩ T ′′v 6= ∅, implying that
T ′v ∪ T ′′v is connected.

Let Gg,d be the class of outgrowths of graphs drawn on a surface of Euler
genus g by (any number of) vortices of depth d. For a vortex with decompo-
sition (T, β), a vertex x is boundary-universal if it is adjacent to all vertices of
T . Let G ′g,d be the class of outgrowths of graphs drawn on a surface of Euler
genus g by (any number of) vortices of depth d, each of them containing a
boundary-universal vertex.

Corollary 7. For any g, d, b, r, consider a graph G ∈ G ′g,d. If Z is the set
of vertices of G at distance at least b and at most b+ r from some vertex v0
in the embedded part of G, then tw(G[Z]) < (2(2g + 3)(r + 5) + 1)(d+ 1)

Proof. Without loss of generality, we can assume G is connected. Let G0

be the embedded part of G. For each vortex Gi of G, let (Ti, βi) be the
corresponding decomposition. Let H be obtained from G as follows. Delete
all vertices at distance greater than b+r from v0 that are not in the boundary
of any vortex, except for the boundary-universal vertices at distance exactly
b+ r + 1 from v0. For each vortex Gi,

(a) if all vertices of Ti are at distance greater than b+r from v0, then delete
V (Ti), and

(b) if all vertices of Ti are at distance less than b from v0, then contract Gi

to a single vertex and do not consider it to be a vortex any more.

Finally, contract all edges joining vertices u and v at distance less than b
from v0 such that at least one of u and v is not contained in a boundary of
a vortex.
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Let H ′ be the subgraph of G induced by vertices at distance at least b
and at most b + r from v0 that are contained in vortices Gi such that all
vertices of Ti are at distance less than b from v0 (i.e., the vortices eliminated
in (b) above). Note that H ′ is a union of components of G[Z], treewidth of
H ′ is less than d, and G[Z \ V (H ′)] is a subgraph of H. Hence, it suffices to
argue that tw(H) < (2(2g + 3)(r + 5) + 1)(d + 1). Note also that H ∈ Gg,d,
and thus by Lemma 6, it suffices to argue H has radius at most r + 5

Indeed, consider any vertex v′ ∈ V (H), and let v be one of vertices of
G which have been contracted to v′. Let P be a shortest path from v0 to
v in G; the construction of H and the fact that vortices contain boundary-
universal vertices implies that P has length at most b+ r + 2. Consider any
edge xy of P , where both x and y are at distance less than b− 2 from v0. If
one of these vertices is a boundary vertex of a vortex, then since the vortex
contains a boundary-universal vertex, all the vertices of the boundary are at
distance less than b from v0, and thus the vortex was contracted in (b) to a
single vertex. Otherwise, the edge xy was contracted in the last part of the
construction of H. Therefore, P is contracted to a path of length at most
r + 5.

Corollary 8. For every g and d, then class Gg,d is treewidth-fragile.

Proof. Consider a graph G ∈ Gg,d; without loss of generality, we can assume
G is connected. For each vortex Gi of G, let (Ti, βi) be the corresponding
decomposition, and let G′ be obtained by, for each i, adding a vertex vi
adjacent to all vertices of Ti to the graph and putting vi to all bags of βi;
clearly, G ∈ G ′g,d+1. Let v0 be an arbitrary vertex of the embedded part of
G′.

Consider any integer k ≥ 1. For i = 1, . . . , k, let X ′i consist of vertices
whose distance from v0 in G′ modulo k is i − 1, and let Xi = X ′i ∩ V (G).
It suffices to argue that the treewidth of G′ − X ′i ⊇ G − Xi is bounded.
This follows from Corollary 7, since G′ −X ′i is a disjoint union of subgraphs
induced by vertices at distances at least tk+ i and at most tk+ i+ k− 1 for
t ∈ Z.

4 Apices and clique-sums

Recall:

Definition 9. G is obtained from H by adding a apices if H = G − A for
some set A ⊆ V (G) of size a.

For a class G, let G(a) denote the class of graphs obtained from those in
G by adding at most a apices. For a function f , let f (a)(k) = f(k) + a.
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Observation 10. If G is f -treewidth-fragile, then G(a) is f (a)-treewidth-
fragile.

Proof. Consider a graph G ∈ G(a), and let A be a set of size at most a
such that G − A ∈ G. Let X ′1, . . . , X ′k be a partition of V (G − A) such
that tw(G − A − X ′i) ≤ f(k) for each i. Let X1 = X ′1, . . . , X ′k−1 = Xk−1,
Xk = X ′k ∪ A. Then tw(G−Xi) ≤ f(k) + a for each i.

Observation 11. If G is f -treewidth-fragile, then ω(G) ≤ 2f(2)+2 for every
G ∈ G.

Proof. Let X1, X2 be a partition of V (G) such that tw(G−X1), tw(G−X2) ≤
f(2). Then

ω(G) ≤ ω(G−X1)+ω(G−X2) ≤ (tw(G−X1)+1)+(tw(G−X2)+1) ≤ 2f(2)+2.

Lemma 12. Let G be a class of graphs and let H be the class of graphs
obtained from those in G by clique-sums. If G is f -treewidth-fragile, then H
is f (2f(2)+2)-treewidth-fragile.

Proof. Note that for every H ∈ H, we have ω(H) ≤ 2f(2) + 2. Consider
any k ≥ 1. We will inductively show a stronger claim: For every H ∈ H
and a partition K1, . . . , Kk of a clique K in H, there exists a partition X1,
. . . , Xk of H such that tw(H − Xi) ≤ f(k) + 2f(2) + 2 and K ∩ Xi = Ki

for each i. This is clear for graphs G ∈ G: Take the partition obtained by
f -treewidth-fragility of G and move all vertices of K to the appropriate part,
increasing the treewidth of G−Xi by at most |K|.

Suppose we now perform a clique-sum of H1, H2 ∈ H on a clique Q, to
obtain a graph H, and let K be a clique in H and K1, . . . , Kk its partition.
We can by symmetry assume K ⊆ V (H1). Let X ′1, . . . , X

′
k be the inductively

obtained partition of V (H1) such that tw(H1 −X ′i) ≤ f(k) + 2f(2) + 2 and
K ∩ X ′i = Ki for each i. Let Qi = Q ∩ X ′i for each i, and let X ′′1 , . . . , X ′′k
be the inductively obtained partition of V (H2) such that tw(H2 − X ′′i ) ≤
f(k) + 2f(2) + 2 and Q ∩ X ′′i = Qi for each i. Letting Xi = X ′i ∪ X ′′i , we
obtain a partition of V (H) such that K ∩ Xi = Ki for each i. Moreover,
H − Xi is a clique-sum of H1 − X ′i and H2 − X ′′i , implying tw(H − Xi) ≤
f(k) + 2f(2) + 2.

5 Proper minor-closed classes

Recall:
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Definition 13. A graph G is a-near-embeddable in a surface Σ if for some
graph G0 drawn in Σ, G is obtained from an outgrowth of G0 by at most a
vortices of depth a by adding at most a apices.

Theorem 14 (The Structure Theorem). For every proper minor-closed class
G, there exists a and g such that graphs in G are clique-sums of graphs that
are a-near-embeddable in surfaces of genus at most g.

Combining the structure theorem with Lemma 12, Observation 10, and
Corollary 8, we obtain the following claim.

Corollary 15. Every proper minor-closed class is treewidth-fragile.
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