A graph G is f-treewidth-fragile if for every integer k, there exists a partition of V(G) to parts X_1, \ldots, X_k such that $\operatorname{tw}(G - X_i) \leq f(k)$ for $i = 1, \ldots, k$. A graph class \mathcal{G} is f-treewidth-fragile if every graph in $G \in$ \mathcal{G} is f-treewidth-fragile. A class \mathcal{G} is treewidth-fragile if it is f-treewidthfragile for some function f, and it is effectively treewidth-fragile if there exists a polynomial-time algorithm taking $G \in \mathcal{G}$ and $k \geq 1$ as an input and outputing the corresponding partition X_1, \ldots, X_k . Our goal is to show that all proper minor-closed classes are (effectively) treewidth-fragile, and to give some applications.

1 Applications of treewidth-fragility

A property π of graphs is *a*-hereditary if for every graph G having the property π and for every $X \subseteq V(G)$, there exists $Y \subseteq V(G)$ such that $X \subseteq Y$ and $|Y| \leq a|X|$ and G - Y has the property π . For example,

- the properties "G has no edges" and "G is 3-colorable" are 1-hereditary, and
- the property "G can be covered by vertex-disjoint triangles" is 3-hereditary.

Let $\alpha_{\pi}(G)$ denote the size of the largest set $X \subseteq V(G)$ such that G[X] has the property π . We say that π is *tractable in graphs of bounded treewidth* if for every b, there exists a polynomial-time algorithm determining α_{π} for graphs of treewidth at most b.

Lemma 1. Suppose a class \mathcal{G} of graphs is effectively treewidth-fragile and a property π is a-hereditary for some $a \geq 1$ and tractable in graphs of bounded treewidth. Then for every $p \geq 1$, there exists a polynomial-time algorithm that for a graph $G \in \mathcal{G}$ returns $Z \subseteq V(G)$ such that G[Z] has the property π and $|Z| \geq (1 - 1/p)\alpha_{\pi}(G)$.

Proof. Without loss of generality, we can assume a and p are integers (by rounding them up if necessary). Let f be the function such that every graph from \mathcal{G} is f-treewidth-fragile. Let k = ap. In polynomial time, we can find a partition X_1, \ldots, X_k of V(G) such that $\operatorname{tw}(G_i) \leq f(k)$ for $i = 1, \ldots, k$. For $i = 1, \ldots, k$, use the algorithm for bounded treewidth to find $Z_i \subseteq V(G - X_i)$ of size $\alpha_{\pi}(G - X_i)$ such that $G[Z_i]$ has the property π , and return the largest set Z among Z_1, \ldots, Z_k .

Consider a set $T \subseteq V(G)$ such that G[T] has property π and $|T| = \alpha_{\pi}(G)$. For $i = 1, \ldots, k$, let $X'_i = X_i \cap T$; there exists i such that $|X'_i| \leq |T|/k$. Since π is *a*-hereditary and G[T] has the property π , there exists a set $X''_i \subseteq T$ such that $X'_i \subseteq X''_i$, $|X''_i| \leq a|X'_i| \leq |T|/p$, and $G[T \setminus X''_i]$ has the property π . Since $T \setminus X''_i \subseteq V(G) \setminus X_i$, we have

$$|Z| \ge |Z_i| = \alpha_{\pi}(G - X_i) \ge |T \setminus X_i''| \ge (1 - 1/p)|T| = (1 - 1/p)\alpha_{\pi}(G),$$

as required.

Lemma 2. Suppose a class \mathcal{G} of graphs is effectively treewidth-fragile. Then the chromatic number can be approximated for graphs in \mathcal{G} up to a factor of 2.

Proof. Let f be the function such that every graph from \mathcal{G} is f-treewidth-fragile. For $G \in \mathcal{G}$, let X_1, X_2 be a partition of V(G) such that $\operatorname{tw}(G - X_1), \operatorname{tw}(G - X_2) \leq f(2)$. Color the graphs $G - X_1$ and $G - X_2$ optimally by disjoint sets of colors, obtaining a coloring of G by

$$\chi(G - X_1) + \chi(G - X_2) \le \chi(G) + \chi(G) = 2\chi(G)$$

colors.

2 Graphs on surfaces

Lemma 3. Suppose G is a graph drawn on a surface of Euler genus g. If G has radius r, then $tw(G) \leq (2g+3)r$.

Proof. Without loss of generality, G is a triangulation. Applying BFS to G, we obtain a rooted spanning tree T of G of depth r; let q be the root of T and for each vertex $v \in V(G)$, let t(v) denote the set of at most r vertices on the path from v to q in T, including v but excluding q. Let G^* be the dual of G, and let S be the spanning subgraph of G^* whose edges correspond to those in $E(G) \setminus E(T)$. Each vertex f of G^* corresponds to a face of G, bounded by a cycle xyz; let us define $t(f) = t(x) \cup t(y) \cup t(z)$ and note that $|t(f)| \leq 3r$.

Note the graph S is connected. Indeed, we can "walk around" the tree T in G, passing along edges of S and visiting all faces of G (vertices of S). Let S_0 be a spanning tree of S and let $X = E(S) \setminus E(S_0)$. We have

$$\begin{aligned} |X| &= |E(S)| - |E(S_0)| = (|E(G)| - |E(T)|) - |E(S_0)| \\ &= |E(G)| - (|V(G)| - 1) - (|V(G^*)| - 1) \\ &= (|V(G)| + |V(G^*)| + g - 2) - (|V(G)| - 1) - (|V(G^*)| - 1) = g. \end{aligned}$$

Let X' be the set of vertices of G incident with the edges corresponding to X, and let $Z = \bigcup_{v \in X'} t(v)$; we have $|Z| \leq 2gr$. For $f \in V(G^*)$, let us define

 $\beta(f) = t(f) \cup Z \cup \{q\}$; we have $\beta(f) \leq (2g+3)r+1$. Hence, it suffices to argue that (S_0, β) is a tree decomposition of G.

For any edge $uv \in E(G)$, we have $\{u, v\} \subseteq \{q\} \cup t(u) \cup t(v) \subseteq \beta(f)$ for a face $f \in V(S_0)$ incident with this edge. Consider any vertex $v \in V(G)$. If $v \in \{q\} \cup Z$, then v appears in all bags of (S_0, β) . Otherwise, let T_v be the subtree of T rooted in v, and note that $v \in \beta(f)$ exactly for the faces fincident with vertices of T_v . Any two such faces are connected by a walk in Sobtained by "walking around" T_v ; the edges of this walk must belong to S_0 , since $v \notin Z$ implies no edge of S corresponding to an edge of G incident with a vertex of T_v belongs to X. Therefore, $\{f : v \in \beta(f)\}$ induces a connected subtree of S_0 .

3 Outgrowths

Recall:

Definition 4. A graph H is a vortex of depth d and boundary sequence v_1, \ldots, v_k if H has a path decomposition (T, β) of width at most d such that

- $T = v_1 v_2 \dots v_k$, and
- $v_i \in \beta(v_i)$ for $i = 1, \ldots, k$

Definition 5. For G_0 drawn in a surface, a graph G is an outgrowth of G_0 by m vortices of depth d if

- $G = G_0 \cup H_1 \cup H_m$, where $H_i \cap H_j = \emptyset$ for distinct i and j,
- for all i, H_i is a vortex of depth d intersecting G only in its boundary sequence,
- for some disjoint faces f_1, \ldots, f_k of G_0 , the boundary sequence of H_i appears in order on the boundary of f_i .

Let us now generalize Lemma 3.

Lemma 6. Suppose G is an outgrowth of graph G_0 drawn on a surface of Euler genus g by (any number of) vortices of depth d. If G has radius r, then tw(G) < (2(2g+3)r+1)(d+1).

Proof. Let f_1, \ldots, f_k be the faces of G_0 to which the vortices G_1, \ldots, G_k attach. For $i = 1, \ldots, k$, let (T_i, β_i) be the corresponding decomposition of G_i ; we can assume T_i is a path in G_0 . Let G'_0 be obtained from G_0 by, for $i = 1, \ldots, k$, adding a vertex adjacent to all vertices incident with f_i ; note

that G'_0 has radius at most 2r. Let (T, β_0) be the tree decomposition of G_0 obtained by Lemma 3; we have $|\beta(x)| \leq 2(2g+3)r+1$ for $x \in V(T)$. For $v \in V(G_0)$, if there exists (necessarily unique) index *i* such that $v \in V(T_i)$, let $\alpha(v) = \beta_i(v)$, otherwise let $\alpha(v) = \{v\}$. For $x \in V(T)$, let $\beta(x) = \bigcup_{v \in \beta_0(x)} \alpha(v)$. Then (T, β) is a tree decomposition of *G* of width less than (2(2g+3)r+1)(d+1).

Indeed, consider any $v \in V(G)$. If there exists *i* such that $v \in V(G_i)$, then there exists a connected subpath $T_v \subseteq G_0$ of T_i such that $v \in \beta_i(x)$ exactly for $x \in V(T_v)$, and let T'_v be the connected subtree of *T* induced by the vertices *x* such that $\beta_0(x) \cap V(T_v) \neq \emptyset$; otherwise, let $T'_v = \emptyset$. If $v \in V(G_0)$, then let T''_v be the connected subtree of *T* induced by the vertices *x* such that $v \in \beta_0(x)$; otherwise, let $T''_v = \emptyset$. Note that $\{x \in V(T) : v \in \beta(x)\} = V(T'_v \cup T''_v)\}$, and that if $T'_v \neq \emptyset \neq T''_v$, then $v \in V(T_i)$, and thus $T'_v \cap T''_v \neq \emptyset$, implying that $T'_v \cup T''_v$ is connected.

Let $\mathcal{G}_{g,d}$ be the class of outgrowths of graphs drawn on a surface of Euler genus g by (any number of) vortices of depth d. For a vortex with decomposition (T, β) , a vertex x is *boundary-universal* if it is adjacent to all vertices of T. Let $\mathcal{G}'_{g,d}$ be the class of outgrowths of graphs drawn on a surface of Euler genus g by (any number of) vortices of depth d, each of them containing a boundary-universal vertex.

Corollary 7. For any g, d, b, r, consider a graph $G \in \mathcal{G}'_{g,d}$. If Z is the set of vertices of G at distance at least b and at most b + r from some vertex v_0 in the embedded part of G, then tw(G[Z]) < (2(2g+3)(r+5)+1)(d+1)

Proof. Without loss of generality, we can assume G is connected. Let G_0 be the embedded part of G. For each vortex G_i of G, let (T_i, β_i) be the corresponding decomposition. Let H be obtained from G as follows. Delete all vertices at distance greater than b+r from v_0 that are not in the boundary of any vortex, except for the boundary-universal vertices at distance exactly b+r+1 from v_0 . For each vortex G_i ,

- (a) if all vertices of T_i are at distance greater than b+r from v_0 , then delete $V(T_i)$, and
- (b) if all vertices of T_i are at distance less than b from v_0 , then contract G_i to a single vertex and do not consider it to be a vortex any more.

Finally, contract all edges joining vertices u and v at distance less than b from v_0 such that at least one of u and v is not contained in a boundary of a vortex.

Let H' be the subgraph of G induced by vertices at distance at least band at most b + r from v_0 that are contained in vortices G_i such that all vertices of T_i are at distance less than b from v_0 (i.e., the vortices eliminated in (b) above). Note that H' is a union of components of G[Z], treewidth of H' is less than d, and $G[Z \setminus V(H')]$ is a subgraph of H. Hence, it suffices to argue that $\operatorname{tw}(H) < (2(2g+3)(r+5)+1)(d+1)$. Note also that $H \in \mathcal{G}_{g,d}$, and thus by Lemma 6, it suffices to argue H has radius at most r+5

Indeed, consider any vertex $v' \in V(H)$, and let v be one of vertices of G which have been contracted to v'. Let P be a shortest path from v_0 to v in G; the construction of H and the fact that vortices contain boundaryuniversal vertices implies that P has length at most b + r + 2. Consider any edge xy of P, where both x and y are at distance less than b - 2 from v_0 . If one of these vertices is a boundary vertex of a vortex, then since the vortex contains a boundary-universal vertex, all the vertices of the boundary are at distance less than b from v_0 , and thus the vortex was contracted in (b) to a single vertex. Otherwise, the edge xy was contracted in the last part of the construction of H. Therefore, P is contracted to a path of length at most r + 5.

Corollary 8. For every g and d, then class $\mathcal{G}_{q,d}$ is treewidth-fragile.

Proof. Consider a graph $G \in \mathcal{G}_{g,d}$; without loss of generality, we can assume G is connected. For each vortex G_i of G, let (T_i, β_i) be the corresponding decomposition, and let G' be obtained by, for each i, adding a vertex v_i adjacent to all vertices of T_i to the graph and putting v_i to all bags of β_i ; clearly, $G \in \mathcal{G}'_{g,d+1}$. Let v_0 be an arbitrary vertex of the embedded part of G'.

Consider any integer $k \geq 1$. For i = 1, ..., k, let X'_i consist of vertices whose distance from v_0 in G' modulo k is i - 1, and let $X_i = X'_i \cap V(G)$. It suffices to argue that the treewidth of $G' - X'_i \supseteq G - X_i$ is bounded. This follows from Corollary 7, since $G' - X'_i$ is a disjoint union of subgraphs induced by vertices at distances at least tk + i and at most tk + i + k - 1 for $t \in \mathbb{Z}$.

4 Apices and clique-sums

Recall:

Definition 9. G is obtained from H by adding a apices if H = G - A for some set $A \subseteq V(G)$ of size a.

For a class \mathcal{G} , let $\mathcal{G}^{(a)}$ denote the class of graphs obtained from those in \mathcal{G} by adding at most a apices. For a function f, let $f^{(a)}(k) = f(k) + a$.

Observation 10. If \mathcal{G} is *f*-treewidth-fragile, then $\mathcal{G}^{(a)}$ is $f^{(a)}$ -treewidth-fragile.

Proof. Consider a graph $G \in \mathcal{G}^{(a)}$, and let A be a set of size at most a such that $G - A \in \mathcal{G}$. Let X'_1, \ldots, X'_k be a partition of V(G - A) such that $\operatorname{tw}(G - A - X'_i) \leq f(k)$ for each i. Let $X_1 = X'_1, \ldots, X'_{k-1} = X_{k-1}, X_k = X'_k \cup A$. Then $\operatorname{tw}(G - X_i) \leq f(k) + a$ for each i. \Box

Observation 11. If \mathcal{G} is f-treewidth-fragile, then $\omega(G) \leq 2f(2)+2$ for every $G \in \mathcal{G}$.

Proof. Let X_1, X_2 be a partition of V(G) such that $tw(G-X_1), tw(G-X_2) \leq f(2)$. Then

$$\omega(G) \le \omega(G - X_1) + \omega(G - X_2) \le (\operatorname{tw}(G - X_1) + 1) + (\operatorname{tw}(G - X_2) + 1) \le 2f(2) + 2$$

Lemma 12. Let \mathcal{G} be a class of graphs and let \mathcal{H} be the class of graphs obtained from those in \mathcal{G} by clique-sums. If \mathcal{G} is f-treewidth-fragile, then \mathcal{H} is $f^{(2f(2)+2)}$ -treewidth-fragile.

Proof. Note that for every $H \in \mathcal{H}$, we have $\omega(H) \leq 2f(2) + 2$. Consider any $k \geq 1$. We will inductively show a stronger claim: For every $H \in \mathcal{H}$ and a partition K_1, \ldots, K_k of a clique K in H, there exists a partition X_1 , \ldots, X_k of H such that $\operatorname{tw}(H - X_i) \leq f(k) + 2f(2) + 2$ and $K \cap X_i = K_i$ for each i. This is clear for graphs $G \in \mathcal{G}$: Take the partition obtained by f-treewidth-fragility of G and move all vertices of K to the appropriate part, increasing the treewidth of $G - X_i$ by at most |K|.

Suppose we now perform a clique-sum of $H_1, H_2 \in \mathcal{H}$ on a clique Q, to obtain a graph H, and let K be a clique in H and K_1, \ldots, K_k its partition. We can by symmetry assume $K \subseteq V(H_1)$. Let X'_1, \ldots, X'_k be the inductively obtained partition of $V(H_1)$ such that $\operatorname{tw}(H_1 - X'_i) \leq f(k) + 2f(2) + 2$ and $K \cap X'_i = K_i$ for each i. Let $Q_i = Q \cap X'_i$ for each i, and let X''_1, \ldots, X''_k be the inductively obtained partition of $V(H_2)$ such that $\operatorname{tw}(H_2 - X''_i) \leq$ f(k) + 2f(2) + 2 and $Q \cap X''_i = Q_i$ for each i. Letting $X_i = X'_i \cup X''_i$, we obtain a partition of V(H) such that $K \cap X_i = K_i$ for each i. Moreover, $H - X_i$ is a clique-sum of $H_1 - X'_i$ and $H_2 - X''_i$, implying $\operatorname{tw}(H - X_i) \leq$ f(k) + 2f(2) + 2.

5 Proper minor-closed classes

Recall:

Definition 13. A graph G is a-near-embeddable in a surface Σ if for some graph G_0 drawn in Σ , G is obtained from an outgrowth of G_0 by at most a vortices of depth a by adding at most a apices.

Theorem 14 (The Structure Theorem). For every proper minor-closed class \mathcal{G} , there exists a and g such that graphs in \mathcal{G} are clique-sums of graphs that are a-near-embeddable in surfaces of genus at most g.

Combining the structure theorem with Lemma 12, Observation 10, and Corollary 8, we obtain the following claim.

Corollary 15. Every proper minor-closed class is treewidth-fragile.