Definition

A graph *G* is *f*-treewidth-fragile if for every integer $k \ge 1$, there exists a partition X_1, \ldots, X_k of V(G) such that

 $\mathsf{tw}(G-X_i) \leq f(k)$

for i = 1, ..., k.

 $H \subseteq G$ for a graph G of treewidth at most t can be decided in time $O(t^{|H|}|G|)$.

Observation

For k = |H| + 1, if $H \subseteq G$, then there exists i such that $V(H) \cap X_i = \emptyset$.

Corollary

Deciding $H \subseteq G$ in time

 $O(kf(k)^{|H|}|G|$

by testing $H \subseteq G - X_1, \ldots, H \subseteq G - X_k$.

Application: Chromatic number approximation

Lemma

Optimal coloring of a graph G of treewidth t can be obtained in time $O((t+1)^{t+1}|G|)$.

Corollary

Coloring by $\leq 2\chi(G)$ colors in time $O((f(2) + 1)^{f(2)+1}|G|)$: use disjoint sets of colors on $G - X_1$ and $G - X_2$.

Application: Triangle matching

 $\mu_3(G) =$ maximum number of vertex-disjoint triangles in *G*.

Lemma

Triangle matching of size $\mu_3(G)$ can be found in time $O(4^t(t+1)!|G|)$ for a graph G of treewidth t.

Observation

For some *i*, X_i intersects at most $3\mu_3(G)/k$ of the optimal solution triangles $\Rightarrow \mu_3(G - X_i) \ge (1 - 3/k)\mu_3(G)$.

Corollary

Triangle matching of size $(1 - 3/k)\mu_3(G)$ can be found in time $O(f(k)4^{f(k)}(f(k) + 1)!|G|)$: Return largest of results for $G - X_1$, ..., $G - X_k$.

How to prove things for proper minor-closed classes:

- solve bounded genus and bounded treewidth case
- extend to graphs with vortices
- incorporate apex vertices
- deal with clique-sums/tree decomposition

G has genus *g*, radius $r \Rightarrow tw(G) \le (2g+3)r$.

- WLOG G is a triangulation: dual G^* is 3-regular.
- T BFS spanning tree of G
- S spanning subgraph of G^* with edges $E(G) \setminus E(T)$.

• S is connected; S_0 : a spanning tree of S, $X^* = E(S) \setminus E(S_0)$

$$\begin{aligned} |X^*| &= |E(S)| - |E(S_0)| = (|E(G)| - |E(T)|) - |E(S_0)| \\ &= |E(G)| - (|V(G)| - 1) - (|V(G^*)| - 1) \\ &= (|V(G)| + |V(G^*)| + g - 2) - (|V(G)| + |V(G^*)| - 2) = g. \end{aligned}$$

- t(v) = vertices on path from v to root in T.
- X: edges of G corresponding to X^{*}.
- For $f \in V(G^*)$,

$$\beta(f) = \bigcup_{\text{v incident with } f \text{ or } X} t(v)$$

• $|\beta(f)| \le (2g+3)r+1$

 (S_0, β) is a tree decomposition:

- *f* incident with uv: $\{u, v\} \subseteq t(u) \cup t(v) \subseteq \beta(f)$.
- T_v subtree of T rooted in v:
 - T_v incident with edge of $X \Rightarrow v$ in all bags.
 - Otherwise: Walking around *T_ν* shows *S*₀[{*x* : *v* ∈ β(*x*)}] is connected.

Definition

A graph *H* is a vortex of depth *d* and <u>boundary sequence</u> $\underline{v_1, \ldots, v_k}$ if *H* has a path decomposition (T, β) of width at most *d* such that

•
$$T = v_1 v_2 ... v_k$$
, and

•
$$v_i \in \beta(v_i)$$
 for $i = 1, \ldots, k$

Definition

For G_0 drawn in a surface, a graph G is an outgrowth of G_0 by *m* vortices of depth *d* if

- $G = G_0 \cup H_1 \cup H_m$, where $H_i \cap H_j = \emptyset$ for distinct *i* and *j*,
- for all *i*, *H_i* is a vortex of depth *d* intersecting *G* only in its boundary sequence,
- for some disjoint faces f_1, \ldots, f_k of G_0 , the boundary sequence of H_i appears in order on the boundary of f_i .

G outgrowth of graph G_0 of Euler genus *g* by vortices of depth *d*, radius $r \Rightarrow tw(G) < (2(2g+3)r+1)(d+1)$.

- (T_i, β_i) decomposition of a vortex: WLOG T_i a path in G_0 .
- G'₀: shrink interiors of vortices to single vertices; radius(G'₀) ≤ 2r
- (T, β_0) : Tree decomposition of G'_0 of width 2(2g+3)r.
- For $v \in V(T_i)$: Replace v by $\beta_i(v)$ in bags of (T, β_0) .

G outgrowth of graph G_0 of Euler genus *g* by vortices of depth *d*, radius $r \Rightarrow tw(G) < (2(2g+3)r+1)(d+1)$.

- (T_i, β_i) decomposition of a vortex: WLOG T_i a path in G_0 .
- G'₀: shrink interiors of vortices to single vertices; radius(G'₀) ≤ 2r
- (T, β_0) : Tree decomposition of G'_0 of width 2(2g+3)r.
- For $v \in V(T_i)$: Replace v by $\beta_i(v)$ in bags of (T, β_0) .

Vortex G_i is local if $d_{G_i}(x, y) \leq 2$ for each $x, y \in V(T_i)$.

Corollary (Layer Corollary)

G outgrowth of graph G_0 of Euler genus *g* by local vortices of depth *d*, *Z* vertices at distance *b*, ..., *b* + *r* from $v_0 \in V(G_0) \Rightarrow tw(G) < (2(2g+3)(r+5)+1)(d+1).$

- Delete vortices at distance > b + r, non-boundary vertices at distance > b + r + 1
- Shrink vortices at distance < b 2.
- Contract edges between vertices at distance < b − 2 ⇒ radius ≤ r + 5.

 $\mathcal{G}_{g,d}$: outgrowths of graphs of Euler genus g by vortices of depth d.

Corollary

 $\mathcal{G}_{g,d}$ is f-treewidth-fragile for f(k) = (2(2g+3)(k+5)+1)(d+2).

- Add a universal vertex to each vortex to make it local.
- Let $X_i = \{v : d(v_0, v) \\ mod \ k = i\}$ for i = 0, ..., k 1.
- Layer Corollary applies to each component of G – X_i.

Definition

G is obtained from *H* by adding *a* apices if H = G - A for some set $A \subseteq V(G)$ of size *a*.

 $\mathcal{G}^{(a)} =$ graphs obtained by adding at most *a* apices to graphs from \mathcal{G} .

 \mathcal{G} is f-treewidth-fragile $\Rightarrow \mathcal{G}^{(a)}$ is h-treewidth-fragile for h(k) = f(k) + a.

Proof.

Add the apex vertices to X_1 .

 \mathcal{G} is f-treewidth-fragile $\Rightarrow \omega(G) \leq 2f(2) + 2$ for $G \in \mathcal{G}$.

Proof.

$$\omega(G) \leq \omega(G - X_1) + \omega(G - X_2) \leq 2f(2) + 2.$$

For a partition K_1, \ldots, K_k of $K \subseteq V(G)$, a partition X_1, \ldots, X_k of V(G) extends it if $K_i = K \cap X_i$ for $i = 1, \ldots, k$.

Definition

 \mathcal{G} is strongly *f*-treewidth-fragile if for every $G \in \mathcal{G}$, every $k \ge 1$, and every clique K in G, every partition of K extends to a partition X_1, \ldots, X_k of V(G) such that tw $(G - X_i) \le f(k)$ for $i = 1, \ldots, k$.

Lemma

G is f-treewidth-fragile \Rightarrow G is strongly h-treewidth-fragile for h(k) = f(k) + 2f(2) + 2.

Proof.

Re-distribute the vertices of *K*, increasing treewidth by $\leq |K| \leq 2f(2) + 2$.

 \mathcal{G} is strongly f-treewidth-fragile \Rightarrow clique-sums of graphs from \mathcal{G} are strongly f-treewidth-fragile.

Proof.

- *G* clique-sum of G_1 and G_2 on a clique $Q, K \subseteq V(G)$.
- WLOG $K \subseteq G_1$.
- Extend the partition of K to a partition X'_1, \ldots, X'_k of G_1 .
- Extend the partition $Q \cap X'_1, \ldots, Q \cap X'_k$ to a partition X''_1, \ldots, X''_k of G_2 .
- Let $X_i = X'_i \cup X''_i$; $G X_i$ is a clique-sum of $G_1 X'_i$ and $G_2 X''_i$:

 $\mathsf{tw}(G-X_i) = \max(\mathsf{tw}(G_1 - X_i'), \mathsf{tw}(G_2 - X_i'')) \le f(k).$

Near-embeddability

Definition

A graph *G* is <u>*a*-near-embeddable</u> in a surface Σ if for some graph G_0 drawn in Σ , *G* is obtained from <u>an outgrowth of G_0 by at most *a* vortices of depth *a* by adding at most *a* apices.</u>

Theorem (The Structure Theorem)

For every proper minor-closed class \mathcal{G} , there exist g and a such that every graph in \mathcal{G} is obtained by clique-sums from graphs a-near-embeddable in surfaces of genus at most g.

Corollary

For every proper minor-closed class G, there exists a linear function f such that G is f-treewidth-fragile.