Definition

A graph G is f-treewidth-fragile if for every integer $k \geq 1$, there exists a partition X_{1}, \ldots, X_{k} of $V(G)$ such that

$$
\operatorname{tw}\left(G-X_{i}\right) \leq f(k)
$$

for $i=1, \ldots, k$.

Application: Subgraph testing

Lemma

$H \subseteq G$ for a graph G of treewidth at most t can be decided in time $O\left(t^{|H|}|G|\right)$.

Observation

For $k=|H|+1$, if $H \subseteq G$, then there exists i such that $V(H) \cap X_{i}=\emptyset$.

Corollary

Deciding $H \subseteq G$ in time

$$
O\left(k f(k)^{|H|}|G|\right.
$$

by testing $H \subseteq G-X_{1}, \ldots, H \subseteq G-X_{k}$.

Application: Chromatic number approximation

Lemma

Optimal coloring of a graph G of treewidth t can be obtained in time $O\left((t+1)^{t+1}|G|\right)$.

Corollary

Coloring by $\leq 2 \chi(G)$ colors in time $O\left((f(2)+1)^{f(2)+1}|G|\right)$: use disjoint sets of colors on $G-X_{1}$ and $G-X_{2}$.

Application: Triangle matching

$\mu_{3}(G)=$ maximum number of vertex-disjoint triangles in G.

Lemma

Triangle matching of size $\mu_{3}(G)$ can be found in time $O\left(4^{t}(t+1)!|G|\right)$ for a graph G of treewidth t.

Observation

For some i, X_{i} intersects at most $3 \mu_{3}(G) / k$ of the optimal solution triangles $\Rightarrow \mu_{3}\left(G-X_{i}\right) \geq(1-3 / k) \mu_{3}(G)$.

Corollary

Triangle matching of size $(1-3 / k) \mu_{3}(G)$ can be found in time $O\left(f(k) 4^{f(k)}(f(k)+1)!|G|\right)$: Return largest of results for $G-X_{1}$, $\ldots, G-X_{k}$.

How to prove things for proper minor-closed classes:

- solve bounded genus and bounded treewidth case
- extend to graphs with vortices
- incorporate apex vertices
- deal with clique-sums/tree decomposition

Lemma

G has genus g, radius $r \Rightarrow t w(G) \leq(2 g+3) r$.

- WLOG G is a triangulation: dual G^{\star} is 3 -regular.
- T BFS spanning tree of G
- S spanning subgraph of G^{\star} with edges $E(G) \backslash E(T)$.

- S is connected; S_{0} : a spanning tree of S,

$$
X^{\star}=E(S) \backslash E\left(S_{0}\right)
$$

$$
\begin{aligned}
\left|X^{\star}\right| & =|E(S)|-\left|E\left(S_{0}\right)\right|=(|E(G)|-|E(T)|)-\left|E\left(S_{0}\right)\right| \\
& =|E(G)|-(|V(G)|-1)-\left(\left|V\left(G^{\star}\right)\right|-1\right) \\
& =\left(|V(G)|+\left|V\left(G^{\star}\right)\right|+g-2\right)-\left(|V(G)|+\left|V\left(G^{\star}\right)\right|-2\right)=g .
\end{aligned}
$$

- $t(v)=$ vertices on path from v to root in T.
- X : edges of G corresponding to X^{\star}.
- For $f \in V\left(G^{\star}\right)$,

$$
\beta(f)=\bigcup_{v \text { incident with } f \text { or } x} t(v)
$$

- $|\beta(f)| \leq(2 g+3) r+1$

$\left(S_{0}, \beta\right)$ is a tree decomposition:
- f incident with $u v:\{u, v\} \subseteq t(u) \cup t(v) \subseteq \beta(f)$.
- T_{v} subtree of T rooted in v :
- T_{v} incident with edge of $X \Rightarrow v$ in all bags.
- Otherwise: Walking around T_{v} shows $S_{0}[\{x: v \in \beta(x)\}]$ is connected.

Definition

A graph H is a vortex of depth d and boundary sequence v_{1}, \ldots, v_{k} if H has a path decomposition (T, β) of width at most d such that

- $T=v_{1} v_{2} \ldots v_{k}$, and
- $v_{i} \in \beta\left(v_{i}\right)$ for $i=1, \ldots, k$

Definition

For G_{0} drawn in a surface, a graph G is an outgrowth of G_{0} by m vortices of depth d if

- $G=G_{0} \cup H_{1} \cup H_{m}$, where $H_{i} \cap H_{j}=\emptyset$ for distinct i and j,
- for all i, H_{i} is a vortex of depth d intersecting G only in its boundary sequence,
- for some disjoint faces f_{1}, \ldots, f_{k} of G_{0}, the boundary sequence of H_{i} appears in order on the boundary of f_{i}.

Lemma

G outgrowth of graph G_{0} of Euler genus g by vortices of depth d, radius $r \Rightarrow t w(G)<(2(2 g+3) r+1)(d+1)$.

- $\left(T_{i}, \beta_{i}\right)$ decomposition of a vortex: WLOG T_{i} a path in G_{0}.
- G_{0}^{\prime} : shrink interiors of vortices to single vertices; radius $\left(G_{0}^{\prime}\right) \leq 2 r$
- $\left(T, \beta_{0}\right)$: Tree decomposition of G_{0}^{\prime} of width $2(2 g+3) r$.
- For $v \in V\left(T_{i}\right)$: Replace v by $\beta_{i}(v)$ in bags of $\left(T, \beta_{0}\right)$.

Lemma

G outgrowth of graph G_{0} of Euler genus g by vortices of depth d, radius $r \Rightarrow t w(G)<(2(2 g+3) r+1)(d+1)$.

- $\left(T_{i}, \beta_{i}\right)$ decomposition of a vortex: WLOG T_{i} a path in G_{0}.
- G_{0}^{\prime} : shrink interiors of vortices to single vertices;
radius $\left(G_{0}^{\prime}\right) \leq 2 r$
- $\left(T, \beta_{0}\right)$: Tree decomposition of G_{0}^{\prime} of width $2(2 g+3) r$.
- For $v \in V\left(T_{i}\right)$: Replace v by $\beta_{i}(v)$ in bags of $\left(T, \beta_{0}\right)$.

Vortex G_{i} is local if $d_{G_{i}}(x, y) \leq 2$ for each $x, y \in V\left(T_{i}\right)$.

Corollary (Layer Corollary)

G outgrowth of graph G_{0} of Euler genus g by local vortices of depth d, Z vertices at distance $b, \ldots, b+r$ from
$v_{0} \in V\left(G_{0}\right) \Rightarrow t w(G)<(2(2 g+3)(r+5)+1)(d+1)$.

- Delete vortices at distance $>b+r$, non-boundary vertices at distance $>b+r+1$
- Shrink vortices at distance $<b-2$.
- Contract edges between vertices at distance $<b-2 \Rightarrow$ radius $\leq r+5$.

$\mathcal{G}_{g, d}$: outgrowths of graphs of Euler genus g by vortices of depth d.

Corollary

$\mathcal{G}_{g, d}$ is f-treewidth-fragile for
$f(k)=(2(2 g+3)(k+5)+1)(d+2)$.

- Add a universal vertex to each vortex to make it local.
- Let $X_{i}=\left\{v: d\left(v_{0}, v\right)\right.$
$\bmod k=i\}$ for
$i=0, \ldots, k-1$.
- Layer Corollary applies to each component of $G-X_{i}$.

Definition

G is obtained from H by adding a apices if $H=G-A$ for some set $A \subseteq V(G)$ of size a.
$\mathcal{G}^{(a)}=$ graphs obtained by adding at most a apices to graphs from \mathcal{G}.

Lemma

\mathcal{G} is f-treewidth-fragile $\Rightarrow \mathcal{G}^{(a)}$ is h-treewidth-fragile for $h(k)=f(k)+a$.

Proof.

Add the apex vertices to X_{1}.

Lemma

\mathcal{G} is f-treewidth-fragile $\Rightarrow \omega(G) \leq 2 f(2)+2$ for $G \in \mathcal{G}$.

Proof.

$$
\omega(G) \leq \omega\left(G-X_{1}\right)+\omega\left(G-X_{2}\right) \leq 2 f(2)+2
$$

For a partition K_{1}, \ldots, K_{k} of $K \subseteq V(G)$, a partition X_{1}, \ldots, X_{k} of $V(G)$ extends it if $K_{i}=K \cap X_{i}$ for $i=1, \ldots, k$.

Definition

\mathcal{G} is strongly f-treewidth-fragile if for every $G \in \mathcal{G}$, every $k \geq 1$, and every clique K in G, every partition of K extends to a partition X_{1}, \ldots, X_{k} of $V(G)$ such that $\operatorname{tw}\left(G-X_{i}\right) \leq f(k)$ for $i=1, \ldots, k$.

Lemma

\mathcal{G} is f-treewidth-fragile $\Rightarrow \mathcal{G}$ is strongly h-treewidth-fragile for $h(k)=f(k)+2 f(2)+2$.

Proof.

Re-distribute the vertices of K, increasing treewidth by
$\leq|K| \leq 2 f(2)+2$.

Lemma

\mathcal{G} is strongly f-treewidth-fragile \Rightarrow clique-sums of graphs from \mathcal{G} are strongly f-treewidth-fragile.

Proof.

- G clique-sum of G_{1} and G_{2} on a clique $Q, K \subseteq V(G)$.
- WLOG $K \subseteq G_{1}$.
- Extend the partition of K to a partition $X_{1}^{\prime}, \ldots, X_{k}^{\prime}$ of G_{1}.
- Extend the partition $Q \cap X_{1}^{\prime}, \ldots, Q \cap X_{k}^{\prime}$ to a partition $X_{1}^{\prime \prime}, \ldots, X_{k}^{\prime \prime}$ of G_{2}.
- Let $X_{i}=X_{i}^{\prime} \cup X_{i}^{\prime \prime} ; G-X_{i}$ is a clique-sum of $G_{1}-X_{i}^{\prime}$ and $G_{2}-X_{i}^{\prime \prime}:$

$$
\operatorname{tw}\left(G-X_{i}\right)=\max \left(\operatorname{tw}\left(G_{1}-X_{i}^{\prime}\right), \operatorname{tw}\left(G_{2}-X_{i}^{\prime \prime}\right)\right) \leq f(k)
$$

Near-embeddability

Definition

A graph G is a-near-embeddable in a surface Σ if for some graph G_{0} drawn in Σ, G is obtained from an outgrowth of G_{0} by at most a vortices of depth a by adding at most a apices.

Theorem (The Structure Theorem)

For every proper minor-closed class \mathcal{G}, there exist g and a such that every graph in \mathcal{G} is obtained by clique-sums from graphs a-near-embeddable in surfaces of genus at most g.

Corollary

For every proper minor-closed class \mathcal{G}, there exists a linear function f such that \mathcal{G} is f-treewidth-fragile.

