
Our goal for this lecture is to present a (very brief) outline of the proof
of the structure theorem. First, we need to formulate its local version with
respect to a given tangle.

Let G be a graph and let Ω be a cyclic sequence of vertices of G. Then
(G,Ω) is a society. We view a graph itself as a society with empty sequence.
A cross in a society consists of two disjoint paths P1 and P2 in G such that the
labels of the ends x1 and y1 of P1 and x2 and y2 of P2 can be chosen so that
they appear in Ω in order x1, x2, y1, and y2. A society is a cell if |Ω| ≤ 3. A
transaction of order p in the society (G,Ω) is a set of p pairwise vertex-disjoint
paths with ends in Ω. A society is a p-vortex if it contains no transaction of
order greater than p; from the homework assignment, we have the following
description of p-vortices (recall the adhesion of a tree decomposition (T, β)
is the maximum of |β(x) ∩ β(y)| over distinct x, y ∈ V (T )).

Lemma 1. If (G,Ω) is a p-vortex and Ω = (v1, . . . , vm), then G has a path
decomposition (P, β) over the path P = v1v2 . . . vm of adhesion at most p such
that vi ∈ β(vi) for i = 1, . . . ,m.

A society (G1,Ω1) is a subsociety of (G,Ω) if G1 is a subgraph of G,
every edge of G1 incident with V (G1) \ Ω1 belongs to G1, and G1 ∩ Ω ⊆
Ω1. Two subsocieties (G1,Ω1) and (G2,Ω2) are disjoint if G1 ∩ G2 = Ω1 ∩
Ω2. A segregation of (G,Ω) is a set {(Gi,Ωi) : i = 1, . . . , n} of its disjoint
subsocieties such that G = G1 ∪ . . . ∪ Gn. The segregation is of type (k, p)
if all but at most k elements are cells and the remaining at most k elements
are p-vortices.

If Ω = ∅, an arrangement of the segregation in a surface Σ is a function
α satisfying the following conditions: α(Gi,Ωi) is a disk ∆i ⊆ Σ and for each
v ∈ Ωi, α(v) is a distinct point in Σ contained in the boundary of ∆i, such
that

• for each i, the order of the points α(v) for v ∈ Ωi in the boundary of
∆i matches the order of the vertices v in Ωi, and

• for distinct i and j, the disks ∆i and ∆j intersect exactly in the points
α(v) for v ∈ Ω1 ∩ Ω2.

If Ω is not emptyset, we additionally require Σ has exactly one hole and

• for each v ∈ Ω, the point α(v) is contained in the boundary of Σ and
their order in the boundary matches the order of the vertices v in Ω.

A society is rural if it has a segregation into cells with an arrangement in a
disk. In the homework assignment, we have seen the following result.
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Lemma 2. A society (G,Ω) is rural if and only if it does not contain a cross.

For a tangle T in G of order θ, we say that a segregation {(Gi,Ωi) : i =
1, . . . , n} of G is T -central if there is no (A,B) ∈ T and i ∈ {1, . . . , n} such
that B ⊆ Gi. For Z ⊆ V (G) with |Z| < θ, recall that we can naturally
define a tangle T − Z in G− Z of order θ − |Z| as the set of all separations
{(A− Z,B − Z) : (A,B) ∈ T , Z ⊆ V (A ∩B)}.

Theorem 3 (The Structure Theorem, local version). For every graph F ,
there exist integers α < θ, k, and p such that the following holds. For every
graph G and a tangle T in G of order at least θ, if F 6� G, then there exists
A ⊆ V (G) of size at most α, a surface Σ in which F cannot be drawn, and
a (T −A)-central segregation of G−A of type (k, p) with an arrangement in
Σ.

1 Global structure theorem from the local

one

A graph G is (b, k, ρ)-near-embedded in a surface Σ if for some subset B ⊆
V (G), the graph G−B has a drawing in Σ with at most k vortices of width
at most ρ. The final global form of the structure theorem we aim for is as
follows.

Theorem 4 (The Structure Theorem, local version). For every graph F ,
there exist integers b, k, and ρ such that the following holds. For every graph
G, if F 6� G, then G has a tree decompositions whose torsos can be (b, k, ρ)-
near-embedded in surfaces in which F cannot be drawn. Equivalently, G can
be obtained from graphs (b, k, ρ)-near-embedded in surfaces in which F cannot
be drawn by clique-sums.

In the first lecture, we have seen Theorem 4 follows from the following
lemma, which as we now show is a consequence of Theorem 3. Recall a
set L of separations in a graph G is a location if for all distinct separations
(A1, B1), (A2, B2) ∈ L, we have A1 ⊆ B2. The center of the location is the
graph C obtained from

⋂
(A,B)∈LB by adding all edges of cliques with vertex

sets V (A ∩B) for (A,B) ∈ L.

Lemma 5. For every graph F , there exist integers α < θ, k, and ρ such
that the following holds. For every graph G and a tangle T in G of order
at least θ, if F 6� G, then there exists a location L ⊆ T whose center is
(a, k, ρ)-near-embedded in a surface in which F cannot be drawn.
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Proof. Let α < θ, k, p, A, Σ, and a (T − A)-central segregation S of G− A
of type (k, p) with an arrangement in Σ be obtained using Theorem 3. Let
ρ = 2p+ 1. The location L is obtained as follows:

• For each cell (C,Ω) ∈ S, we include the separation (AC , BC), where
AC = G[V (C) ∪ A] and V (AC ∩BC) = Ω ∪ A.

• For each p-vortex (C,Ω) ∈ S, let (P, β) be the path decomposition
from Lemma 1, where P = v1v2 . . . vm. In L, we include all separations
(Ai, Bi) for i = 1, . . . ,m, where Ai = G[β(vi) ∪ A] and V (Ai ∩ Bi) =
A ∪ {vi} ∪Xi, with Xi = (β(vi) ∩ (β(vi−1) ∪ β(vi+1))).

The (α, k, ρ)-near-embedding of the center of L is obtained by making A
into apex vertices, replacing each cell in the arrangement by a clique of size
at most three, and replacing each p-vortex by a vortex of width at most ρ,
whose bags are the sets Xi.

2 Growing animals

Let T be a tangle in a graph G. For a surface Σ, H ⊆ G, and a tangle
TH of order γ in H, we say (H, TH) is a Σ-span of order γ in (G, T ) if H is
a subdivision of a 3-connected graph, H has a 2-cell drawing in Σ and TH
is respectful for this drawing, and T is conformal with TH (i.e., the tangle
induced in G by TH is a subset of T ). The results from the 6th lecture imply
the following.

Lemma 6. For every graph F and a surface Σ in which F can be drawn,
there exists γ such that the following claim holds. If (G, T ) contains a Σ-span
of order γ, then F � G.

For a span (H, TH), let d denote the distance function in H derived from
TH . An H-path is a path in G intersecting H exactly in its endpoints. A
(γ, s)-horn over the span is a vertex v ∈ V (G)\V (H) for which there exist s
paths from v to vertices v1, . . . , vs ∈ V (H), disjoint except for their common
start in v and disjoint from H except for their ends, where d(vi, vj) = γ for all
i 6= j. For A ⊆ V (G) \ V (H), a γ-hair avoiding A is a vertex z ∈ V (H) such
that there exists an H-path in G−A to a vertex y ∈ V (H) with d(z, y) = γ.

A Σ-animal with a horns and b hairs of strength (γ, s) is a quadruple
(H, TH , A,B), where

• (H, TH) is a Σ-span of order γ,

• A is a set of a (γ, s)-horns over the span, and
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• B is a set of b γ-hairs avoiding A such that d(x, y) = σ for distinct
x, y ∈ B.

The argument used to prove Lemma 8 in the previous lecture notes gives the
following.

Lemma 7. For any surface Σ and integer m, there exist γ and s such that
the following claim holds. If (G, T ) contains a Σ-animal with

(
m
2

)
horns of

strength (γ, s), then Km � G.

Furthermore, analogously to Lemma 9, we can show that many hairs can
be combined into a horn.

Lemma 8. For any surface Σ and integers m, s, γ, a, there exist γ′ and
b such that the following claim holds. If (G, T ) contains a Σ-animal with
a horns and b hairs of strength (γ′, s + 1), then either Km � G, or (G, T )
contains a Σ-animal with a+ 1 horns of strength (γ, s).

Next, let us argue that H-paths between distant vertices of H either can
be used to improve the animal, or can be all disrupted by a small number
of vertices. We say a Σ-span (H, TH) is δ-flat if for every H-path, its ends
u and v satisfy d(u, v) < δ. A δ-zone around a vertex v ∈ V (H) is an open
disk Λ ⊂ Σ bounded by a cycle C in H such that all atoms in the closure of
Λ are at distance at most δ from v and conversely, all atoms at distance at
most δ− 2 belong to Λ. Clearing the zone means deleting vertices and edges
of H drawn in Λ; note that the resulting graph H ′ contains a tangle TH′ of
order θ −O(δ) conformal with TH such that the distances according to dTH′

are by at most O(δ) smaller than those according to dTH .

Lemma 9. For any surface Σ and integers a, b, θ1, there exist δ, α and θ0
such that the following claim holds for every integer s. If (G, T ) contains a
Σ-animal A = (H, T , A,B) with a horns and b hairs of strength (θ, s) and
θ ≥ θ0, then at least one of the following holds:

1. (G, T ) contains a (Σ + handle)- or (Σ + crosshandle)-span of order θ1,
or

2. (G, T ) contains a Σ-animal with a horns and b + 1 hairs of strength
(θ1, s), or

3. (G, T ) contains a Σ-animal (H ′, TH′ , A,B′) with a horns and b hairs of
strength (θ − δ, s) and a set Z ⊆ V (G) \ V (H ′) of size at most α such
that A ⊆ Z and (H ′, TH′) is δ-flat in G− Z.
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Proof idea. For y ∈ B, choose a δ′-zone Λy around y bounded by a cycle Cy

for δ′ = O(δ/b), and let (H ′, TH′ be the Σ-span of order θ − δ obtained by
clearing the zones. For each y ∈ B, choose a vertex y′ of Cy joined to y by
a path in Λy, and let B′ = {y′ : y ∈ B}. Then (H ′, TH′ , A,B′) is an animal
with a horns and b hairs of strength (θ − δ, s). Moreover, Λy can be chosen
so that Cy contains a set Xy that is free in TH′ and satisfies the following
technical connectivity condition (?): Suppose v1, v2, . . . , vt is a sequence of
vertices of H ∩Λy with d(y, v1) ≥ δ− θ1 and d(vj−1, vj) < θ1 for j = 2, . . . , t.
If d(y, vm) < θ1, then H ∩ (Λy ∪ Xy) contains b2θ21 pairwise vertex-disjoint
paths from {v1, . . . , vm} to Xy. Let us remark that to ensure this condition
holds, it is in particular necessary that δ � θ1.

If for some distinct y1, y2 ∈ B there are at least θ21 disjoint H ′-paths from
Xy1 to Xy2 , then we can select θ1 of them such that the order of their ends
in Cy1 and Cy2 is either the same or opposite. Adding these paths to H ′, we
obtain a (Σ + handle)- or (Σ + crosshandle)-span of order θ1 in G. Hence, we
can assume this is not the case, and thus by Menger’s theorem, G contains a
set Z0 of size less than b2θ21 intersecting all paths with ends in Xy1 and Xy2

for distinct y1, y2 ∈ B.
If Z = (Z0 \ V (H ′)) ∪ A intersects all H ′-path with ends u, v ∈ V (H ′)

satisfying dTH′ (u, v) ≥ δ, then the last outcome holds. Hence, suppose Q is
such a path avoiding Z. Let u′ be the first vertex of Q after u belonging to H.
If d(u, u′) ≥ θ1, we can add u as a hair to A and the second outcome holds.
Hence, d(u, u′) < θ1, and defining v′ symmetrically, we have d(v, v′) < θ1.
Consequently, d(u′, v′) > δ − 2θ1 > 2δ′. Therefore, u′ ∈ Λy1 and v′ ∈ Λy2 for
distinct y1, y2 ∈ B. By the choice of Z0, it cannot be the case that for both
i ∈ {1, 2}, H ∩ (Λyi ∪ Xyi) contains a path from Xyi to V (Q) disjoint from
Z0; we can assume no such path exists for i = 1.

Consider the segment of Q starting with u′ which intersects H only in
H ∩ Λy1 . Let v1, . . . , vm be these intersections in order they appear on Q,
with m chosen maximum so that d(vj−1, vj) < θ1 for j = 2, . . . , t. Since
H ∩ (Λy1 ∪Xy1) does not contain a path from Xy1 to V (Q) disjoint from Z0,
by (?) we have d(y1, vm) > θ1. Let w be the next intersection of Q with H
after vm. Then d(vm, w) ≥ θ1, by the maximality of m if w ∈ Λy1 and since
d(y1, y3) ≥ θ and d(wm, y1) ≤ δ if w ∈ Λy3 for some y3 6= y1. Then we can
add vm as a new hair to A, and the second outcome holds.

Let us now refine the last outcome. Suppose (H, TH) is a Σ-span. Another
Σ-span (H ′, TH′) is a λ-rearrangement of (H, TH) around a vertex v ∈ V (H)
if every vertex or edge of H at distance more than λ from v belongs to H ′

and the distances according to dTH′ are by at most 4λ+ 2 smaller than those
according to dTH . We say that (H, TH) is (λ, δ)-flat if all its λ-rearrangements
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are δ-flat.

Lemma 10. For any surface Σ and integers a, s, b, θ1, there exist δ and α
such that for all λ and θ2 there exists θ for which the following claim holds.
If (G, T ) contains a Σ-animal A = (H, T , A,B) with a horns and b hairs of
strength (θ, s+ α), then at least one of the following holds:

1. (G, T ) contains a (Σ + handle)- or (Σ + crosshandle)-span of order θ1,
or

2. (G, T ) contains a Σ-animal with a horns and b + 1 hairs of strength
(θ1, s), or

3. there is a set Z ⊆ V (G) of size at most α such that (G − Z, T − Z)
contains a (λ, δ)-flat Σ-span of order θ2.

Proof idea. Let δ, α, and θ0 be as in Lemma 9, with δ > θ1. Let θ =
max(θ0, θ2+δ, 2θ1+δ+4λ+2). Apply Lemma 9 to A; the first two outcomes
correspond to the outcomes of this lemma, and thus we can assume (G, T )
contains a Σ-animal (H ′, TH′ , A,B′) with a horns and b hairs of strength
(θ− δ, s+α) and a set Z ⊆ V (G) \V (H ′) of size at most α such that A ⊆ Z
and (H ′, TH′) is δ-flat in G−Z. If the Σ-span (H ′, TH′) is (λ, δ)-flat in G−Z,
then the third outcome holds.

Otherwise, there exists a λ-rearrangement (H ′′, TH′′) of (H ′, TH′) around a
vertex w and an H ′′-path Q in G−Z whose ends u and v satisfy dTH′′ (u, v) ≥
δ. For a vertex x ∈ A, consider s + 1 of the paths showing that x is a horn
which are disjoint from Z \ {x}. At most one of them intersects H ′′−H ′, as
otherwise (H ′, TH′) would not be δ-flat in G−Z. Consequently, each element
of A is a (θ1, s)-horn over (H ′′, TH′′). Furthermore, at most one of the hairs
in B′ is at distance less than θ1 +λ from w; let y be this hair, or an arbitrary
hair in B′ if no hair is close to w. Then (H ′′, TH′′ , A, (B′ \ {y}) ∪ {u, v}) is
a Σ-animal with a horns and b + 1 hairs of strength (θ1, s), and the second
outcome of the lemma holds.

For a span (H, TH), a face of H is an eye if there exist vertices x1, . . . ,
x4 appearing in order in the cycle bounding f such that there exist disjoint
H-paths from x1 to x3 and from x2 to x4 and the set {x1, . . . , x4} is free in
TH . The homework assignment for Lesson 6 implies the following result (the
assumption that the span is (β − 10)-flat is used to show that the crossing
paths for different eyes are pairwise disjoint).

Lemma 11. For any surface Σ and integer m, if β � m,Σ and (G, T )
contains a (β − 10)-flat Σ-span with m4 eyes pairwise at distance at least β
apart, then Km � T .
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We now can improve or embed a flat span.

Lemma 12. For any surface Σ and integers m, δ, and θ1, there exist λ, θ2,
and p such that the following claim holds. If (G, T ) contains a (λ, δ)-flat
Σ-span of order at least θ2 and Km 6� G, then either

1. (G, T ) contains a (Σ + crosscap)-span of order θ1, or

2. G has a T -central segregation of type (m4, p) with an arrangement in
Σ.

Proof idea. Choose γ−1 � λ0 � γ0 � λ1 � γ1 � . . .� λm4 � γm4 , where
γm4 ≥ max(δ, β) + 10 for β from Lemma 11. Set θ2 = γ−1 and p� λ = λ0.

Let k ∈ {0, . . . ,m4} be maximum such that (G, T ) contains a (λk, δ)-
flat Σ-span (H, TH) of order at least γk−1 with k eyes f1, . . . , fk pairwise
at distance at least γk apart. Note that k < m4, as otherwise Km � G by
Lemma 11.

Consider a vertex v ∈ V (H) such that an eye can be created by cleaning
a 4δ-zone around v. The maximality of k implies that the distance between
v and some fi is less than γk+1 + 16δ + 2 � λk+1. For i = 1, . . . , k, let Λi

be the corresponding zone around fi. The “local planarity” together with
rigidness of H implies that that everything outside of these zones can be
broken up into cells with an arrangement in Σ. We now apply the results
from the homework assignment to each zone Λi and all H-bridges of G that
attach to it. If it does not contain a large crooked transaction, then it can be
decomposed into a rural neighborhood and a p-vortex, and if this happens
for all i, we obtain a desired T -central segregation of type (m4, p) with an
arrangement in Σ.

Hence, suppose this does not happen for some i. The large crooked trans-
action contains one of crosscap, jump, or double-cross type. Crosscap-type
crooked transaction can be used to rearrange (H, TH) into a (Σ + crosscap)-
span of order θ1. Jump one would contradict the assumption that (H, TH) is
(λk, δ)-flat. The double-cross type can be used to rearrange and obtain one
more distant eye, contradicting the maximality of k.

Let us now combine all these results.

Corollary 13. For any surface Σ and integers m, θ1, s1, a, b, there exists
θ, s, p, α such that the following holds. If (G, T ) contains a Σ-animal with
a horns and b hairs of strength (θ, s) and Km 6� G, then

• (G, T ) contains a (Σ + handle)-, (Σ + crosshandle)-, or (Σ + crosscap)-
span of order θ1, or
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• (G, T ) contains a Σ-animal with a horns and b + 1 hairs of strength
(θ1, s1), or

• there exists a set Z ⊆ V (G) of size at most α such that G − Z has a
(T −Z)-central segregation of type (m4, p) with an arranglement in Σ.

Proof. Let δ and α be as in Lemma 10 for the given parameters (with s = s1).
Let λ, θ2, and p be as in Lemma 12 for the given parameters. Let θ be
obtained by Lemma 10 for this λ and θ2, and let and s = s1 + α.

Applying Lemma 10 to (G, T ), the first outcomes correspond to the first
two outcomes of this lemma. Hence, we can assume the third outcome, giving
us a (λ, δ)-level Σ-span in (G− Z, T − Z) for a set Z of size at most α. We
now apply Lemma 12; the first outcome corresponds to the first outcome of
this lemma, while the second one corresponds to the third outcome of this
lemma.

3 Proof of the structure theorem

Let m = |V (F )|. We define θ = θ(Σ, a, b), s = s(Σ, a, b), p = p(Σ, a, b) and
α = α(Σ, a, b) inductively so that the following conditions hold.

• If F can be drawn in Σ, then θ is equal to γ from Lemma 6 and
s = p = α = 0. Suppose from now on that F cannot be drawn in Σ.

• If a ≥
(
m
2

)
, then let θ and s be chosen according to Lemma 7, setting

θ = γ, and let p = α = 0. Suppose from now on that a <
(
m
2

)
.

• Let bmax(Σ, a) be equal to b from Lemma 8 for the given Σ, m, s(Σ, a+
1, 0), θ(Σ, a+1, 0), and a. If b ≥ bmax(Σ, a), then let s = s(Σ, a+1, 0)+1,
p = α = 0, and let θ be chosen as γ′ from Lemma 8. From now on,
suppose that b < bmax(Σ, a).

• Let θ and s be chosen according to Corollary 13, with θ1 and s1 maxi-
mum of the following:

– θ(Σ′, 0, 0) and s(Σ′, 0, 0) for Σ′ ∈ {Σ+handle,Σ+crosshandle,Σ+
crosscap}.

– θ(Σ, a, b+ 1) and s(Σ, a, b+ 1).

We choose p and α as the maximum of values of p and α among these
cases and those obtained from Corollary 13.

A straightforward inductive argument gives the following.
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Corollary 14. For any graph F , a surface Σ, and integers a and b, if (G, T )
contains a Σ-animal with a horns and b hairs of strength (θ(Σ, a, b), s(Σ, a, b))
and F 6� G, then there exists a set Z ⊆ V (G) of size at most α(Σ, a, b)
such that G − Z has a T -central segregation of type (m4, p(Σ, a, b)) with an
arrangement in some surface in which F cannot be drawn.

Theorem 3 thus follows with α = α(sphere, 0, 0), k = |V (F )|4, p =
p(sphere, 0, 0), and θ large enough that (by the grid theorem), any graph
with a tangle of order at least θ contains a wall of order θ(sphere, 0, 0)—such
a wall forms a sphere-animal with no horns and hairs.
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