Our goal for this lecture is to present a (very brief) outline of the proof of the structure theorem. First, we need to formulate its local version with respect to a given tangle.

Let G be a graph and let Ω be a cyclic sequence of vertices of G. Then (G, Ω) is a society. We view a graph itself as a society with empty sequence. A cross in a society consists of two disjoint paths P_{1} and P_{2} in G such that the labels of the ends x_{1} and y_{1} of P_{1} and x_{2} and y_{2} of P_{2} can be chosen so that they appear in Ω in order x_{1}, x_{2}, y_{1}, and y_{2}. A society is a cell if $|\Omega| \leq 3$. A transaction of order p in the society (G, Ω) is a set of p pairwise vertex-disjoint paths with ends in Ω. A society is a p-vortex if it contains no transaction of order greater than p; from the homework assignment, we have the following description of p-vortices (recall the adhesion of a tree decomposition (T, β) is the maximum of $|\beta(x) \cap \beta(y)|$ over distinct $x, y \in V(T))$.

Lemma 1. If (G, Ω) is a p-vortex and $\Omega=\left(v_{1}, \ldots, v_{m}\right)$, then G has a path decomposition (P, β) over the path $P=v_{1} v_{2} \ldots v_{m}$ of adhesion at most p such that $v_{i} \in \beta\left(v_{i}\right)$ for $i=1, \ldots, m$.

A society $\left(G_{1}, \Omega_{1}\right)$ is a subsociety of (G, Ω) if G_{1} is a subgraph of G, every edge of G_{1} incident with $V\left(G_{1}\right) \backslash \Omega_{1}$ belongs to G_{1}, and $G_{1} \cap \Omega \subseteq$ Ω_{1}. Two subsocieties $\left(G_{1}, \Omega_{1}\right)$ and $\left(G_{2}, \Omega_{2}\right)$ are disjoint if $G_{1} \cap G_{2}=\Omega_{1} \cap$ Ω_{2}. A segregation of (G, Ω) is a set $\left\{\left(G_{i}, \Omega_{i}\right): i=1, \ldots, n\right\}$ of its disjoint subsocieties such that $G=G_{1} \cup \ldots \cup G_{n}$. The segregation is of type (k, p) if all but at most k elements are cells and the remaining at most k elements are p-vortices.

If $\Omega=\emptyset$, an arrangement of the segregation in a surface Σ is a function α satisfying the following conditions: $\alpha\left(G_{i}, \Omega_{i}\right)$ is a disk $\Delta_{i} \subseteq \Sigma$ and for each $v \in \Omega_{i}, \alpha(v)$ is a distinct point in Σ contained in the boundary of Δ_{i}, such that

- for each i, the order of the points $\alpha(v)$ for $v \in \Omega_{i}$ in the boundary of Δ_{i} matches the order of the vertices v in Ω_{i}, and
- for distinct i and j, the disks Δ_{i} and Δ_{j} intersect exactly in the points $\alpha(v)$ for $v \in \Omega_{1} \cap \Omega_{2}$.

If Ω is not emptyset, we additionally require Σ has exactly one hole and

- for each $v \in \Omega$, the point $\alpha(v)$ is contained in the boundary of Σ and their order in the boundary matches the order of the vertices v in Ω.

A society is rural if it has a segregation into cells with an arrangement in a disk. In the homework assignment, we have seen the following result.

Lemma 2. A society (G, Ω) is rural if and only if it does not contain a cross.
For a tangle \mathcal{T} in G of order θ, we say that a segregation $\left\{\left(G_{i}, \Omega_{i}\right): i=\right.$ $1, \ldots, n\}$ of G is \mathcal{T}-central if there is no $(A, B) \in \mathcal{T}$ and $i \in\{1, \ldots, n\}$ such that $B \subseteq G_{i}$. For $Z \subseteq V(G)$ with $|Z|<\theta$, recall that we can naturally define a tangle $\mathcal{T}-Z$ in $G-Z$ of order $\theta-|Z|$ as the set of all separations $\{(A-Z, B-Z):(A, B) \in \mathcal{T}, Z \subseteq V(A \cap B)\}$.

Theorem 3 (The Structure Theorem, local version). For every graph F, there exist integers $\alpha<\theta, k$, and p such that the following holds. For every graph G and a tangle \mathcal{T} in G of order at least θ, if $F \npreceq G$, then there exists $A \subseteq V(G)$ of size at most α, a surface Σ in which F cannot be drawn, and $a(\mathcal{T}-A)$-central segregation of $G-A$ of type (k, p) with an arrangement in Σ.

1 Global structure theorem from the local one

A graph G is (b, k, ρ)-near-embedded in a surface Σ if for some subset $B \subseteq$ $V(G)$, the graph $G-B$ has a drawing in Σ with at most k vortices of width at most ρ. The final global form of the structure theorem we aim for is as follows.

Theorem 4 (The Structure Theorem, local version). For every graph F, there exist integers b, k, and ρ such that the following holds. For every graph G, if $F \npreceq G$, then G has a tree decompositions whose torsos can be (b, k, ρ) -near-embedded in surfaces in which F cannot be drawn. Equivalently, G can be obtained from graphs (b, k, ρ)-near-embedded in surfaces in which F cannot be drawn by clique-sums.

In the first lecture, we have seen Theorem 4 follows from the following lemma, which as we now show is a consequence of Theorem 3. Recall a set \mathcal{L} of separations in a graph G is a location if for all distinct separations $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right) \in \mathcal{L}$, we have $A_{1} \subseteq B_{2}$. The center of the location is the graph C obtained from $\bigcap_{(A, B) \in \mathcal{L}} B$ by adding all edges of cliques with vertex sets $V(A \cap B)$ for $(A, B) \in \mathcal{L}$.

Lemma 5. For every graph F, there exist integers $\alpha<\theta$, k, and ρ such that the following holds. For every graph G and a tangle \mathcal{T} in G of order at least θ, if $F \npreceq G$, then there exists a location $\mathcal{L} \subseteq \mathcal{T}$ whose center is (a,k, ρ)-near-embedded in a surface in which F cannot be drawn.

Proof. Let $\alpha<\theta, k, p, A, \Sigma$, and a $(\mathcal{T}-A)$-central segregation S of $G-A$ of type (k, p) with an arrangement in Σ be obtained using Theorem 3. Let $\rho=2 p+1$. The location \mathcal{L} is obtained as follows:

- For each cell $(C, \Omega) \in S$, we include the separation $\left(A_{C}, B_{C}\right)$, where $A_{C}=G[V(C) \cup A]$ and $V\left(A_{C} \cap B_{C}\right)=\Omega \cup A$.
- For each p-vortex $(C, \Omega) \in S$, let (P, β) be the path decomposition from Lemma 1, where $P=v_{1} v_{2} \ldots v_{m}$. In \mathcal{L}, we include all separations $\left(A_{i}, B_{i}\right)$ for $i=1, \ldots, m$, where $A_{i}=G\left[\beta\left(v_{i}\right) \cup A\right]$ and $V\left(A_{i} \cap B_{i}\right)=$ $A \cup\left\{v_{i}\right\} \cup X_{i}$, with $X_{i}=\left(\beta\left(v_{i}\right) \cap\left(\beta\left(v_{i-1}\right) \cup \beta\left(v_{i+1}\right)\right)\right)$.

The (α, k, ρ)-near-embedding of the center of \mathcal{L} is obtained by making A into apex vertices, replacing each cell in the arrangement by a clique of size at most three, and replacing each p-vortex by a vortex of width at most ρ, whose bags are the sets X_{i}.

2 Growing animals

Let \mathcal{T} be a tangle in a graph G. For a surface $\Sigma, H \subseteq G$, and a tangle \mathcal{T}_{H} of order γ in H, we say $\left(H, \mathcal{T}_{H}\right)$ is a Σ-span of order γ in (G, \mathcal{T}) if H is a subdivision of a 3 -connected graph, H has a 2 -cell drawing in Σ and \mathcal{T}_{H} is respectful for this drawing, and \mathcal{T} is conformal with \mathcal{T}_{H} (i.e., the tangle induced in G by \mathcal{T}_{H} is a subset of $\left.\mathcal{T}\right)$. The results from the 6 th lecture imply the following.

Lemma 6. For every graph F and a surface Σ in which F can be drawn, there exists γ such that the following claim holds. If (G, \mathcal{T}) contains a Σ-span of order γ, then $F \preceq G$.

For a span $\left(H, \mathcal{T}_{H}\right)$, let d denote the distance function in H derived from \mathcal{T}_{H}. An H-path is a path in G intersecting H exactly in its endpoints. A (γ, s)-horn over the span is a vertex $v \in V(G) \backslash V(H)$ for which there exist s paths from v to vertices $v_{1}, \ldots, v_{s} \in V(H)$, disjoint except for their common start in v and disjoint from H except for their ends, where $d\left(v_{i}, v_{j}\right)=\gamma$ for all $i \neq j$. For $A \subseteq V(G) \backslash V(H)$, a γ-hair avoiding A is a vertex $z \in V(H)$ such that there exists an H-path in $G-A$ to a vertex $y \in V(H)$ with $d(z, y)=\gamma$.

A Σ-animal with a horns and b hairs of strength (γ, s) is a quadruple $\left(H, \mathcal{T}_{H}, A, B\right)$, where

- $\left(H, \mathcal{T}_{H}\right)$ is a Σ-span of order γ,
- A is a set of $a(\gamma, s)$-horns over the span, and
- B is a set of $b \gamma$-hairs avoiding A such that $d(x, y)=\sigma$ for distinct $x, y \in B$.

The argument used to prove Lemma 8 in the previous lecture notes gives the following.

Lemma 7. For any surface Σ and integer m, there exist γ and s such that the following claim holds. If (G, \mathcal{T}) contains a Σ-animal with $\binom{m}{2}$ horns of strength (γ, s), then $K_{m} \preceq G$.

Furthermore, analogously to Lemma 9, we can show that many hairs can be combined into a horn.

Lemma 8. For any surface Σ and integers m, s, γ, a, there exist γ^{\prime} and b such that the following claim holds. If (G, \mathcal{T}) contains a Σ-animal with a horns and b hairs of strength $\left(\gamma^{\prime}, s+1\right)$, then either $K_{m} \preceq G$, or (G, \mathcal{T}) contains a Σ-animal with $a+1$ horns of strength (γ, s).

Next, let us argue that H-paths between distant vertices of H either can be used to improve the animal, or can be all disrupted by a small number of vertices. We say a Σ-span $\left(H, \mathcal{T}_{H}\right)$ is δ-flat if for every H-path, its ends u and v satisfy $d(u, v)<\delta$. A δ-zone around a vertex $v \in V(H)$ is an open disk $\Lambda \subset \Sigma$ bounded by a cycle C in H such that all atoms in the closure of Λ are at distance at most δ from v and conversely, all atoms at distance at most $\delta-2$ belong to Λ. Clearing the zone means deleting vertices and edges of H drawn in Λ; note that the resulting graph H^{\prime} contains a tangle $\mathcal{T}_{H^{\prime}}$ of order $\theta-O(\delta)$ conformal with \mathcal{T}_{H} such that the distances according to $d_{\mathcal{T}_{H^{\prime}}}$ are by at most $O(\delta)$ smaller than those according to $d_{\mathcal{T}_{H}}$.

Lemma 9. For any surface Σ and integers a, b, θ_{1}, there exist δ, α and θ_{0} such that the following claim holds for every integer s. If (G, \mathcal{T}) contains a Σ-animal $\mathcal{A}=(H, \mathcal{T}, A, B)$ with a horns and b hairs of strength (θ, s) and $\theta \geq \theta_{0}$, then at least one of the following holds:

1. (G, \mathcal{T}) contains a ($\Sigma+$ handle $)$ - or $(\Sigma+$ crosshandle $)$-span of order θ_{1}, or
2. (G, \mathcal{T}) contains a Σ-animal with a horns and $b+1$ hairs of strength $\left(\theta_{1}, s\right)$, or
3. (G, \mathcal{T}) contains a Σ-animal $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}, A, B^{\prime}\right)$ with a horns and b hairs of strength $(\theta-\delta, s)$ and a set $Z \subseteq V(G) \backslash V\left(H^{\prime}\right)$ of size at most α such that $A \subseteq Z$ and $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}\right)$ is δ-flat in $G-Z$.

Proof idea. For $y \in B$, choose a δ^{\prime}-zone Λ_{y} around y bounded by a cycle C_{y} for $\delta^{\prime}=O(\delta / b)$, and let $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}\right.$ be the Σ-span of order $\theta-\delta$ obtained by clearing the zones. For each $y \in B$, choose a vertex y^{\prime} of C_{y} joined to y by a path in Λ_{y}, and let $B^{\prime}=\left\{y^{\prime}: y \in B\right\}$. Then $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}, A, B^{\prime}\right)$ is an animal with a horns and b hairs of strength $(\theta-\delta, s)$. Moreover, Λ_{y} can be chosen so that C_{y} contains a set X_{y} that is free in $\mathcal{T}_{H^{\prime}}$ and satisfies the following technical connectivity condition (\star) : Suppose $v_{1}, v_{2}, \ldots, v_{t}$ is a sequence of vertices of $H \cap \Lambda_{y}$ with $d\left(y, v_{1}\right) \geq \delta-\theta_{1}$ and $d\left(v_{j-1}, v_{j}\right)<\theta_{1}$ for $j=2, \ldots, t$. If $d\left(y, v_{m}\right)<\theta_{1}$, then $H \cap\left(\Lambda_{y} \cup X_{y}\right)$ contains $b^{2} \theta_{1}^{2}$ pairwise vertex-disjoint paths from $\left\{v_{1}, \ldots, v_{m}\right\}$ to X_{y}. Let us remark that to ensure this condition holds, it is in particular necessary that $\delta \gg \theta_{1}$.

If for some distinct $y_{1}, y_{2} \in B$ there are at least θ_{1}^{2} disjoint H^{\prime}-paths from $X_{y_{1}}$ to $X_{y_{2}}$, then we can select θ_{1} of them such that the order of their ends in $C_{y_{1}}$ and $C_{y_{2}}$ is either the same or opposite. Adding these paths to H^{\prime}, we obtain a ($\Sigma+$ handle)- or ($\Sigma+$ crosshandle)-span of order θ_{1} in G. Hence, we can assume this is not the case, and thus by Menger's theorem, G contains a set Z_{0} of size less than $b^{2} \theta_{1}^{2}$ intersecting all paths with ends in $X_{y_{1}}$ and $X_{y_{2}}$ for distinct $y_{1}, y_{2} \in B$.

If $Z=\left(Z_{0} \backslash V\left(H^{\prime}\right)\right) \cup A$ intersects all H^{\prime}-path with ends $u, v \in V\left(H^{\prime}\right)$ satisfying $d_{\mathcal{T}_{H^{\prime}}}(u, v) \geq \delta$, then the last outcome holds. Hence, suppose Q is such a path avoiding Z. Let u^{\prime} be the first vertex of Q after u belonging to H. If $d\left(u, u^{\prime}\right) \geq \theta_{1}$, we can add u as a hair to \mathcal{A} and the second outcome holds. Hence, $d\left(u, u^{\prime}\right)<\theta_{1}$, and defining v^{\prime} symmetrically, we have $d\left(v, v^{\prime}\right)<\theta_{1}$. Consequently, $d\left(u^{\prime}, v^{\prime}\right)>\delta-2 \theta_{1}>2 \delta^{\prime}$. Therefore, $u^{\prime} \in \Lambda_{y_{1}}$ and $v^{\prime} \in \Lambda_{y_{2}}$ for distinct $y_{1}, y_{2} \in B$. By the choice of Z_{0}, it cannot be the case that for both $i \in\{1,2\}, H \cap\left(\Lambda_{y_{i}} \cup X_{y_{i}}\right)$ contains a path from $X_{y_{i}}$ to $V(Q)$ disjoint from Z_{0}; we can assume no such path exists for $i=1$.

Consider the segment of Q starting with u^{\prime} which intersects H only in $H \cap \Lambda_{y_{1}}$. Let v_{1}, \ldots, v_{m} be these intersections in order they appear on Q, with m chosen maximum so that $d\left(v_{j-1}, v_{j}\right)<\theta_{1}$ for $j=2, \ldots, t$. Since $H \cap\left(\Lambda_{y_{1}} \cup X_{y_{1}}\right)$ does not contain a path from $X_{y_{1}}$ to $V(Q)$ disjoint from Z_{0}, by (\star) we have $d\left(y_{1}, v_{m}\right)>\theta_{1}$. Let w be the next intersection of Q with H after v_{m}. Then $d\left(v_{m}, w\right) \geq \theta_{1}$, by the maximality of m if $w \in \Lambda_{y_{1}}$ and since $d\left(y_{1}, y_{3}\right) \geq \theta$ and $d\left(w_{m}, y_{1}\right) \leq \delta$ if $w \in \Lambda_{y_{3}}$ for some $y_{3} \neq y_{1}$. Then we can add v_{m} as a new hair to \mathcal{A}, and the second outcome holds.

Let us now refine the last outcome. Suppose $\left(H, \mathcal{T}_{H}\right)$ is a Σ-span. Another Σ-span $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}\right)$ is a λ-rearrangement of $\left(H, \mathcal{T}_{H}\right)$ around a vertex $v \in V(H)$ if every vertex or edge of H at distance more than λ from v belongs to H^{\prime} and the distances according to $d_{\mathcal{T}_{H^{\prime}}}$ are by at most $4 \lambda+2$ smaller than those according to $d_{\mathcal{T}_{H}}$. We say that $\left(H, \mathcal{T}_{H}\right)$ is (λ, δ)-flat if all its λ-rearrangements
are δ-flat.
Lemma 10. For any surface Σ and integers a, s, b, θ_{1}, there exist δ and α such that for all λ and θ_{2} there exists θ for which the following claim holds. If (G, \mathcal{T}) contains a Σ-animal $\mathcal{A}=(H, \mathcal{T}, A, B)$ with a horns and b hairs of strength $(\theta, s+\alpha)$, then at least one of the following holds:

1. (G, \mathcal{T}) contains a $(\Sigma+$ handle $)$ - or $(\Sigma+$ crosshandle $)$-span of order θ_{1}, or
2. (G, \mathcal{T}) contains a Σ-animal with a horns and $b+1$ hairs of strength $\left(\theta_{1}, s\right)$, or
3. there is a set $Z \subseteq V(G)$ of size at most α such that $(G-Z, \mathcal{T}-Z)$ contains a (λ, δ)-flat Σ-span of order θ_{2}.

Proof idea. Let δ, α, and θ_{0} be as in Lemma 9, with $\delta>\theta_{1}$. Let $\theta=$ $\max \left(\theta_{0}, \theta_{2}+\delta, 2 \theta_{1}+\delta+4 \lambda+2\right)$. Apply Lemma 9 to \mathcal{A}; the first two outcomes correspond to the outcomes of this lemma, and thus we can assume (G, \mathcal{T}) contains a Σ-animal $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}, A, B^{\prime}\right)$ with a horns and b hairs of strength $(\theta-\delta, s+\alpha)$ and a set $Z \subseteq V(G) \backslash V\left(H^{\prime}\right)$ of size at most α such that $A \subseteq Z$ and $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}\right)$ is δ-flat in $G-Z$. If the Σ-span $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}\right)$ is (λ, δ)-flat in $G-Z$, then the third outcome holds.

Otherwise, there exists a λ-rearrangement $\left(H^{\prime \prime}, \mathcal{T}_{H^{\prime \prime}}\right)$ of $\left(H^{\prime}, \mathcal{T}_{H^{\prime}}\right)$ around a vertex w and an $H^{\prime \prime}$-path Q in $G-Z$ whose ends u and v satisfy $d_{\mathcal{T}_{H^{\prime \prime}}}(u, v) \geq$ δ. For a vertex $x \in A$, consider $s+1$ of the paths showing that x is a horn which are disjoint from $Z \backslash\{x\}$. At most one of them intersects $H^{\prime \prime}-H^{\prime}$, as otherwise ($H^{\prime}, \mathcal{T}_{H^{\prime}}$) would not be δ-flat in $G-Z$. Consequently, each element of A is a $\left(\theta_{1}, s\right)$-horn over $\left(H^{\prime \prime}, \mathcal{T}_{H^{\prime \prime}}\right)$. Furthermore, at most one of the hairs in B^{\prime} is at distance less than $\theta_{1}+\lambda$ from w; let y be this hair, or an arbitrary hair in B^{\prime} if no hair is close to w. Then $\left(H^{\prime \prime}, \mathcal{T}_{H^{\prime \prime}}, A,\left(B^{\prime} \backslash\{y\}\right) \cup\{u, v\}\right)$ is a Σ-animal with a horns and $b+1$ hairs of strength $\left(\theta_{1}, s\right)$, and the second outcome of the lemma holds.

For a span $\left(H, \mathcal{T}_{H}\right)$, a face of H is an eye if there exist vertices x_{1}, \ldots, x_{4} appearing in order in the cycle bounding f such that there exist disjoint H-paths from x_{1} to x_{3} and from x_{2} to x_{4} and the set $\left\{x_{1}, \ldots, x_{4}\right\}$ is free in \mathcal{T}_{H}. The homework assignment for Lesson 6 implies the following result (the assumption that the span is $(\beta-10)$-flat is used to show that the crossing paths for different eyes are pairwise disjoint).

Lemma 11. For any surface Σ and integer m, if $\beta \gg m, \Sigma$ and (G, \mathcal{T}) contains a $(\beta-10)$-flat Σ-span with m^{4} eyes pairwise at distance at least β apart, then $K_{m} \preceq \mathcal{T}$.

We now can improve or embed a flat span.
Lemma 12. For any surface Σ and integers m, δ, and θ_{1}, there exist λ, θ_{2}, and p such that the following claim holds. If (G, \mathcal{T}) contains a (λ, δ)-flat Σ-span of order at least θ_{2} and $K_{m} \npreceq G$, then either

1. (G, \mathcal{T}) contains a $(\Sigma+$ crosscap $)$-span of order θ_{1}, or
2. G has a \mathcal{T}-central segregation of type $\left(m^{4}, p\right)$ with an arrangement in Σ.

Proof idea. Choose $\gamma_{-1} \gg \lambda_{0} \gg \gamma_{0} \gg \lambda_{1} \gg \gamma_{1} \gg \ldots \gg \lambda m^{4} \gg \gamma_{m^{4}}$, where $\gamma_{m^{4}} \geq \max (\delta, \beta)+10$ for β from Lemma 11. Set $\theta_{2}=\gamma_{-1}$ and $p \gg \lambda=\lambda_{0}$.

Let $k \in\left\{0, \ldots, m^{4}\right\}$ be maximum such that (G, \mathcal{T}) contains a $\left(\lambda_{k}, \delta\right)$ flat Σ-span $\left(H, \mathcal{T}_{H}\right)$ of order at least γ_{k-1} with k eyes f_{1}, \ldots, f_{k} pairwise at distance at least γ_{k} apart. Note that $k<m^{4}$, as otherwise $K_{m} \preceq G$ by Lemma 11.

Consider a vertex $v \in V(H)$ such that an eye can be created by cleaning a 4δ-zone around v. The maximality of k implies that the distance between v and some f_{i} is less than $\gamma_{k+1}+16 \delta+2 \ll \lambda_{k+1}$. For $i=1, \ldots, k$, let Λ_{i} be the corresponding zone around f_{i}. The "local planarity" together with rigidness of H implies that that everything outside of these zones can be broken up into cells with an arrangement in Σ. We now apply the results from the homework assignment to each zone Λ_{i} and all H-bridges of G that attach to it. If it does not contain a large crooked transaction, then it can be decomposed into a rural neighborhood and a p-vortex, and if this happens for all i, we obtain a desired \mathcal{T}-central segregation of type (m^{4}, p) with an arrangement in Σ.

Hence, suppose this does not happen for some i. The large crooked transaction contains one of crosscap, jump, or double-cross type. Crosscap-type crooked transaction can be used to rearrange $\left(H, \mathcal{T}_{H}\right)$ into a ($\Sigma+$ crosscap $)$ span of order θ_{1}. Jump one would contradict the assumption that $\left(H, \mathcal{T}_{H}\right)$ is $\left(\lambda_{k}, \delta\right)$-flat. The double-cross type can be used to rearrange and obtain one more distant eye, contradicting the maximality of k.

Let us now combine all these results.
Corollary 13. For any surface Σ and integers $m, \theta_{1}, s_{1}, a, b$, there exists θ, s, p, α such that the following holds. If (G, \mathcal{T}) contains a Σ-animal with a horns and b hairs of strength (θ, s) and $K_{m} \npreceq G$, then

- (G, \mathcal{T}) contains a $(\Sigma+$ handle $)$-, $(\Sigma+$ crosshandle $)$-, or $(\Sigma+$ crosscap $)$ span of order θ_{1}, or
- (G, \mathcal{T}) contains a Σ-animal with a horns and $b+1$ hairs of strength $\left(\theta_{1}, s_{1}\right)$, or
- there exists a set $Z \subseteq V(G)$ of size at most α such that $G-Z$ has a $(\mathcal{T}-Z)$-central segregation of type $\left(m^{4}, p\right)$ with an arranglement in Σ.

Proof. Let δ and α be as in Lemma 10 for the given parameters (with $s=s_{1}$). Let λ, θ_{2}, and p be as in Lemma 12 for the given parameters. Let θ be obtained by Lemma 10 for this λ and θ_{2}, and let and $s=s_{1}+\alpha$.

Applying Lemma 10 to (G, \mathcal{T}), the first outcomes correspond to the first two outcomes of this lemma. Hence, we can assume the third outcome, giving us a (λ, δ)-level Σ-span in $(G-Z, \mathcal{T}-Z)$ for a set Z of size at most α. We now apply Lemma 12, the first outcome corresponds to the first outcome of this lemma, while the second one corresponds to the third outcome of this lemma.

3 Proof of the structure theorem

Let $m=|V(F)|$. We define $\theta=\theta(\Sigma, a, b), s=s(\Sigma, a, b), p=p(\Sigma, a, b)$ and $\alpha=\alpha(\Sigma, a, b)$ inductively so that the following conditions hold.

- If F can be drawn in Σ, then θ is equal to γ from Lemma 6 and $s=p=\alpha=0$. Suppose from now on that F cannot be drawn in Σ.
- If $a \geq\binom{ m}{2}$, then let θ and s be chosen according to Lemma 7, setting $\theta=\gamma$, and let $p=\alpha=0$. Suppose from now on that $a<\binom{m}{2}$.
- Let $b_{\text {max }}(\Sigma, a)$ be equal to b from Lemma 8 for the given $\Sigma, m, s(\Sigma, a+$ $1,0), \theta(\Sigma, a+1,0)$, and a. If $b \geq b_{\max }(\Sigma, a)$, then let $s=s(\Sigma, a+1,0)+1$, $p=\alpha=0$, and let θ be chosen as γ^{\prime} from Lemma 8. From now on, suppose that $b<b_{\max }(\Sigma, a)$.
- Let θ and s be chosen according to Corollary 13 , with θ_{1} and s_{1} maximum of the following:
- $\theta\left(\Sigma^{\prime}, 0,0\right)$ and $s\left(\Sigma^{\prime}, 0,0\right)$ for $\Sigma^{\prime} \in\{\Sigma+$ handle, $\Sigma+$ crosshandle, $\Sigma+$ crosscap $\}$.
$-\theta(\Sigma, a, b+1)$ and $s(\Sigma, a, b+1)$.
We choose p and α as the maximum of values of p and α among these cases and those obtained from Corollary 13 .

A straightforward inductive argument gives the following.

Corollary 14. For any graph F, a surface Σ, and integers a and b, if (G, \mathcal{T}) contains a Σ-animal with a horns and b hairs of strength $(\theta(\Sigma, a, b), s(\Sigma, a, b))$ and $F \npreceq G$, then there exists a set $Z \subseteq V(G)$ of size at most $\alpha(\Sigma, a, b)$ such that $G-Z$ has a \mathcal{T}-central segregation of type $\left(m^{4}, p(\Sigma, a, b)\right)$ with an arrangement in some surface in which F cannot be drawn.

Theorem 3 thus follows with $\alpha=\alpha($ sphere $, 0,0), k=|V(F)|^{4}, p=$ p (sphere, 0,0), and θ large enough that (by the grid theorem), any graph with a tangle of order at least θ contains a wall of order θ (sphere, 0,0) - such a wall forms a sphere-animal with no horns and hairs.

