Near-embeddability

Definition

A graph *G* is <u>*a*-near-embeddable</u> in a surface Σ if for some graph G_0 drawn in Σ , *G* is obtained from <u>an outgrowth of G_0 by at most *a* vortices of depth *a* by adding at most *a* apices.</u>

Theorem (Global structure theorem)

For every graph F, there exists a such that the following holds. If $F \not\preceq G$, then G has a tree decomposition such that each torso either

- has at most a vertices, or
- is a-near-embeddable in some surface Σ in which <u>F</u> cannot be drawn.

Definition

A location in *G* is a set of separations \mathcal{L} such that for distinct $(A_1, B_1), (A_2, B_2) \in \mathcal{L}$, we have $A_1 \subseteq B_2$.

The center of the location is the graph *C* obtained from $\bigcap_{(A,B)\in\mathcal{L}} B$ by adding all edges of cliques with vertex sets $V(A \cap B)$ for $(A, B) \in \mathcal{L}$.

Theorem (Local structure theorem, version 1)

For every graph F, there exists a such that the following holds. If $F \not\preceq G$ and $\underline{\mathcal{T}}$ is a tangle in G of order at least a, then there exists a <u>location $\mathcal{L} \subseteq \mathcal{T}$ whose center</u> is a-near-embeddable in some surface Σ in which F cannot be drawn.

- <u>Society</u>: a graph *G* with a cyclic sequence Ω of <u>interface</u> vertices.
- <u>Transaction of order p</u>: p vertex-disjoint paths between consecutive subsequences of Ω.
- *p*-vortex: Society without any transaction of order *p*.

Lemma (Vortex decomposition)

If (G, Ω) is a p-vortex and $\Omega = (v_1, ..., v_m)$, then G has a path decomposition (P, β) over the path $P = v_1 v_2 ... v_m$ of adhesion at most p such that $v_i \in \beta(v_i)$ for i = 1, ..., m.

- <u>Subsociety</u> (S, Ω) of a graph G: S induced subgraph of G, only vertices of Ω incident with edges of E(G) \ E(S).
- <u>Segregation</u> of G: Subsocieties $\{(S_i, \Omega_i) : i = 1, ..., n\}$ s.t.

•
$$G = S_1 \cup \ldots \cup S_n$$
,

•
$$S_i \cap S_j = \Omega_i \cap \Omega_j$$
 for $i \neq j$.

- Arrangement in Σ
 - Societies \mapsto disks in Σ with disjoint interiors.
 - Interface vertices → points in the disk boundary in a matching order.

<u>Cell</u>: society with at most three interface vertices. Segregation is of type (k, p) if

- all but at most k elements are cells,
- the remaining elements are *p*-vortices.

For a tangle \mathcal{T} , a segregation S is $\underline{\mathcal{T}}$ -central if there is no $(A, B) \in \mathcal{T}$ and $(S, \Omega) \in S$ such that $B \subseteq S$.

Theorem (Local structure theorem, version 2)

For every graph *F*, there exist integers $\alpha < \theta$, *k*, and *p* such that the following holds. If $F \not\preceq G$ and \mathcal{T} is a tangle in *G* of order at least θ , then there exists $A \subseteq V(G)$ of size at most α , a surface Σ in which *F* cannot be drawn, and a $(\mathcal{T} - A)$ -central segregation of G - A of type (k, p) with an arrangement in Σ .

Lemma

Version 2 implies version 1.

Proof.

To obtain the location center,

- replace each cell by a clique drawn in Σ,
- apply Vortex decomposition lemma to *p*-vortices, bags of form {*v_i*} ∪ (β(*v_i*) ∩ β(*v_{i-1}*)) ∪ (β(*v_i*) ∩ β(*v_{i+1}*)).

Lemma

Version 2 implies version 1.

Proof.

To obtain the location center,

- replace each cell by a clique drawn in Σ,
- apply Vortex decomposition lemma to *p*-vortices, bags of form {*v_i*} ∪ (β(*v_i*) ∩ β(*v_{i-1}*)) ∪ (β(*v_i*) ∩ β(*v_{i+1}*)).

- $\underline{\Sigma}$ -span in (G, \mathcal{T}) of order θ is (H, \mathcal{T}_H) , where
 - $H \subseteq G$ is a subdivision of a 3-connected graph,
 - *H* is drawn in Σ and *T_H* is a respectful tangle of order θ conformal with *T*.
- <u>*H*-path</u>: path in *G* intersecting *H* exactly in its ends. $u \in V(H)$ is an <u>*A*-avoiding hair</u> if there exists an *H*-path in G - A whose other end u' satisfies $d_{\mathcal{T}_H}(u, u') = \theta$.
- <u>s-horn</u>: a vertex $v \in V(G) \setminus V(H)$, disjoint paths from v to $v_1, \ldots, v_s \in V(H)$, $d_{\mathcal{T}_H}(v_i, v_j) = \theta$ for $i \neq j$.

(H, \mathcal{T}_H, A, B) is a Σ -animal with *a* horns and *b* hairs of strength $(\underline{\theta}, \sigma)$ in (G, \mathcal{T}) if:

- (H, \mathcal{T}_H) is a Σ -span in (G, \mathcal{T}) of order θ
- A is a set of a s-horns.
- B is a set of b A-avoiding hairs, pairwise at distance θ from one another.

Theorem

F drawn in Σ , (G, T) contains a Σ -span of sufficiently large order \Rightarrow F \leq G.

Lemma (Horn Lemma)

If (G, \mathcal{T}) contains a sufficiently strong Σ -animal with $\binom{m}{2}$ horns, then $K_m \preceq G$.

Lemma (Hairs-to-horn Lemma)

If (G, T) contains a sufficiently strong Σ -animal with a horns and sufficiently many hairs, then either $K_m \leq G$ or (G, T) also contains a Σ -animal with a + 1 horns of strength (θ, s) .

- Large treewidth ⇒ large wall = strong sphere-animal with no horns or hairs.
- Repeatedly, unless $F \leq G$ or the decomposition is found:
 - find a slightly weaker animal in higher-genus surface, or
 - find a slightly weaker animal with one more hair.
- Genus at least the genus of $F: F \leq G$.
- Many hairs accumulate: Hairs-to-horn Lemma gives F ≤ G or one more horn.
- Many horns accumulate: Horn Lemma gives $F \preceq G$.

- No hair can be added ⇒ all long jumps start and end near elements of B.
- Many disjoint long jumps ⇒ (Σ + handle) or (Σ + crosshandle) – span of large order.

- No hair can be added ⇒ all long jumps start and end near elements of B.
- Many disjoint long jumps ⇒ (Σ + handle) or (Σ + crosshandle) – span of large order.

- No hair can be added ⇒ all long jumps start and end near elements of B.
- Many disjoint long jumps ⇒ (Σ + handle) or (Σ + crosshandle) – span of large order.

- No hair can be added ⇒ all long jumps start and end near elements of B.
- Many disjoint long jumps ⇒ (Σ + handle) or (Σ + crosshandle) – span of large order.

- Otherwise, all can be interrupted by a small set Z ⊇ A (Menger).
- In G Z, (H, T_H) is <u>flat</u>: no long jumps.

 $(H', \mathcal{T}_{H'})$ is a <u>rearrangement</u> of (H, \mathcal{T}_{H}) within λ of $v \in V(H)$ if

- atoms of H H' are at distance at most λ from v,
- distances according to $\mathcal{T}_{H'}$ are by at most $(4\lambda + 2)$ smaller.

• Long jump after a local rearrangement \Rightarrow one more hair.

 We can assume (H, T_H) is flat in G – Z even after a local rearrangement. Face *f* is an <u>eye</u> in (H, \mathcal{T}_H) if

- x_1, \ldots, x_4 in the boundary of *H* in order, $\{x_1, \ldots, x_4\}$ free in \mathcal{T}_H ,
- disjoint *H*-paths from x_1 to x_3 and x_2 to x_4 .

Lemma (Cross Lemma)

 (H, \mathcal{T}_H) is flat and contains m^4 pairwise distant eyes $\Rightarrow K_m \preceq G$.

- Locally rearrange (H, T_H) to obtain maximum number of distant eyes f₁, ..., f_k, k < m⁴.
- Far from the eyes: Impossible to rearrange non-planarly ⇒ segregation into cells with arrangement in Σ.

Around each eye:

- No large crooked transaction: *p*-vortex + rural neighborhood.
- Crosscap transaction $\rightarrow (\Sigma + crosscap)$ -span.
- Jump transaction \rightarrow non-flat after rearrangement.
- Double-cross transaction \rightarrow more distant eyes.

