Near-embeddability

Definition

A graph G is a-near-embeddable in a surface Σ if for some graph G_{0} drawn in Σ, G is obtained from an outgrowth of G_{0} by at most a vortices of depth a by adding at most a apices.

Theorem (Global structure theorem)

For every graph F, there exists a such that the following holds. If $F \npreceq G$, then G has a tree decomposition such that each torso either

- has at most a vertices, or
- is a-near-embeddable in some surface Σ in which \underline{F} cannot be drawn.

Definition

A location in G is a set of separations \mathcal{L} such that for distinct $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right) \in \mathcal{L}$, we have $A_{1} \subseteq B_{2}$.

The center of the location is the graph C obtained from
$\bigcap_{(A, B) \in \mathcal{L}} B$ by adding all edges of cliques with vertex sets $V(A \cap B)$ for $(A, B) \in \mathcal{L}$.

Theorem (Local structure theorem, version 1)

For every graph F, there exists a such that the following holds. If $F \npreceq G$ and \mathcal{T} is a tangle in G of order at least a, then there exists a location $\mathcal{L} \subseteq \mathcal{T}$ whose center is a-near-embeddable in some surface Σ in which F cannot be drawn.

- Society: a graph G with a cyclic sequence Ω of interface vertices.
- Transaction of order $p: p$ vertex-disjoint paths between consecutive subsequences of Ω.
- p-vortex: Society without any transaction of order p.

Lemma (Vortex decomposition)

If (G, Ω) is a p-vortex and $\Omega=\left(v_{1}, \ldots, v_{m}\right)$, then G has a path decomposition (P, β) over the path $P=v_{1} v_{2} \ldots v_{m}$ of adhesion at most p such that $v_{i} \in \beta\left(v_{i}\right)$ for $i=1, \ldots, m$.

- Subsociety (S, Ω) of a graph G : S induced subgraph of G, only vertices of Ω incident with edges of $E(G) \backslash E(S)$.
- Segregation of G : Subsocieties $\left\{\left(S_{i}, \Omega_{i}\right): i=1, \ldots, n\right\}$ s.t.
- $G=S_{1} \cup \ldots \cup S_{n}$,
- $S_{i} \cap S_{j}=\Omega_{i} \cap \Omega_{j}$ for $i \neq j$.
- Arrangement in Σ
- Societies \mapsto disks in Σ with disjoint interiors.
- Interface vertices \mapsto points in the disk boundary in a matching order.

Cell: society with at most three interface vertices. Segregation is of type (k, p) if

- all but at most k elements are cells,
- the remaining elements are p-vortices.

For a tangle \mathcal{T}, a segregation \mathcal{S} is \mathcal{T}-central if there is no $(A, B) \in \mathcal{T}$ and $(S, \Omega) \in \mathcal{S}$ such that $B \subseteq S$.

Theorem (Local structure theorem, version 2)

For every graph F, there exist integers $\alpha<\theta, k$, and p such that the following holds. If $F \npreceq G$ and \mathcal{T} is a tangle in G of order at least θ, then there exists $A \subseteq V(G)$ of size at most α, a surface Σ in which F cannot be drawn, and a $(\mathcal{T}-A)$-central segregation of $G-A$ of type (k, p) with an arrangement in Σ.

Lemma

Version 2 implies version 1.

Proof.

To obtain the location center,

- replace each cell by a clique drawn in Σ,
- apply Vortex decomposition lemma to p-vortices, bags of form $\left\{v_{i}\right\} \cup\left(\beta\left(v_{i}\right) \cap \beta\left(v_{i-1}\right)\right) \cup\left(\beta\left(v_{i}\right) \cap \beta\left(v_{i+1}\right)\right)$.

Lemma

Version 2 implies version 1.

Proof.

To obtain the location center,

- replace each cell by a clique drawn in Σ,
- apply Vortex decomposition lemma to p-vortices, bags of form $\left\{v_{i}\right\} \cup\left(\beta\left(v_{i}\right) \cap \beta\left(v_{i-1}\right)\right) \cup\left(\beta\left(v_{i}\right) \cap \beta\left(v_{i+1}\right)\right)$.

- Σ-span in (G, \mathcal{T}) of order θ is $\left(H, \mathcal{T}_{H}\right)$, where
- $H \subseteq G$ is a subdivision of a 3-connected graph,
- H is drawn in Σ and \mathcal{T}_{H} is a respectful tangle of order θ conformal with \mathcal{T}.
- H-path: path in G intersecting H exactly in its ends. $u \in V(H)$ is an A-avoiding hair if there exists an H-path in $G-A$ whose other end u^{\prime} satisfies $d_{\mathcal{T}_{H}}\left(u, u^{\prime}\right)=\theta$.
- s-horn: a vertex $v \in V(G) \backslash V(H)$, disjoint paths from v to $v_{1}, \ldots, v_{s} \in V(H), d_{\mathcal{T}_{H}}\left(v_{i}, v_{j}\right)=\theta$ for $i \neq j$.

$\left(H, \mathcal{T}_{H}, A, B\right)$ is a \sum-animal with a horns and b hairs of strength (θ, σ) in (G, \mathcal{T}) if:
- $\left(H, \mathcal{T}_{H}\right)$ is a Σ-span in (G, \mathcal{T}) of order θ
- A is a set of a s-horns.
- B is a set of $b A$-avoiding hairs, pairwise at distance θ from one another.

Theorem

F drawn in $\Sigma,(G, \mathcal{T})$ contains a Σ-span of sufficiently large order $\Rightarrow F \preceq G$.

Lemma (Horn Lemma)

If (G, \mathcal{T}) contains a sufficiently strong Σ-animal with $\binom{m}{2}$ horns, then $K_{m} \preceq G$.

Lemma (Hairs-to-horn Lemma)

If (G, \mathcal{T}) contains a sufficiently strong Σ-animal with a horns and sufficiently many hairs, then either $K_{m} \preceq G$ or (G, \mathcal{T}) also contains a \sum-animal with $a+1$ horns of strength (θ, s).

- Large treewidth \Rightarrow large wall $=$ strong sphere-animal with no horns or hairs.
- Repeatedly, unless $F \preceq G$ or the decomposition is found:
- find a slightly weaker animal in higher-genus surface, or
- find a slightly weaker animal with one more hair.
- Genus at least the genus of $F: F \preceq G$.
- Many hairs accumulate: Hairs-to-horn Lemma gives $F \preceq G$ or one more horn.
- Many horns accumulate: Horn Lemma gives $F \preceq G$.
- No hair can be added \Rightarrow all long jumps start and end near elements of B.
- Many disjoint long jumps \Rightarrow ($\Sigma+$ handle)- or ($\Sigma+$ crosshandle)-span of large order.

- No hair can be added \Rightarrow all long jumps start and end near elements of B.
- Many disjoint long jumps \Rightarrow ($\Sigma+$ handle $)$ - or ($\Sigma+$ crosshandle)-span of large order.

- No hair can be added \Rightarrow all long jumps start and end near elements of B.
- Many disjoint long jumps \Rightarrow ($\Sigma+$ handle $)$ - or ($\Sigma+$ crosshandle)-span of large order.

- No hair can be added \Rightarrow all long jumps start and end near elements of B.
- Many disjoint long jumps \Rightarrow ($\Sigma+$ handle)- or ($\Sigma+$ crosshandle)-span of large order.

- Otherwise, all can be interrupted by a small set $Z \supseteq A$ (Menger).
- In $G-Z,\left(H, \mathcal{T}_{H}\right)$ is flat: no long jumps.
($H^{\prime}, \mathcal{T}_{H^{\prime}}$) is a rearrangement of $\left(H, \mathcal{T}_{H}\right)$ within λ of $v \in V(H)$ if
- atoms of $H-H^{\prime}$ are at distance at most λ from v,
- distances according to $\mathcal{T}_{H^{\prime}}$ are by at most $(4 \lambda+2)$ smaller.

- Long jump after a local rearrangement \Rightarrow one more hair.

- We can assume $\left(H, \mathcal{T}_{H}\right)$ is flat in $G-Z$ even after a local rearrangement.

Face f is an eye in $\left(H, \mathcal{T}_{H}\right)$ if

- x_{1}, \ldots, x_{4} in the boundary of H in order, $\left\{x_{1}, \ldots, x_{4}\right\}$ free in \mathcal{T}_{H},
- disjoint H-paths from x_{1} to x_{3} and x_{2} to x_{4}.

Lemma (Cross Lemma)

$\left(H, \mathcal{T}_{H}\right)$ is flat and contains m^{4} pairwise distant eyes $\Rightarrow K_{m} \preceq G$.

- Locally rearrange $\left(H, \mathcal{T}_{H}\right)$ to obtain maximum number of distant eyes $f_{1}, \ldots, f_{k}, k<m^{4}$.
- Far from the eyes: Impossible to rearrange non-planarly \Rightarrow segregation into cells with arrangement in Σ.

Around each eye:

- No large crooked transaction: p-vortex + rural neighborhood.
- Crosscap transaction $\rightarrow(\Sigma+$ crosscap)-span.
- Jump transaction \rightarrow non-flat after rearrangement.
- Double-cross transaction \rightarrow more distant eyes.

