Our goal in this lecture is, for any fixed graph H and an integer k, to obtain the following algorithm.

Algorithm 1. Input: A graph G, an assignment r of k roots in G to vertices in H.

Output: A model of H in G rooted in r, or correctly decides no such model exists.

Time complexity: $O\left(|G|^{3}\right)$.
Note that the fact that H and k are fixed is necessary; for example, if k is part of the input, deciding for k pairs of vertices in G whether they are joined by pairwise disjoint paths is NP-complete.

One of the main results of the Graph Minors series is that every minorclosed class \mathcal{G} is characterized by a finite number of forbidden minors H_{1}, \ldots, H_{m}. Hence, we can decide whether $G \in \mathcal{G}$ in time $O\left(|G|^{3}\right)$ by using Algorithm 1 for H_{1}, \ldots, H_{m} (for many minor-closed classes, the list of forbidden minors is not explicitly known, though - in that case we know such an algorithm exists, but we cannot actually construct it).

For fixed H and r, we say that a vertex $v \in V(G)$ distinct from all the roots is irrelevant if the following holds: If H has a minor in G rooted in r, then H also has a minor in $G-v$ rooted in r. Algorithm 1 easily follows from the following algorithm for some function f.

Algorithm 2. Input: A graph G, an assignment r of k roots in G to vertices in H.

Output:

- A model of H in G rooted in r, or
- a tree decomposition of G of width at most $f(|H|, k)$, or
- an irrelevant vertex $v \in V(G)$.

Time complexity: $O\left(|G|^{2}\right)$.
To obtain Algorithm 1, we repeatedly run Algorithm 2, deleting the irrelevant vertices as long as it returns them (this does not change the presence of the minor of H rooted in r). Eventually, we either obtain a model of H in G rooted in r, or a tree decomposition of bounded width; in the latter case, we decide the presence of H in G rooted in r by using dynamic programming (or Courcelle's result, since the problem can be expressed in MSOL).

1 Irrelevant vertices assuming a clique minor

Let r be an assignment of k roots in G to vertices of a graph H. Suppose μ is a model of K_{m} in G. We say that μ is separated from the roots if there exists a separation (A, B) of G of order less than k and $x \in V\left(K_{m}\right)$ such that

- $r(u) \subseteq V(A)$ for each $u \in V(H)$ and
- $\mu(x) \subseteq B-V(A)$.

We use the following basic result, whose proof is analogous to the proof of Theorem 2 in Combinatorics and Graph Theory III lecture notes.

Theorem 3. Let G and H be graphs and let r be an assignment of at most k roots in G to vertices of a graph H. Let $m=2 k+|H|$, and suppose we are given a model μ of K_{m} in G. If μ is not separated from the roots, then we can in time $O\left(|G|^{2}\right)$ find a model of H in G rooted in r.

The basic intuition is that since μ cannot be separated from the roots, we can link the roots to μ by disjoint paths and find the minor of H inside the large clique minor.

This in particular gives us the following algorithm.
Algorithm 4. Input: A graph G, an assignment r of k roots in G to vertices in H, a model of K_{m} in G for $m=3 k+|H|$.

Output:

- A model of H in G rooted in r, or
- an irrelevant vertex $v \in V(G)$.

Time complexity: $O\left(|G|^{2}\right)$.
This algorithm works as follows. Using Dinitz algorithm, we either find a separation (A, B) of G of order less than k such that all roots are in A, there exists a vertex $x \in V\left(K_{m}\right)$ such that $\mu(x) \subseteq B-V(A)$, and subject to these conditions B is minimal, or prove that no such separation exists. In the latter case, we can find H as a minor in G rooted in r by Theorem 3. Otherwise, we claim that any vertex $v \in V(\mu(x))$ is irrelevant.

Indeed, suppose G contains H as a minor rooted in r, and let ν be its model. The intersection of ν with B gives us a minor of some graph H^{\prime} rooted in r^{\prime}, where $r^{\prime}(u) \subseteq V(A \cap B)$ for each $u \in V\left(H^{\prime}\right)$. Let $k^{\prime}=|V(A \cap B)|$ and note that $k^{\prime} \leq k-1$. Let K be the subclique of K_{m} consisting of the vertices y such that $V(\mu(y)) \cap(V(A \cap B) \cup\{v\})=\emptyset$; clearly $|V(K)| \geq$
$|H|+2 k>\left|H^{\prime}\right|+2 k^{\prime}$. Furthermore, since $\mu(x)$ is contained in $B-V(A)$ and G contains an edge between $\mu(x)$ and $\mu(y)$ for each $y \in V\left(K_{m}\right) \backslash\{x\}$, we have $\mu(y) \subseteq B$ for each $y \in V(K)$. The minimality of B implies that there is no separation (C, D) of B of order at most k^{\prime} such that $D \neq B, A \cap B \subseteq C$ and $\mu(y) \subseteq C-V(D)$ for some $y \in V(K)$. Therefore, the restriction of μ to K cannot be separated from the roots in $B-v$, and by Theorem 3, H^{\prime} is a minor of $B-v$ rooted in r^{\prime}; let ν^{\prime} be its model. Replacing $\nu \cap B$ by ν^{\prime} in ν gives us a minor of H rooted in r in $G-v$, as required.

Let us now give the first application of Algorithm 4. We use the following fact: There exists a function b such that for each m, each graph G of average degree at least $b(m)$ contains a minor of K_{m}; moreover, the model of this minor can be found in time $O\left(|G|^{2}\right)$. For a proof, see Combinatorics and Graph Theory III lecture notes. Combining this with Algorithm4, we obtain the following result.

Algorithm 5. Input: A graph G of average degree more than $b(3 k+|H|)$, an assignment r of k roots in G to vertices in H.

Output: A model of H in G rooted in r, or an irrelevant vertex $v \in V(G)$. Time complexity: $O\left(|G|^{2}\right)$.

Hence, we can restrict ourselves to graphs of bounded average degree (and in particular, this is why we can ignore the number of edges in the time complexity of the algorithm).

2 Walls

A elementary wall W_{n} is obtained from an $n \times n$ grid G_{n} by deleting every even vertical edge in the first, third, fifth, ... row and every odd vertical edge in the second, fourth, ... row. A wall of height n is a subdivision of W_{n}.

Imagine a wall W drawn in the plane in a natural way. For two vertices v_{1} and v_{2} of W, let $d\left(v_{1}, v_{2}\right)$ denote the minimum number of intersections of a curve from v_{1} to v_{2} with W. Note that we can define a respectful tangle \mathcal{T} in W in the natural way (a side of the separation is small if it does not contain any row path of $W)$, and then $d\left(v_{1}, v_{2}\right)=\Theta\left(d_{\mathcal{T}}\left(v_{1}, v_{2}\right)\right)$. Hence, using the results from the last lecture and homework assignment, we have the following. If $W \subset G$, a W-path in G is a path in G intersecting W exactly in its endpoints.

Lemma 6. For every m, there exists d_{m} as follows. Suppose $W \subset G$ is a wall and G contains $\binom{m}{2}$ disjoint W-paths such that any two endpoints x and y of these paths satisfy $d(x, y) \geq d_{m}$. Then G contains K_{m} as a minor, and the model of this minor can be found in time $O\left(|G|^{2}\right)$.

The perimeter of a wall W^{\prime} is the cycle bounding its outer face, and the interior is everything not on the perimeter. Consider a subwall W^{\prime} of W with perimeter C. A cross over W^{\prime} is a pair of disjoint paths P_{1} and P_{2} whose ends are branch vertices belonging to C, the ends of P_{1} are in different components of $C-V\left(P_{2}\right)$, and $\left(P_{1} \cup P_{2}\right) \cap W \subseteq W^{\prime}$. Another result from the homework assignment implies the following.

Lemma 7. For every m, there exists d_{m}^{\prime} as follows. Suppose $W \subset G$ is a wall and $W_{1}, \ldots, W_{m^{4}}$ are subwalls of W such that $d\left(W_{i}, W_{j}\right) \geq d_{m}^{\prime}$ for all distinct i and j. If G contains pairwise disjoint crosses over $W_{1}, \ldots, W_{m^{4}}$, then G contains K_{m} as a minor, and the model of this minor can be found in time $O\left(|G|^{2}\right)$.

A vertex $v \in V(G)$ is (l, s)-central over W if there exist vertices $w_{1}, \ldots, w_{l} \in$ $V(W)$ and paths from v to w_{1}, \ldots, w_{l} intersecting only in v and disjoint from W except for their endpoints such that $d\left(w_{i}, w_{j}\right) \geq s$ for $1 \leq i<j \leq l$.

Lemma 8. For every m, there exist l and s as follows. Suppose $W \subset G$ is a wall. If G contains $\binom{m}{2}$ vertices that are (l, s)-central over W, then G contains K_{m} as a minor, and the model of this minor can be found in time $O\left(|G|^{2}\right)$.
Proof. Let $q=\binom{m}{2}$, and suppose v_{1}, \ldots, v_{q} are distinct (l, s)-central vertices over W. We can assume $v_{1}, \ldots, v_{q} \notin V(W)$: Otherwise, instead of W, take a subwall of height $n-2 q$ avoiding v_{1}, \ldots, v_{q}, extending the paths from the definition of centrality along the deleted parts of the wall if necessary, and noting that this decreases the distance between the endpoints by at most $4 q$.

We will inductively construct disjoint W-paths P_{1}, \ldots, P_{q} with endpoints pairwise at distance at least $s / 2$. If we succeed, we then conclude the argument by Lemma 6. Suppose we have already found the paths P_{1}, \ldots, P_{t-1}. We will maintain the invariant that $V\left(P_{1} \cap \ldots \cap P_{t}\right) \cap\left\{v_{t+1}, \ldots, v_{q}\right\}=\emptyset$. Let Q_{1}, \ldots, Q_{l-q} be paths from v_{t} to $w_{1}, \ldots, w_{l-q} \in V(W)$ intersecting only in v_{t} and disjoint from W except for their endpoints such that $d\left(w_{i}, w_{j}\right) \geq s$ for $1 \leq i<j \leq l-q$, and not containing the central vertices other than v_{t}; such paths exist by the (l, s)-centrality of v_{t}.

Suppose first there exists $i \leq t-1$ such that P_{i} intersects at least $2 t$ of the paths Q_{1}, \ldots, Q_{l-q}. For these paths, let $L_{1}, \ldots, L_{2 t}$ be their segment from the last intersection with P_{i} to W, in the order of their intersections with P_{i}. For $j=1, \ldots, t$, let P_{j}^{\prime} be the path consisting of $L_{2 j-1}, L_{2 j}$, and a path between them in P_{i}. The distances between the ends of these paths in W are at least s, and thus we can use $P_{1}^{\prime}, \ldots, P_{t}^{\prime}$ as the t chosen paths.

Hence, we can assume that each of the paths P_{1}, \ldots, P_{t-1} intersects less than $2 t$ of the paths Q_{1}, \ldots, Q_{l-q}. Since $l \gg t, q$, we can assume the paths
$Q_{1}, \ldots, Q_{2 t}$ are disjoint from P_{1}, \ldots, P_{t-1}. Since the distance between w_{1}, $\ldots, w_{2 t}$ is at least s, for $j=1, \ldots, t-1$, there is at most one of these points at distance less than $s / 2$ from each end of P_{j}. Hence, we can assume w_{1} and w_{2} are at distance at least $s / 2$ from all these ends, and we can set $P_{t}=Q_{1} \cup Q_{2}$.

A subwall W^{\prime} of W is non-dividing if there exists a W-path with one end in the interior of W^{\prime} and the other end not in W^{\prime}. For $F \supseteq W$, a W-bridge of F is a subgraph of F consisting either of an edge of $E(F) \backslash E(W)$ with both ends in W, or of a connected component of $F-V(W)$ and the edges from this component to W.

Lemma 9. For every l, m, and s, there exists k and $d_{m}^{\prime \prime}$ as follows. Suppose $W \subset G$ is a wall and W_{1}, \ldots, W_{k} are subwalls of W such that $d\left(W_{i}, W_{j}\right) \geq$ $d_{m}^{\prime \prime}$ for all distinct i and j. If all the subwalls are non-dividing, then either G contains an (l, s)-central vertex or K_{m} as a minor. Moreover, the vertex or the model of such a minor can be found in time $O\left(|G|^{2}\right)$.

Proof. We choose $k, d_{m}^{\prime \prime} \gg a \gg l, m, s$.
Let F be a minimal subgraph of $G-E(W)$ such that for $i=1, \ldots, k$, F contains a W-path from the interior of W_{i} to $W-V\left(W_{i}\right)$. Consider a W-bridge F^{\prime} of F. The minimality of F implies F^{\prime} is a tree. Moreover, if F^{\prime} has at least three leaves, then each of them is in a distinct subwall among W_{1}, \ldots, W_{k}, and F^{\prime} is a subdivision of a star. Consequently, if a vertex $v \in V(F) \backslash V(W)$ has degree at least l in F, then v is (l, s)-central over W. Consider a vertex $v \in V(F \cap W)$. If v is contained in at least two W-bridges of F, then the minimality of F implies all of them are paths with the other end in a distinct subwall among W_{1}, \ldots, W_{k}, and thus again, if v has degree at least l in F, then it is (l, s)-central over W.

Hence, we can assume F has maximum degree less than l, and every W bridge of F intersects W in less than l vertices. Therefore, every W-bridge intersects less than l^{2} other W-bridges, and thus F has disjoint W-bridges F_{1}, \ldots, F_{a}. By the minimality of F, we can assume that for $i=1, \ldots, a, F_{i}$ is the only W-bridge containing a path Q_{i} from the interior of W_{i} to a vertex of $V(W) \backslash V\left(W_{i}\right)$. Note this implies Q_{i} is the only path among Q_{1}, \ldots, Q_{a} intersecting the interior of W_{i}. Let s_{i} denote the end of Q_{i} in W_{i}, and t_{i} the other end. Let us distinguish several cases.

- For at least $a_{1}=3\binom{m}{2}$ of the paths, say for $Q_{1}, \ldots, Q_{a_{1}}$, we have $d\left(s_{i}, t_{i}\right) \geq 2 d_{m}$ and $d\left(t_{j}, t_{j}\right) \geq 2 d_{m}$ for $i \neq j$. For each i, there exists at most two indices j such that $d\left(s_{i}, t_{j}\right)<d_{m}$ or $d\left(s_{j}, t_{i}\right)<d_{m}$. Thus, in the auxiliary graph where we join such indices i and j, we have an
independent set of size at least $a_{1} / 3$; hence, we can assume $d\left(s_{i}, t_{j}\right) \geq$ d_{m} and $d\left(s_{j}, t_{i}\right) \geq d_{m}$ for $1 \leq i \leq j \leq a_{1} / 3$. By Lemma 6, we obtain a minor of K_{m} in G.
- For at least $a_{2}=m^{4}$ of the paths, say for $Q_{1}, \ldots, Q_{a_{2}}$, we have $d\left(s_{i}, t_{i}\right) \leq d_{m}^{\prime \prime} / 10$. Enlarging $W_{1}, \ldots, W_{a_{2}}$, we obtain subwalls of W at distance at least d_{m}^{\prime} from one another and with a cross over each of them. Lemma 7 then gives a minor of K_{m} in G.
- For $a_{3}=3\binom{m}{2}$, there exists an index $i_{0}\left(\right.$ say $\left.i_{0}=1\right)$ and at least a_{3} of the paths (say $Q_{1}, \ldots, Q_{a_{3}}$) such that $d\left(t_{1}, t_{i}\right) \leq 2 d_{m}$ for $1 \leq i \leq a_{3}$. Let C be the part of W at distance at most $2 d_{m}$ from t_{1}. There exists a subwall W^{\prime} of W avoiding C such that the distances in W^{\prime} are decreased by at most $16 d_{m}$ compared to the distances in W^{\prime}. Since C has maximum degree at most three, we can find $a_{3} / 3$ disjoint paths in C joining vertices among $\left\{t_{1}, \ldots, t_{a_{3}}\right\}$. Combining these paths with some of Q_{1}, $\ldots, Q_{a_{3}}$ and applying Lemma 6, we obtain a minor of K_{m} in G.

For $a \geq a_{2}+a_{1} a_{3}$, at least one of these cases happens.
We now iterate Lemma 9; If an (l, s)-central vertex v is returned, we replace G by $(G-v) \cup W$ and repeat. Note that v is not (l, s)-central in $(G-v) \cup W$, since v has degree at most three in this graph and $l \geq 4$. If we perform $\binom{m}{2}$ iterations, we have $\binom{m}{2}(l, s)$-central vertices, and we obtain a minor of K_{m} in G by Lemma 8 .

Corollary 10. For every m, there exists k_{0} and $d_{m}^{\prime \prime}$ as follows. Suppose $W \subset G$ is a wall for $k \geq k^{\prime}, W_{1}, \ldots, W_{k}$ are subwalls of W such that $d\left(W_{i}, W_{j}\right) \geq d_{m}^{\prime \prime}$ for all distinct i and j. In time $O\left(|G|^{2}\right)$, we can either find a model of K_{m} in G, or a set X of less than $\binom{m}{2}$ vertices of G such that all but less than k_{0} of the walls W_{1}, \ldots, W_{k} are dividing in $(G-X) \cup W$.

Let W^{\prime} be a wall with perimeter C in G. The compass of W^{\prime} is C together with the C-bridge of G containing the interior of W. We say that a wall W^{\prime} in G is flat if the compass of W^{\prime} does not contain a cross over W^{\prime}.

Since W_{n} has maximum degree three, if G contains W_{n} as a minor, then it contains a wall of height n as a subgraph. By the grid theorem, every graph of sufficiently large treewidth contains a wall of large height. In this wall, we can find many subwalls that are far apart, and by Corollary 10, we can find a set X of less than $\binom{m}{2}$ vertices such that many of the subwalls are dividing. Note that compasses of disjoint dividing walls are disjoint. Hence, applying again Lemma 12, we either obtain a large clique minor or at least $\binom{m}{2}$ flat subwalls, and at least one of them is disjoint from X. This gives
the following important Flat Grid Theorem (also called the Weak Structure Theorem).
Theorem 11. For all m and h, there exists t as follows. If G has treewidth at least t, then in time $O\left(|G|^{2}\right)$, we can either find a model of K_{m} in G, or a set X of less than $\binom{m}{2}$ vertices of G such that $G-X$ contains a flat wall of height h.

3 Algorithm

Algorithm 2 now works as follows. If G has treewidth at most $f(|H|, k)$, we are done (the corresponding tree decomposition can be found efficiently). Otherwise, we apply Theorem 11 to find either a model of K_{m} in G, or a set X of less than $\binom{m}{2}$ vertices and a large flat wall in $G-X$. In the former case, we finish by Algorithm 4 . In the latter case, one can prove that a "sufficiently generic" part of the flat wall contains an irrelevant vertex (however, the proof is very complicated!).

For the intuition, flat walls are indeed "almost planar" in the following sense. Let G be a graph and let Ω be a cyclic sequence of vertices of G. Then (G, Ω) is a society. A cross in a society consists of two disjoint paths P_{1} and P_{2} in G such that the labels of the ends x_{1} and y_{1} of P_{1} and x_{2} and y_{2} of P_{2} can be chosen so that they appear in Ω in order x_{1}, x_{2}, y_{1}, and y_{2}. A society is a cell if $|\Omega| \leq 3$.

A society $\left(G_{1}, \Omega_{1}\right)$ is a subsociety of (G, Ω) if G_{1} is a subgraph of G, every edge of G_{1} incident with $V\left(G_{1}\right) \backslash \Omega_{1}$ belongs to G_{1}, and $G_{1} \cap \Omega \subseteq$ Ω_{1}. Two subsocieties $\left(G_{1}, \Omega_{1}\right)$ and $\left(G_{2}, \Omega_{2}\right)$ are disjoint if $G_{1} \cap G_{2}=\Omega_{1} \cap$ Ω_{2}. A segregation of (G, Ω) is a set $\left\{\left(G_{i}, \Omega_{i}\right): i=1, \ldots, n\right\}$ of its disjoint subsocieties such that $G=G_{1} \cup \ldots \cup G_{n}$. An arrangement of the segregation in an disk Δ is a function α such that $\alpha\left(G_{i}, \Omega_{i}\right)$ is a disk $\Delta_{i} \subseteq \Delta$ and for each $v \in \Omega_{i}, \alpha(v)$ is a distinct point in Δ contained in the boundary of Δ_{i}, such that

- for each i, the order of the points $\alpha(v)$ for $v \in \Omega_{i}$ in the boundary of Δ_{i} matches the order of the vertices v in Ω_{i}.
- for distinct i and j, the disks Δ_{i} and Δ_{j} intersect exactly in the points $\alpha(v)$ for $v \in \Omega_{1} \cap \Omega_{2}$, and
- for each $v \in \Omega$, the point $\alpha(v)$ is contained in the boundary of Δ and their order in the boundary matches the order of the vertices v in Ω.
A society is rural if it has a segregation into cells with an arrangement in a disk. We need the following result, from the next homework assignment.

Lemma 12. A non-rural society (G, Ω) contains a cross. Moreover, either the cross or the segregation and the arrangement witnessing the rurality of (G, Ω) can be found in time $|G|^{2}$.

With regards to the flat walls, Lemma 12 is applied with G being the compass of the wall and Ω consisting of the branch vertices of the perimeter of the wall.

