
Our goal in this lecture is, for any fixed graph H and an integer k, to
obtain the following algorithm.

Algorithm 1. Input: A graph G, an assignment r of k roots in G to vertices
in H.

Output: A model of H in G rooted in r, or correctly decides no such
model exists.

Time complexity: O(|G|3).

Note that the fact that H and k are fixed is necessary; for example, if k
is part of the input, deciding for k pairs of vertices in G whether they are
joined by pairwise disjoint paths is NP-complete.

One of the main results of the Graph Minors series is that every minor-
closed class G is characterized by a finite number of forbidden minors H1,
. . . , Hm. Hence, we can decide whether G ∈ G in time O(|G|3) by using
Algorithm 1 for H1, . . . , Hm (for many minor-closed classes, the list of for-
bidden minors is not explicitly known, though—in that case we know such
an algorithm exists, but we cannot actually construct it).

For fixed H and r, we say that a vertex v ∈ V (G) distinct from all the
roots is irrelevant if the following holds: If H has a minor in G rooted in r,
then H also has a minor in G − v rooted in r. Algorithm 1 easily follows
from the following algorithm for some function f .

Algorithm 2. Input: A graph G, an assignment r of k roots in G to vertices
in H.

Output:

• A model of H in G rooted in r, or

• a tree decomposition of G of width at most f(|H|, k), or

• an irrelevant vertex v ∈ V (G).

Time complexity: O(|G|2).

To obtain Algorithm 1, we repeatedly run Algorithm 2, deleting the irrel-
evant vertices as long as it returns them (this does not change the presence
of the minor of H rooted in r). Eventually, we either obtain a model of H in
G rooted in r, or a tree decomposition of bounded width; in the latter case,
we decide the presence of H in G rooted in r by using dynamic programming
(or Courcelle’s result, since the problem can be expressed in MSOL).
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1 Irrelevant vertices assuming a clique minor

Let r be an assignment of k roots in G to vertices of a graph H. Suppose
µ is a model of Km in G. We say that µ is separated from the roots if there
exists a separation (A,B) of G of order less than k and x ∈ V (Km) such that

• r(u) ⊆ V (A) for each u ∈ V (H) and

• µ(x) ⊆ B − V (A).

We use the following basic result, whose proof is analogous to the proof
of Theorem 2 in Combinatorics and Graph Theory III lecture notes.

Theorem 3. Let G and H be graphs and let r be an assignment of at most
k roots in G to vertices of a graph H. Let m = 2k+ |H|, and suppose we are
given a model µ of Km in G. If µ is not separated from the roots, then we
can in time O(|G|2) find a model of H in G rooted in r.

The basic intuition is that since µ cannot be separated from the roots,
we can link the roots to µ by disjoint paths and find the minor of H inside
the large clique minor.

This in particular gives us the following algorithm.

Algorithm 4. Input: A graph G, an assignment r of k roots in G to vertices
in H, a model of Km in G for m = 3k + |H|.

Output:

• A model of H in G rooted in r, or

• an irrelevant vertex v ∈ V (G).

Time complexity: O(|G|2).

This algorithm works as follows. Using Dinitz algorithm, we either find
a separation (A,B) of G of order less than k such that all roots are in A,
there exists a vertex x ∈ V (Km) such that µ(x) ⊆ B − V (A), and subject
to these conditions B is minimal, or prove that no such separation exists. In
the latter case, we can find H as a minor in G rooted in r by Theorem 3.
Otherwise, we claim that any vertex v ∈ V (µ(x)) is irrelevant.

Indeed, suppose G contains H as a minor rooted in r, and let ν be its
model. The intersection of ν with B gives us a minor of some graph H ′ rooted
in r′, where r′(u) ⊆ V (A ∩B) for each u ∈ V (H ′). Let k′ = |V (A ∩B)| and
note that k′ ≤ k − 1. Let K be the subclique of Km consisting of the
vertices y such that V (µ(y)) ∩ (V (A ∩ B) ∪ {v}) = ∅; clearly |V (K)| ≥
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|H|+ 2k > |H ′|+ 2k′. Furthermore, since µ(x) is contained in B−V (A) and
G contains an edge between µ(x) and µ(y) for each y ∈ V (Km) \ {x}, we
have µ(y) ⊆ B for each y ∈ V (K). The minimality of B implies that there is
no separation (C,D) of B of order at most k′ such that D 6= B, A ∩ B ⊆ C
and µ(y) ⊆ C − V (D) for some y ∈ V (K). Therefore, the restriction of µ to
K cannot be separated from the roots in B − v, and by Theorem 3, H ′ is a
minor of B − v rooted in r′; let ν ′ be its model. Replacing ν ∩ B by ν ′ in ν
gives us a minor of H rooted in r in G− v, as required.

Let us now give the first application of Algorithm 4. We use the following
fact: There exists a function b such that for each m, each graph G of average
degree at least b(m) contains a minor of Km; moreover, the model of this
minor can be found in time O(|G|2). For a proof, see Combinatorics and
Graph Theory III lecture notes. Combining this with Algorithm 4, we obtain
the following result.

Algorithm 5. Input: A graph G of average degree more than b(3k + |H|),
an assignment r of k roots in G to vertices in H.

Output: A model of H in G rooted in r, or an irrelevant vertex v ∈ V (G).
Time complexity: O(|G|2).

Hence, we can restrict ourselves to graphs of bounded average degree
(and in particular, this is why we can ignore the number of edges in the time
complexity of the algorithm).

2 Walls

A elementary wall Wn is obtained from an n × n grid Gn by deleting every
even vertical edge in the first, third, fifth, . . . row and every odd vertical edge
in the second, fourth, . . . row. A wall of height n is a subdivision of Wn.

Imagine a wall W drawn in the plane in a natural way. For two vertices
v1 and v2 of W , let d(v1, v2) denote the minimum number of intersections of
a curve from v1 to v2 with W . Note that we can define a respectful tangle
T in W in the natural way (a side of the separation is small if it does not
contain any row path of W ), and then d(v1, v2) = Θ(dT (v1, v2)). Hence,
using the results from the last lecture and homework assignment, we have
the following. If W ⊂ G, a W -path in G is a path in G intersecting W
exactly in its endpoints.

Lemma 6. For every m, there exists dm as follows. Suppose W ⊂ G is a
wall and G contains

(
m
2

)
disjoint W -paths such that any two endpoints x and

y of these paths satisfy d(x, y) ≥ dm. Then G contains Km as a minor, and
the model of this minor can be found in time O(|G|2).
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The perimeter of a wall W ′ is the cycle bounding its outer face, and the
interior is everything not on the perimeter. Consider a subwall W ′ of W
with perimeter C. A cross over W ′ is a pair of disjoint paths P1 and P2

whose ends are branch vertices belonging to C, the ends of P1 are in different
components of C−V (P2), and (P1∪P2)∩W ⊆ W ′. Another result from the
homework assignment implies the following.

Lemma 7. For every m, there exists d′m as follows. Suppose W ⊂ G is a
wall and W1, . . . , Wm4 are subwalls of W such that d(Wi,Wj) ≥ d′m for all
distinct i and j. If G contains pairwise disjoint crosses over W1, . . . , Wm4,
then G contains Km as a minor, and the model of this minor can be found
in time O(|G|2).

A vertex v ∈ V (G) is (l, s)-central overW if there exist vertices w1, . . . , wl ∈
V (W ) and paths from v to w1, . . . , wl intersecting only in v and disjoint from
W except for their endpoints such that d(wi, wj) ≥ s for 1 ≤ i < j ≤ l.

Lemma 8. For every m, there exist l and s as follows. Suppose W ⊂ G
is a wall. If G contains

(
m
2

)
vertices that are (l, s)-central over W , then G

contains Km as a minor, and the model of this minor can be found in time
O(|G|2).

Proof. Let q =
(
m
2

)
, and suppose v1, . . . , vq are distinct (l, s)-central vertices

over W . We can assume v1, . . . , vq 6∈ V (W ): Otherwise, instead of W , take
a subwall of height n− 2q avoiding v1, . . . , vq, extending the paths from the
definition of centrality along the deleted parts of the wall if necessary, and
noting that this decreases the distance between the endpoints by at most 4q.

We will inductively construct disjoint W -paths P1, . . . , Pq with endpoints
pairwise at distance at least s/2. If we succeed, we then conclude the argu-
ment by Lemma 6. Suppose we have already found the paths P1, . . . , Pt−1.
We will maintain the invariant that V (P1∩ . . .∩Pt)∩{vt+1, . . . , vq} = ∅. Let
Q1, . . . , Ql−q be paths from vt to w1, . . . , wl−q ∈ V (W ) intersecting only in
vt and disjoint from W except for their endpoints such that d(wi, wj) ≥ s for
1 ≤ i < j ≤ l− q, and not containing the central vertices other than vt; such
paths exist by the (l, s)-centrality of vt.

Suppose first there exists i ≤ t − 1 such that Pi intersects at least 2t of
the paths Q1, . . . , Ql−q. For these paths, let L1, . . . , L2t be their segment
from the last intersection with Pi to W , in the order of their intersections
with Pi. For j = 1, . . . , t, let P ′j be the path consisting of L2j−1, L2j, and a
path between them in Pi. The distances between the ends of these paths in
W are at least s, and thus we can use P ′1, . . . , P ′t as the t chosen paths.

Hence, we can assume that each of the paths P1, . . . , Pt−1 intersects less
than 2t of the paths Q1, . . . , Ql−q. Since l � t, q, we can assume the paths
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Q1, . . . , Q2t are disjoint from P1, . . . , Pt−1. Since the distance between w1,
. . . , w2t is at least s, for j = 1, . . . , t − 1, there is at most one of these
points at distance less than s/2 from each end of Pj. Hence, we can assume
w1 and w2 are at distance at least s/2 from all these ends, and we can set
Pt = Q1 ∪Q2.

A subwall W ′ of W is non-dividing if there exists a W -path with one end
in the interior of W ′ and the other end not in W ′. For F ⊇ W , a W -bridge
of F is a subgraph of F consisting either of an edge of E(F ) \ E(W ) with
both ends in W , or of a connected component of F − V (W ) and the edges
from this component to W .

Lemma 9. For every l, m, and s, there exists k and d′′m as follows. Suppose
W ⊂ G is a wall and W1, . . . , Wk are subwalls of W such that d(Wi,Wj) ≥
d′′m for all distinct i and j. If all the subwalls are non-dividing, then either
G contains an (l, s)-central vertex or Km as a minor. Moreover, the vertex
or the model of such a minor can be found in time O(|G|2).

Proof. We choose k, d′′m � a� l,m, s.
Let F be a minimal subgraph of G − E(W ) such that for i = 1, . . . , k,

F contains a W -path from the interior of Wi to W − V (Wi). Consider a
W -bridge F ′ of F . The minimality of F implies F ′ is a tree. Moreover, if F ′

has at least three leaves, then each of them is in a distinct subwall among
W1, . . . , Wk, and F ′ is a subdivision of a star. Consequently, if a vertex
v ∈ V (F ) \ V (W ) has degree at least l in F , then v is (l, s)-central over W .
Consider a vertex v ∈ V (F ∩W ). If v is contained in at least two W -bridges
of F , then the minimality of F implies all of them are paths with the other
end in a distinct subwall among W1, . . . , Wk, and thus again, if v has degree
at least l in F , then it is (l, s)-central over W .

Hence, we can assume F has maximum degree less than l, and every W -
bridge of F intersects W in less than l vertices. Therefore, every W -bridge
intersects less than l2 other W -bridges, and thus F has disjoint W -bridges
F1, . . . , Fa. By the minimality of F , we can assume that for i = 1, . . . , a, Fi

is the only W -bridge containing a path Qi from the interior of Wi to a vertex
of V (W ) \ V (Wi). Note this implies Qi is the only path among Q1, . . . , Qa

intersecting the interior of Wi. Let si denote the end of Qi in Wi, and ti the
other end. Let us distinguish several cases.

• For at least a1 = 3
(
m
2

)
of the paths, say for Q1, . . . , Qa1 , we have

d(si, ti) ≥ 2dm and d(tj, tj) ≥ 2dm for i 6= j. For each i, there exists
at most two indices j such that d(si, tj) < dm or d(sj, ti) < dm. Thus,
in the auxiliary graph where we join such indices i and j, we have an
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independent set of size at least a1/3; hence, we can assume d(si, tj) ≥
dm and d(sj, ti) ≥ dm for 1 ≤ i ≤ j ≤ a1/3. By Lemma 6, we obtain a
minor of Km in G.

• For at least a2 = m4 of the paths, say for Q1, . . . , Qa2 , we have
d(si, ti) ≤ d′′m/10. Enlarging W1, . . . , Wa2 , we obtain subwalls of W
at distance at least d′m from one another and with a cross over each of
them. Lemma 7 then gives a minor of Km in G.

• For a3 = 3
(
m
2

)
, there exists an index i0 (say i0 = 1) and at least a3 of the

paths (say Q1, . . . , Qa3) such that d(t1, ti) ≤ 2dm for 1 ≤ i ≤ a3. Let C
be the part ofW at distance at most 2dm from t1. There exists a subwall
W ′ of W avoiding C such that the distances in W ′ are decreased by at
most 16dm compared to the distances in W ′. Since C has maximum
degree at most three, we can find a3/3 disjoint paths in C joining
vertices among {t1, . . . , ta3}. Combining these paths with some of Q1,
. . . , Qa3 and applying Lemma 6, we obtain a minor of Km in G.

For a ≥ a2 + a1a3, at least one of these cases happens.

We now iterate Lemma 9: If an (l, s)-central vertex v is returned, we
replace G by (G − v) ∪W and repeat. Note that v is not (l, s)-central in
(G− v)∪W , since v has degree at most three in this graph and l ≥ 4. If we
perform

(
m
2

)
iterations, we have

(
m
2

)
(l, s)-central vertices, and we obtain a

minor of Km in G by Lemma 8.

Corollary 10. For every m, there exists k0 and d′′m as follows. Suppose
W ⊂ G is a wall for k ≥ k′, W1, . . . , Wk are subwalls of W such that
d(Wi,Wj) ≥ d′′m for all distinct i and j. In time O(|G|2), we can either find
a model of Km in G, or a set X of less than

(
m
2

)
vertices of G such that all

but less than k0 of the walls W1, . . . , Wk are dividing in (G−X) ∪W .

Let W ′ be a wall with perimeter C in G. The compass of W ′ is C together
with the C-bridge of G containing the interior of W . We say that a wall W ′

in G is flat if the compass of W ′ does not contain a cross over W ′.
Since Wn has maximum degree three, if G contains Wn as a minor, then

it contains a wall of height n as a subgraph. By the grid theorem, every
graph of sufficiently large treewidth contains a wall of large height. In this
wall, we can find many subwalls that are far apart, and by Corollary 10, we
can find a set X of less than

(
m
2

)
vertices such that many of the subwalls are

dividing. Note that compasses of disjoint dividing walls are disjoint. Hence,
applying again Lemma 12, we either obtain a large clique minor or at least(
m
2

)
flat subwalls, and at least one of them is disjoint from X. This gives

6



the following important Flat Grid Theorem (also called the Weak Structure
Theorem).

Theorem 11. For all m and h, there exists t as follows. If G has treewidth
at least t, then in time O(|G|2), we can either find a model of Km in G, or
a set X of less than

(
m
2

)
vertices of G such that G −X contains a flat wall

of height h.

3 Algorithm

Algorithm 2 now works as follows. If G has treewidth at most f(|H|, k),
we are done (the corresponding tree decomposition can be found efficiently).
Otherwise, we apply Theorem 11 to find either a model of Km in G, or a set
X of less than

(
m
2

)
vertices and a large flat wall in G−X. In the former case,

we finish by Algorithm 4. In the latter case, one can prove that a “sufficiently
generic” part of the flat wall contains an irrelevant vertex (however, the proof
is very complicated!).

For the intuition, flat walls are indeed “almost planar” in the following
sense. Let G be a graph and let Ω be a cyclic sequence of vertices of G. Then
(G,Ω) is a society. A cross in a society consists of two disjoint paths P1 and
P2 in G such that the labels of the ends x1 and y1 of P1 and x2 and y2 of P2

can be chosen so that they appear in Ω in order x1, x2, y1, and y2. A society
is a cell if |Ω| ≤ 3.

A society (G1,Ω1) is a subsociety of (G,Ω) if G1 is a subgraph of G,
every edge of G1 incident with V (G1) \ Ω1 belongs to G1, and G1 ∩ Ω ⊆
Ω1. Two subsocieties (G1,Ω1) and (G2,Ω2) are disjoint if G1 ∩ G2 = Ω1 ∩
Ω2. A segregation of (G,Ω) is a set {(Gi,Ωi) : i = 1, . . . , n} of its disjoint
subsocieties such that G = G1∪ . . .∪Gn. An arrangement of the segregation
in an disk ∆ is a function α such that α(Gi,Ωi) is a disk ∆i ⊆ ∆ and for
each v ∈ Ωi, α(v) is a distinct point in ∆ contained in the boundary of ∆i,
such that

• for each i, the order of the points α(v) for v ∈ Ωi in the boundary of
∆i matches the order of the vertices v in Ωi.

• for distinct i and j, the disks ∆i and ∆j intersect exactly in the points
α(v) for v ∈ Ω1 ∩ Ω2, and

• for each v ∈ Ω, the point α(v) is contained in the boundary of ∆ and
their order in the boundary matches the order of the vertices v in Ω.

A society is rural if it has a segregation into cells with an arrangement in a
disk. We need the following result, from the next homework assignment.
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Lemma 12. A non-rural society (G,Ω) contains a cross. Moreover, either
the cross or the segregation and the arrangement witnessing the rurality of
(G,Ω) can be found in time |G|2.

With regards to the flat walls, Lemma 12 is applied with G being the
compass of the wall and Ω consisting of the branch vertices of the perimeter
of the wall.
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