A wall of height h :

Theorem (A reformulation of the grid theorem)

For every h, there exists t such that every graph of treewidth at least t contains a wall of height h as a subgraph.

Proof.

Grid minor \Rightarrow unsubdivided wall minor \Rightarrow wall subgraph.

A W-bridge of G is

- an edge of $E(G) \backslash E(W)$ with both ends in W, or
- a component of $G-V(W)$ together with the edges to W.

- The compass $C(W)$ of W : the perimeter K of $W+$ the K-bridge containing the interior of W.
- A subwall W of a wall Z is dividing if $K(W) \cap Z=W$.
- A cross over W : Disjoint paths $P_{1}, P_{2} \subset C(W)$ joining branch vertices of K s.t.
- the ends of P_{1} are in different components of $K-V\left(P_{2}\right)$, and
- $\left(P_{1} \cup P_{2}\right) \cap Z \subset W$.
dividing:

non - dividing:

Definition

A wall W is flat if there is no cross over W.
Compasses of flat walls are "almost planar", see homework:

Theorem (The Flat Wall Theorem)

For every h and m, there exists t such that for every graph G of treewidth at least t, either

- G contains K_{m} as a minor, or
- there exists a set X of less than $\binom{m}{2}$ vertices and a flat wall of height h in $G-X$.

Application: Testing the presence of a fixed graph H as a minor.
For $m=|V(H)|$:

- A minor of $H \subseteq K_{m}$ in G, or
- small treewidth, or
- a large flat wall after removal of $<\binom{m}{2}$ vertices.

Claim: In the flat wall, one can find a vertex v such that $H \preceq G$ if and only if $H \preceq G-v$.

For $u, v \in V(W)$, let $d(u, v)=$ the minimum number of intersections of a closed curve from u to v with W.

Observation

Let \mathcal{T} consist of separations (A, B) of order at most $h / 2$ where A does not contain any row of W. Then \mathcal{T} is a respectful tangle and $d(u, v)=\Theta\left(d_{\mathcal{T}}(u, v)\right)$.

A W-path intersects W exactly in its ends.

Lemma (Jump Lemma)

$(\forall m)\left(\exists d_{m}\right):\binom{m}{2}$ disjoint W-paths with ends in $Y \subset V(W)$,

$$
d\left(y_{1}, y_{2}\right) \geq d_{m}
$$

for all $y_{1}, y_{2} \in Y \Rightarrow K_{m} \preceq G$.

Lemma (Cross Lemma)
$(\forall m)\left(\exists d_{m}^{\prime}\right)$: subwalls $W_{1}, \ldots, W_{m^{4}}$ such that

$$
d\left(W_{i}, W_{j}\right) \geq d_{m}^{\prime}
$$

for $i \neq j$, disjoint crosses over all the subwalls $\Rightarrow K_{m} \preceq G$.

For $X \subseteq V(W)$, let W / X be obtained by removing rows and columns intersecting X.

Observation

The wall W / X has height at least $h-2|X|$,

$$
d_{W / X}(u, v) \geq d(u, v)-4|X|
$$

A vertex v is (I, s)-central over W if there exist paths P_{1}, \ldots, P_{I} with ends v and $w_{1}, \ldots, w_{l} \in V(W)$ s.t.

- $P_{i} \cap P_{j}=v$ and $d\left(w_{i}, w_{j}\right) \geq s$ for $i \neq j$, and
- $P_{i} \cap W \subseteq\left\{v, w_{i}\right\}$.

Lemma (Horn Lemma)

For every m, there exist I and s such that if at least $\binom{m}{2}$ vertices are (I, s)-central over W, then $K_{m} \preceq G$.

Suppose $v_{1}, \ldots, v_{\binom{m}{2}}$ are (I, s)-central.

- WLOG $v_{1}, \ldots \notin V(W)$: Consider $W /\left\{v_{1}, \ldots\right\}$.
- For $a=0, \ldots,\binom{m}{2}$:
- find a disjoint W-paths with ends $s / 2$ apart and disjoint from v_{a+1}, \ldots
- Obtain $K_{m} \preceq G$ by the Jump Lemma.

Assume

- we have Q_{1}, \ldots, Q_{a-1},
- $P_{1}, \ldots, P_{l-\binom{m}{2}}$ from centrality of v_{a} and disjoint from $\left\{v_{1}, \ldots\right\}$.
If $2 a$ of P_{1}, \ldots, intersect some Q_{i} :

Assume

- we have Q_{1}, \ldots, Q_{a-1},
- $P_{1}, \ldots, P_{l-\binom{m}{2}}$ from centrality of v_{a} and disjoint from $\left\{v_{1}, \ldots\right\}$.
If $2 a$ of P_{1}, \ldots are disjoint from Q_{1}, \ldots, Q_{a-1} :

Lemma (Non-division Lemma)

$(\forall m, I, s)\left(\exists k, d_{m}^{\prime \prime}\right)$: Non-dividing subwalls W_{1}, \ldots, W_{k} such that

$$
d\left(W_{i}, W_{j}\right) \geq d_{m}^{\prime \prime}
$$

for $i \neq j \Rightarrow K_{m} \preceq G$ or G contains an (I, s)-central vertex.

- $F=$ minimal subgraph of $G-E(W)$ showing W_{1}, \ldots, W_{k} are non-dividing.
- F^{\prime} a W-bridge of F : F^{\prime} is a tree, $\left|F^{\prime} \cap W\right| \geq 2$.
- W_{i} is solitary if only one W-bridge of F intersects W_{i}.

If $\left|F^{\prime} \cap W\right| \geq 3$:

- Each leaf in a different solitary subwall.
- Subdivision of a star.

- $F=$ minimal subgraph of $G-E(W)$ showing W_{1}, \ldots, W_{k} are non-dividing.
- F^{\prime} a W-bridge of F : F^{\prime} is a tree, $\left|F^{\prime} \cap W\right| \geq 2$.
- W_{i} is solitary if only one W-bridge of F intersects W_{i}.

If $\left|F^{\prime} \cap W\right|=2$:

- At least one end in a solitary subwall.

- If $\Delta(F) \geq I$, then G contains an (I, s)-central vertex.
- Otherwise, F has $a \geq k / l^{2}$ disjoint bridges:
- disjoint W-paths P_{1}, \ldots, P_{a} with ends s_{i} and t_{i}
- $d\left(s_{i}, s_{j}\right) \geq d_{m}^{\prime \prime}$ for $i \neq j$.

Case 1: $d\left(s_{i}, t_{i}\right) \leq d_{m}^{\prime \prime} / 100$ for m^{4} values of i. Apply the Cross Lemma to obtain $K_{m} \preceq G$:

We can assume $d\left(s_{i}, t_{i}\right)>100 d_{m}$ for all i.

Case 2: There exists i_{0} such that $d\left(t_{i}, t_{0}\right)<2 d_{m}$ for $3\binom{m}{3}$ values of i.

- Let X be vertices of W at distance less than $2 d_{m}$ from t_{0}.
- Apply the Jump Lemma in W/X.

Observation

$\Delta(W[X]) \leq 3 \Rightarrow$ many vertices t_{i} can be joined by disjoint paths in $W[X]$.

Case 2: There exists i_{0} such that $d\left(t_{i}, t_{i_{0}}\right)<2 d_{m}$ for $3\binom{m}{3}$ values of i.

- Let X be vertices of W at distance less than $2 d_{m}$ from t_{0}.
- Apply the Jump Lemma in W/X.

Case 3: At least $\frac{a}{3\binom{m}{3}}$ indices $/$ such that $d\left(t_{i}, t_{j}\right) \geq 2 d_{m}$ for distinct $i, j \in I$.

- Auxiliary graph H with $V(H)=I, i j \in E(H)$ if $d\left(s_{i}, t_{j}\right)<d_{m}$ or $d\left(s_{j}, t_{i}\right)<d_{m}$.
- $\Delta(H) \leq 2, \alpha(H) \geq|H| / 3$.

The Jump Lemma gives $K_{m} \preceq G$.

Lemma (Non-division Lemma)

$(\forall m, I, s)\left(\exists k, d_{m}^{\prime \prime}\right)$: Non-dividing subwalls W_{1}, \ldots, W_{k} such that

$$
d\left(W_{i}, W_{j}\right) \geq d_{m}^{\prime \prime}
$$

for $i \neq j \Rightarrow K_{m} \preceq G$ or G contains an (I, s)-central vertex.
Iteration + Horn Lemma:
Corollary
$(\forall m)\left(\exists k_{0}, d_{m}^{\prime \prime}\right)$: Subwalls W_{1}, \ldots, W_{k} such that

$$
d\left(W_{i}, W_{j}\right) \geq d_{m}^{\prime \prime}
$$

for $i \neq j \Rightarrow$

- $K_{m} \preceq G$ or
- $X \subseteq V(G),|X|<\binom{m}{2}$ such that all but k_{0} of the subwalls are dividing in $(G-X) \cup W$.

Proof of the Flat Wall Theorem:

- large treewidth \Rightarrow large wall W
- many distant subwalls
- $X \subseteq V(G),|X|<\binom{m}{2}$ and many distant dividing walls in $(G-X) \cup W$
- many distant dividing walls in $G-X$
- Cross Lemma: less than m^{4} of them are crossed.

