

Theorem (A reformulation of the grid theorem)

For every h, there exists t such that every graph of treewidth at least t contains a wall of height h as a <u>subgraph</u>.

Proof.

Grid minor \Rightarrow unsubdivided wall minor \Rightarrow wall subgraph.

A W-bridge of G is

- an edge of $E(G) \setminus E(W)$ with both ends in W, or
- a component of G V(W) together with the edges to W.

- The compass *C*(*W*) of *W*: the perimeter *K* of *W* + the *K*-bridge containing the interior of *W*.
- A subwall W of a wall Z is dividing if $K(W) \cap Z = W$.
- A cross over W: Disjoint paths P₁, P₂ ⊂ C(W) joining branch vertices of K s.t.
 - the ends of P₁ are in different components of K V(P₂), and
 - $(P_1 \cup P_2) \cap Z \subset W$.

Definition

A wall *W* is flat if there is no cross over *W*.

Compasses of flat walls are "almost planar", see homework:

Theorem (The Flat Wall Theorem)

For every h and m, there exists t such that for every graph G of treewidth at least t, either

- G contains K_m as a minor, or
- there exists a set X of less than ^m₂ vertices and a flat wall of height h in G – X.

Application: Testing the presence of a fixed graph H as a minor.

For m = |V(H)|:

- A minor of $H \subseteq K_m$ in G, or
- small treewidth, or
- a large flat wall after removal of $< \binom{m}{2}$ vertices.

Claim: In the flat wall, one can find a vertex v such that $H \leq G$ if and only if $H \leq G - v$.

For $u, v \in V(W)$, let d(u, v) = the minimum number of intersections of a closed curve from u to v with W.

Observation

Let \mathcal{T} consist of separations (A, B) of order at most h/2 where A does not contain any row of W. Then \mathcal{T} is a respectful tangle and $d(u, v) = \Theta(d_{\mathcal{T}}(u, v))$.

A <u>*W*-path</u> intersects *W* exactly in its ends.

Lemma (Jump Lemma)

 $(\forall m)(\exists d_m): \binom{m}{2}$ disjoint W-paths with ends in $Y \subset V(W)$,

 $d(y_1, y_2) \ge d_m$

for all $y_1, y_2 \in Y \Rightarrow K_m \preceq G$.

Lemma (Cross Lemma)

 $(\forall m)(\exists d'_m)$: subwalls W_1, \ldots, W_{m^4} such that

 $d(W_i, W_j) \geq d'_m$

for $i \neq j$, disjoint crosses over all the subwalls $\Rightarrow K_m \preceq G$.

For $X \subseteq V(W)$, let W/X be obtained by removing rows and columns intersecting *X*.

Observation

The wall W/X has height at least h - 2|X|,

$$d_{W/X}(u,v) \geq d(u,v) - 4|X|.$$

A vertex v is (I, s)-central over W if there exist paths P_1, \ldots, P_l with ends v and $w_1, \ldots, w_l \in V(W)$ s.t.

- $P_i \cap P_j = v$ and $d(w_i, w_j) \ge s$ for $i \ne j$, and
- $P_i \cap \dot{W} \subseteq \{v, w_i\}.$

Lemma (Horn Lemma)

For every *m*, there exist *l* and *s* such that if at least $\binom{m}{2}$ vertices are (l, s)-central over *W*, then $K_m \leq G$.

Suppose $v_1, \ldots, v_{\binom{m}{2}}$ are (I, s)-central.

• WLOG $v_1, \ldots \notin V(W)$: Consider $W / \{v_1, \ldots\}$.

• For *a* = 0, ...,
$$\binom{m}{2}$$
:

- find a disjoint W-paths with ends s/2 apart and disjoint from v_{a+1}, ...
- Obtain $K_m \preceq G$ by the Jump Lemma.

Assume

- we have $Q_1, ..., Q_{a-1},$
- $P_1, \ldots, P_{l-\binom{m}{2}}$ from centrality of v_a and disjoint from $\{v_1, \ldots\}$.

If 2a of P_1, \ldots , intersect some Q_i :

Assume

- we have $Q_1, ..., Q_{a-1}$,
- $P_1, \ldots, P_{l-\binom{m}{2}}$ from centrality of v_a and disjoint from $\{v_1, \ldots\}$.

If 2*a* of P_1, \ldots are disjoint from Q_1, \ldots, Q_{a-1} :

Lemma (Non-division Lemma)

 $(\forall m, l, s)(\exists k, d''_m)$: Non-dividing subwalls W_1, \ldots, W_k such that

 $d(W_i, W_j) \ge d_m''$

for $i \neq j \Rightarrow K_m \preceq G$ or G contains an (I, s)-central vertex.

- F = minimal subgraph of G E(W) showing W_1, \ldots, W_k are non-dividing.
- F' a *W*-bridge of F: F' is a tree, $|F' \cap W| \ge 2$.
- *W_i* is solitary if only one *W*-bridge of *F* intersects *W_i*.
- If $|F' \cap W| \ge 3$:
 - Each leaf in a different solitary subwall.
 - Subdivision of a star.

- F = minimal subgraph of G E(W) showing W_1, \ldots, W_k are non-dividing.
- F' a *W*-bridge of *F*: F' is a tree, $|F' \cap W| \ge 2$.
- W_i is <u>solitary</u> if only one W-bridge of F intersects W_i.

If $|F' \cap W| = 2$:

• At least one end in a solitary subwall.

- If $\Delta(F) \ge I$, then *G* contains an (I, s)-central vertex.
- Otherwise, *F* has $a \ge k/l^2$ disjoint bridges:
 - disjoint *W*-paths P_1, \ldots, P_a with ends s_i and t_i

•
$$d(s_i, s_j) \ge d''_m$$
 for $i \ne j$.

<u>Case 1:</u> $d(s_i, t_i) \le d''_m/100$ for m^4 values of *i*. Apply the Cross Lemma to obtain $K_m \le G$:

We can assume $d(s_i, t_i) > 100d_m$ for all *i*.

<u>Case 2:</u> There exists i_0 such that $d(t_i, t_{i_0}) < 2d_m$ for $3\binom{m}{3}$ values of *i*.

- Let X be vertices of W at distance less than $2d_m$ from t_{i_0} .
- Apply the Jump Lemma in W/X.

Observation

 $\Delta(W[X]) \leq 3 \Rightarrow$ many vertices t_i can be joined by disjoint paths in W[X].

<u>Case 2:</u> There exists i_0 such that $d(t_i, t_{i_0}) < 2d_m$ for $3\binom{m}{3}$ values of *i*.

- Let X be vertices of W at distance less than $2d_m$ from t_{i_0} .
- Apply the Jump Lemma in W/X.

<u>Case 3:</u> At least $\frac{a}{3\binom{m}{3}}$ indices *I* such that $d(t_i, t_j) \ge 2d_m$ for distinct $i, j \in I$.

- Auxiliary graph *H* with V(H) = I, $ij \in E(H)$ if $d(s_i, t_j) < d_m$ or $d(s_j, t_i) < d_m$.
- $\Delta(H) \le 2, \, \alpha(H) \ge |H|/3.$

The Jump Lemma gives $K_m \preceq G$.

Lemma (Non-division Lemma)

 $(\forall m, l, s)(\exists k, d''_m)$: Non-dividing subwalls W_1, \ldots, W_k such that

 $d(W_i, W_j) \geq d_m''$

for $i \neq j \Rightarrow K_m \preceq G$ or G contains an (I, s)-central vertex.

Iteration + Horn Lemma:

Corollary

 $(\forall m)(\exists k_0, d_m'')$: Subwalls W_1, \ldots, W_k such that

 $d(W_i, W_j) \geq d_m''$

for $i \neq j \Rightarrow$

• $K_m \preceq G$ or

X ⊆ V(G), |X| < (^m₂) such that all but k₀ of the subwalls are dividing in (G − X) ∪ W.

Proof of the Flat Wall Theorem:

- large treewidth \Rightarrow large wall W
- many distant subwalls
- $X \subseteq V(G), |X| < \binom{m}{2}$ and many distant dividing walls in $(G X) \cup W$
- many distant dividing walls in G X
- Cross Lemma: less than m^4 of them are crossed.