In a surface $\Sigma$, a normal drawing of $G$ is $p$-generic if

- curves between distinct cuffs intersect $G$ at least $p$ times
- simple closed $G$-normal non-contractible curve $c$ intersects $G$ in $<p$ points $\Rightarrow$ for a cuff $k$ homotopic to $k$, $G \cap k \subseteq G \cap c$.


We have:

## Theorem

$(\forall \Sigma, k)(\exists p)$ : Let $G$ be a graph with a normal drawing in a surface $\Sigma$ with at least two holes, at most $k$ vertices in the boundary of $\Sigma$, each cuff contains at least one vertex. Normal root assignment $r$ is topologically feasible and the drawing of $G$ is $p$-generic $\Rightarrow$ edgeless minor rooted in $r$.

Want:

- Get rid of "at least two holes", "each cuff contains a vertex".
- Weaken the $p$-generic assumption: For a curve $c$ surrounding a cuff $k$, only require $|G \cap c| \geq|G \cap k|$.
- Formulate in terms of respectful tangles, distance.
$G$ with 2-cell drawing in $\Sigma, f$ face, $X$ set of $t$ vertices in boundary of $f, \mathcal{T}$ respectful tangle.


## Definition

We say $(\mathcal{C}, \mathcal{P})$ is a sleeve around $(f, X)$ of order $p$ if
(1) $\mathcal{C}=C_{0}, \ldots, C_{2 p}$ disjoint cycles, $\mathcal{P}=P_{1}, \ldots, P_{t p}$ disjoint paths in $G$ from $C_{0}$ to $C_{2 p}$
(2) a disk $\Delta \subseteq \Sigma$ containing $f, \mathcal{C}$, and $\mathcal{P}$ such that $d_{\mathcal{T}}(f, a)=O(t p)$ for all $a \in A(G) \cap \Delta$,
(3) for any $i<j, C_{i}$ separates $f$ from $C_{j}$,
(4) every atom a such that $d_{\mathcal{T}}(f, a) \leq t p$ is drawn between $f$ and $C_{2 p}$,
(5) for any $i$ and $j, C_{i} \cap P_{j}$ is a connected path,
(6) disjoint paths $Q_{1}, \ldots, Q_{t} \subset C_{p}$, each containing $P \cap C_{p}$ for $p$ paths $P \in \mathcal{P}$, and $p$ disjoint paths from $X$ to $Q_{1}, \ldots, Q_{t}$.



Recall: $X$ is free in tangle $\mathcal{T}$ if for all $(A, B) \in \mathcal{T}$, if $X \subseteq V(A)$, then $|V(A \cap B)| \geq|X|$.

## Lemma

The order $\theta$ of $\mathcal{T} \gg t$ and $p$, the set $X$ is free $\Rightarrow$ a sleeve of order $p$ around $(f, X)$.

Recall: For $I<\theta$,

$$
\bigcup_{a \in A(G), d_{\mathcal{T}}(f, a) \leq 1} R(a)
$$

is simply-connected.


Disk $\Delta$ for $I=O(t p)$ :

- Every atom in $\Delta$ is at distance at most $/$ from $f$.
- Every atom at distance at most $I-2$ from $f$ is drawn in $\Delta$.
(1) $\mathcal{C}=C_{0}, \ldots, C_{2 p}$ disjoint cycles, $\mathcal{P}=P_{1}, \ldots, P_{t p}$ disjoint paths in $G$ from $C_{0}$ to $C_{2 p}$
(2) a disk $\Delta \subseteq \Sigma$ containing $f, \mathcal{C}$, and $\mathcal{P}$ such that $d_{\mathcal{T}}(f, a)=O(t p)$ for all $a \in A(G) \cap \Delta$,
(3) for any $i<j, C_{i}$ separates $f$ from $C_{j}$,
(0) every atom a such that $d_{\mathcal{T}}(f, a) \leq t p$ is drawn between $f$ and $C_{2 p}$,
(6) for any $i$ and $j, C_{i} \cap P_{j}$ is a connected path,
(0) disjoint paths $Q_{1}, \ldots, Q_{t} \subset C_{p}$, each containing $P \cap C_{p}$ for $p$ paths $P \in \mathcal{P}$, and $p$ disjoint paths from $X$ to $Q_{1}, \ldots, Q_{t}$.


## Observation

If $u v \in E(G)$, then $d_{\mathcal{T}}(u, v) \leq 2$.

## Corollary

For every $b<I$, every path from $f$ to the boundary of $\Delta$ contains a vertex $v$ such that $d_{\mathcal{T}}(f, v) \in\{b, b+1\}$.

- Vertices at distance $b$ or $b+1$ separate $f$ from the boundary of $\Delta$.
- Closed walk $W$ around $f$ on distance $\{b, b+1, b+2, b+3\}$ vertices.
- Cycle $K_{b}$ with $V\left(K_{b}\right) \subseteq V(W)$.
- $v$ separated by $K_{b}$ from $f \Rightarrow d_{\mathcal{T}}(v, f)>b$.


For $i=0,1, \ldots, 2 p$, let $C_{i}^{\prime}=K_{t p+4 i}$.

$G$ contains $t p$ disjoint paths from $C_{0}^{\prime}$ to $C_{2 p}^{\prime}$ :

- Otherwise, by Menger: Curve $c$ separating $C_{0}^{\prime}$ from $C_{2 p}^{\prime}$ intersecting $G$ in less than $t p$ vertices.
- $d_{\mathcal{T}}\left(f, C_{0}^{\prime}\right) \geq t p: f \not \subset \operatorname{ins}_{\mathcal{T}}(c)$
- $\exists e: d_{\mathcal{T}}(f, e)=\theta>d_{\mathcal{T}}\left(f, C_{2 p}^{\prime}\right)+t p: C_{2 p}^{\prime} \not \subset \operatorname{ins}_{\mathcal{T}}(c)$.



Nicely intersecting $\mathcal{C}$ and $\mathcal{P}$, with $C_{0}=C_{0}^{\prime}$ and $C_{2 p}=C_{2 p}^{\prime}$.
(1) $\mathcal{C}=C_{0}, \ldots, C_{2 p}$ disjoint cycles, $\mathcal{P}=P_{1}, \ldots, P_{t p}$ disjoint paths in $G$ from $C_{0}$ to $C_{2 p}$
(2) a disk $\Delta \subseteq \Sigma$ containing $f, \mathcal{C}$, and $\mathcal{P}$ such that $d_{\mathcal{T}}(f, a)=O(t p)$ for all $a \in A(G) \cap \Delta$,
(3) for any $i<j, C_{i}$ separates $f$ from $C_{j}$,
(0) every atom a such that $d_{\mathcal{T}}(f, a) \leq t p$ is drawn between $f$ and $C_{2 p}$,
(6) for any $i$ and $j, C_{i} \cap P_{j}$ is a connected path,
(0) disjoint paths $Q_{1}, \ldots, Q_{t} \subset C_{p}$, each containing $P \cap C_{p}$ for $p$ paths $P \in \mathcal{P}$, and $p$ disjoint paths from $X$ to $Q_{1}, \ldots, Q_{t}$.

Choose $Q_{1}, \ldots, Q_{t}$ arbitrarily; $t$ paths from $X$ exist. Contract $Q_{i}$ to $q_{i}$ :

- Otherwise, by Menger: Curve $c$ separating $X$ from $\left\{q_{1}, \ldots, q_{t}\right\}$, intersecting $G$ in less than $t$ vertices.
- If $c \cap\left\{q_{1}, \ldots, q_{t}\right\}=\emptyset$ :
- $X \subset \operatorname{ins}_{\mathcal{T}}(c) \Rightarrow X$ not free.
- $\exists e: d_{\mathcal{T}}(f, e)=\theta>d_{\mathcal{T}}\left(f, C_{2 p}\right)+t: C_{2 p} \not \subset \operatorname{ins}_{\mathcal{T}}(c)$.
- Otherwise, $c$ intersects either $C_{0}, \ldots, C_{p-1}$, or $p$ paths from $\mathcal{P}$ ending in $q_{i} \notin c$.



## Theorem

$\forall \Sigma, k \exists \theta$ : G 2-cell drawing in $\Sigma, \mathcal{T}$ respectful tangle of order $\theta$, $f_{1}, \ldots, f_{q}$ faces of $G, X$ a set of $k$ vertices incident with them ( $X_{i}$ incident with $f_{i}$ ), $H$ edgeless, $r: V(H) \rightarrow 2^{X}$ assignment of non-empty sets of roots. If

- $r$ is topologically feasible in $\Sigma-\left(f_{1} \cup \ldots \cup f_{q}\right)$,
- $d_{\mathcal{T}}\left(f_{i}, f_{j}\right)=\theta$ for all distinct $i$ and $j$, and
- $X_{i}$ is free for $i=1, \ldots, q$,
then $H$ is a minor of $G$ rooted in $r$.
- Ensure $q \geq 2$ (choosing new faces), $X_{i} \neq \emptyset$ (adding roots).
- Find sleeves around $f_{1}, \ldots, f_{q}$.
- In each sleeve, cut hole up to $C_{p}$, contract $Q_{1}, \ldots, Q_{\left|X_{i}\right|}$.
- Apply the Theorem from the last lecture.


Need to argue: $p$-generic.
$c$ curve between different cuffs, less than $p$ intersections:

$$
d_{\mathcal{T}}\left(f_{i}, f_{j}\right) \leq O(t p)+2 p<\theta .
$$


c simple closed non-contractible curve intersecting $G$ in less than $p$ points:

- $c$ touches a cuff: Cannot reach beyond $C_{2 p}$ without intersecting $C_{p+1}, \ldots, C_{2 p}$.
- Otherwise: $(\forall i \neq j) d_{\mathcal{T}}\left(f_{i}, f_{j}\right)=\theta{\text { implies } \text { ins }_{\mathcal{T}}(c) \text { contains }}$ only one cuff, $d_{\mathcal{T}}\left(f_{i}, c\right)<p \Rightarrow c$ is between $C_{p}$ and $C_{2 p}$. Less than $p$ intersections with $P_{1}, \ldots, P_{\left|X_{i}\right| p} \Rightarrow X_{i} \subset c$.


Application:

## Corollary

$\forall \Sigma, H$ drawn in $\Sigma \exists \theta_{1}$ : G 2-connected, a 2-cell drawing in $\Sigma, \mathcal{T}$ respectful tangle in $G$ of order $\theta_{1}, r(x)=\left\{v_{x}\right\}$ for all $x \in V(H)$. If $d_{\mathcal{T}}\left(v_{x}, v_{y}\right)=\theta_{1}$ for all distinct $x, y \in V(H)$, then $G$ contains $H$ as a minor rooted in $r$.

- There exist edges $e, e^{\prime}$ such that $d_{\mathcal{T}}\left(e, e^{\prime}\right)=\theta_{1}$.
- $|V(H)|+|E(H)|$ edges on a path from $e$ to $e^{\prime}$ at distance $\Omega\left(\theta_{1} /(|V(H)|+|E(H)|)\right)$ from one another.
- $h \in E(H) \mapsto e_{h} \in E(G)$ at distance $\theta$ from other $e_{h^{\prime}}$, vertices $v_{x}: x \in V(H)$.
- G 2-connected: $e_{h}=\{u, v\}$ is free.


For a surface $\Sigma$ with holes, integer $k$ :

## Algorithm

Input: $G$ drawn normally in $\Sigma$, edgeless graph $H$ with a normal root function $r$, at most $k$ root vertices in total.
Output: A minor of $H$ in $G$ rooted in $r$, or decides it does not exist.

Inductively assume we have such algorithm for

- smaller genus,
- the same genus, fewer holes,
- $\Sigma$, less than $k$ roots.

For cylinder: homework assignment.

Cutting argument $(|c \cap G|$ bounded by a function of $\Sigma, k)$ :

- Try all intersections of the minor with $c \cap G$.
- Cut along $c$, add new roots.
- Solve inductively.


To obtain $H$ as a rooted minor by the theorem, we need

- $r$ topologically feasible
- respectful tangle $\mathcal{T}$ of large order
- faces with roots are far in $d_{\mathcal{T}}$
- roots in a face are free.

No respectful tangle of large order.

- $\Sigma$ is sphere with holes:
- No tangle of large order $\Rightarrow$ bounded treewidth.
- Rooted minor containment is expressible in MSOL.
- $\Sigma$ has positive genus:
- Bounded representativity.
- Cut along non-contractible curve to decrease genus.
$d_{\mathcal{T}}\left(f_{1}, f_{2}\right)$ is small:
- Cut along a tie around $f_{1}$ and $f_{2}$.
- Decreased number of holes + cylinders.

$X_{1}$ is not free:
- Curve $c$ around $f_{1}$ with $|G \cap c|<\left|X_{1}\right|$.
- Cut around $c$ : decreased number of roots + cylinder.


