In a surface  $\Sigma$ , a normal drawing of *G* is *p*-generic if

- curves between distinct cuffs intersect *G* at least *p* times
- simple closed *G*-normal non-contractible curve *c* intersects
  *G* in < *p* points ⇒ for a cuff *k* homotopic to *k*,
  *G* ∩ *k* ⊆ *G* ∩ *c*.



### We have:

#### Theorem

 $(\forall \Sigma, k)(\exists p)$ : Let G be a graph with a normal drawing in a surface  $\Sigma$  with at least two holes, at most k vertices in the boundary of  $\Sigma$ , each cuff contains at least one vertex. Normal root assignment r is topologically feasible and the drawing of G is <u>p-generic</u>  $\Rightarrow$  edgeless minor rooted in r.

Want:

- Get rid of "at least two holes", "each cuff contains a vertex".
- Weaken the *p*-generic assumption: For a curve *c* surrounding a cuff *k*, only require |G ∩ c| ≥ |G ∩ k|.
- Formulate in terms of respectful tangles, distance.

*G* with 2-cell drawing in  $\Sigma$ , *f* face, *X* set of *t* vertices in boundary of *f*,  $\mathcal{T}$  respectful tangle.

#### Definition

We say  $(\mathcal{C}, \mathcal{P})$  is a <u>sleeve around (f, X) of order p</u> if

- $C = C_0, ..., C_{2p}$  disjoint cycles,  $P = P_1, ..., P_{tp}$  disjoint paths in *G* from  $C_0$  to  $C_{2p}$
- **2** a disk  $\Delta \subseteq \Sigma$  containing f, C, and  $\mathcal{P}$  such that  $d_{\mathcal{T}}(f, a) = O(tp)$  for all  $a \in A(G) \cap \Delta$ ,
- **③** for any i < j,  $C_i$  separates f from  $C_j$ ,
- every atom a such that d<sub>T</sub>(f, a) ≤ tp is drawn between f and C<sub>2p</sub>,
- **5** for any *i* and *j*,  $C_i \cap P_j$  is a connected path,
- disjoint paths  $Q_1, \ldots, Q_t \subset C_p$ , each containing  $P \cap C_p$  for p paths  $P \in \mathcal{P}$ , and p disjoint paths from X to  $Q_1, \ldots, Q_t$ .





Recall: X is free in tangle  $\mathcal{T}$  if for all  $(A, B) \in \mathcal{T}$ , if  $X \subseteq V(A)$ , then  $|V(A \cap \overline{B})| \ge |X|$ .

#### Lemma

The order  $\theta$  of  $T \gg t$  and p, the set X is free  $\Rightarrow$  a sleeve of order p around (f, X).

Recall: For  $I < \theta$ ,  $\bigcup_{a \in A(G), d_{\mathcal{T}}(f,a) \leq I} R(a)$ 

is simply-connected.



Disk  $\Delta$  for I = O(tp):

- Every atom in  $\Delta$  is at distance at most *I* from *f*.
- Every atom at distance at most I 2 from f is drawn in  $\Delta$ .

- $C = C_0, ..., C_{2p}$  disjoint cycles,  $P = P_1, ..., P_{tp}$  disjoint paths in *G* from  $C_0$  to  $C_{2p}$
- **2** a disk  $\Delta \subseteq \Sigma$  containing f, C, and  $\mathcal{P}$  such that  $d_{\mathcal{T}}(f, a) = O(tp)$  for all  $a \in A(G) \cap \Delta$ ,
- **③** for any i < j,  $C_i$  separates f from  $C_j$ ,
- every atom a such that d<sub>T</sub>(f, a) ≤ tp is drawn between f and C<sub>2p</sub>,
- for any *i* and *j*,  $C_i \cap P_j$  is a connected path,
- disjoint paths  $Q_1, \ldots, Q_t \subset C_p$ , each containing  $P \cap C_p$  for p paths  $P \in \mathcal{P}$ , and p disjoint paths from X to  $Q_1, \ldots, Q_t$ .

### Observation

If 
$$uv \in E(G)$$
, then  $d_{\mathcal{T}}(u, v) \leq 2$ .

#### Corollary

For every b < I, every path from f to the boundary of  $\Delta$  contains a vertex v such that  $d_{\mathcal{T}}(f, v) \in \{b, b + 1\}$ .

- Vertices at distance b or b + 1 separate f from the boundary of Δ.
- Closed walk W around f on distance  $\{b, b+1, b+2, b+3\}$  vertices.
- Cycle  $K_b$  with  $V(K_b) \subseteq V(W)$ .
- *v* separated by  $K_b$  from  $f \Rightarrow d_T(v, f) > b$ .



For i = 0, 1, ..., 2p, let  $C'_i = K_{tp+4i}$ .



*G* contains *tp* disjoint paths from  $C'_0$  to  $C'_{2p}$ :

- Otherwise, by Menger: Curve c separating C'<sub>0</sub> from C'<sub>2p</sub> intersecting G in less than tp vertices.
- $d_{\mathcal{T}}(f, C'_0) \geq tp: f \not\subset \operatorname{ins}_{\mathcal{T}}(c)$
- $\exists e : d_{\mathcal{T}}(f, e) = \theta > d_{\mathcal{T}}(f, C'_{2p}) + tp: C'_{2p} \not\subset \operatorname{ins}_{\mathcal{T}}(c).$





Nicely intersecting C and  $\mathcal{P}$ , with  $C_0 = C'_0$  and  $C_{2p} = C'_{2p}$ .

- $C = C_0, \ldots, C_{2p}$  disjoint cycles,  $\mathcal{P} = P_1, \ldots, P_{tp}$  disjoint paths in *G* from  $C_0$  to  $C_{2p}$
- **2** a disk  $\Delta \subseteq \Sigma$  containing f, C, and  $\mathcal{P}$  such that  $d_{\mathcal{T}}(f, a) = O(tp)$  for all  $a \in A(G) \cap \Delta$ ,
- **③** for any i < j,  $C_i$  separates f from  $C_j$ ,
- every atom *a* such that  $d_{\mathcal{T}}(f, a) \leq tp$  is drawn between *f* and  $C_{2p}$ ,
- **5** for any *i* and *j*,  $C_i \cap P_j$  is a connected path,
- disjoint paths  $Q_1, \ldots, Q_t \subset C_p$ , each containing  $P \cap C_p$  for p paths  $P \in \mathcal{P}$ , and p disjoint paths from X to  $Q_1, \ldots, Q_t$ .

Choose  $Q_1, \ldots, Q_t$  arbitrarily; *t* paths from *X* exist. Contract  $Q_i$  to  $q_i$ :

- Otherwise, by Menger: Curve *c* separating *X* from
  - $\{q_1, \ldots, q_t\}$ , intersecting *G* in less than *t* vertices.

• If 
$$\boldsymbol{c} \cap \{\boldsymbol{q}_1, \ldots, \boldsymbol{q}_t\} = \emptyset$$
:

•  $X \subset \operatorname{ins}_{\mathcal{T}}(c) \Rightarrow X$  not free.

• 
$$\exists e: d_{\mathcal{T}}(f, e) = \theta > d_{\mathcal{T}}(f, C_{2p}) + t: C_{2p} \not\subset \operatorname{ins}_{\mathcal{T}}(c).$$

Otherwise, *c* intersects either C<sub>0</sub>, ..., C<sub>p-1</sub>, or *p* paths from *P* ending in q<sub>i</sub> ∉ c.



#### Theorem

 $\forall \Sigma, k \exists \theta : G 2$ -cell drawing in  $\Sigma, \mathcal{T}$  respectful tangle of order  $\theta$ ,  $f_1, \ldots, f_q$  faces of G, X a set of k vertices incident with them ( $X_i$  incident with  $f_i$ ), H edgeless,  $r : V(H) \rightarrow 2^X$  assignment of non-empty sets of roots. If

- *r* is topologically feasible in  $\Sigma (f_1 \cup \ldots \cup f_q)$ ,
- $d_{\mathcal{T}}(f_i, f_j) = \theta$  for all distinct i and j, and

• 
$$X_i$$
 is free for  $i = 1, \ldots, q$ ,

then H is a minor of G rooted in r.

- Ensure  $q \ge 2$  (choosing new faces),  $X_i \neq \emptyset$  (adding roots).
- Find sleeves around  $f_1, \ldots, f_q$ .
- In each sleeve, cut hole up to  $C_p$ , contract  $Q_1, \ldots, Q_{|X_i|}$ .
- Apply the Theorem from the last lecture.







Need to argue: *p*-generic.

*c* curve between different cuffs, less than *p* intersections:  $d_{\mathcal{T}}(f_i, f_i) \leq O(tp) + 2p < \theta.$ o(te) 0(tp) F;

c simple closed non-contractible curve intersecting G in less than p points:

- *c* touches a cuff: Cannot reach beyond C<sub>2p</sub> without intersecting C<sub>p+1</sub>, ..., C<sub>2p</sub>.
- Otherwise: (∀i ≠ j)d<sub>T</sub>(f<sub>i</sub>, f<sub>j</sub>) = θ implies ins<sub>T</sub>(c) contains only one cuff, d<sub>T</sub>(f<sub>i</sub>, c) p</sub> and C<sub>2p</sub>.

Less than *p* intersections with  $P_1, \ldots, P_{|X_i|p} \Rightarrow X_i \subset c$ .



# Application:

### Corollary

 $\forall \Sigma, H \text{ drawn in } \Sigma \exists \theta_1 : G 2\text{-connected, a } 2\text{-cell drawing in } \Sigma, \mathcal{T}$ respectful tangle in G of order  $\theta_1, r(x) = \{v_x\}$  for all  $x \in V(H)$ . If  $d_{\mathcal{T}}(v_x, v_y) = \theta_1$  for all distinct  $x, y \in V(H)$ , then G contains H as a minor rooted in r.

- There exist edges e, e' such that  $d_{\mathcal{T}}(e, e') = \theta_1$ .
- |V(H)| + |E(H)| edges on a path from *e* to *e'* at distance  $\Omega(\theta_1/(|V(H)| + |E(H)|))$  from one another.
- *h* ∈ *E*(*H*) → *e<sub>h</sub>* ∈ *E*(*G*) at distance θ from other *e<sub>h'</sub>*, vertices *v<sub>x</sub>* : *x* ∈ *V*(*H*).
- *G* 2-connected:  $e_h = \{u, v\}$  is free.



## For a surface $\Sigma$ with holes, integer k:

# Algorithm

Input: G drawn normally in  $\Sigma$ , edgeless graph H with a normal root function r, at most k root vertices in total. Output: A minor of H in G rooted in r, or decides it does not exist.

Inductively assume we have such algorithm for

- smaller genus,
- the same genus, fewer holes,
- $\Sigma$ , less than k roots.

For cylinder: homework assignment.

Cutting argument ( $|c \cap G|$  bounded by a function of  $\Sigma$ , k):

- Try all intersections of the minor with  $c \cap G$ .
- Cut along *c*, add new roots.
- Solve inductively.



To obtain H as a rooted minor by the theorem, we need

- r topologically feasible
- respectful tangle  ${\mathcal T}$  of large order
- faces with roots are far in  $d_T$
- roots in a face are free.

No respectful tangle of large order.

- Σ is sphere with holes:
  - No tangle of large order  $\Rightarrow$  bounded treewidth.
  - Rooted minor containment is expressible in MSOL.
- Σ has positive genus:
  - Bounded representativity.
  - Cut along non-contractible curve to decrease genus.

# $d_{\mathcal{T}}(f_1, f_2)$ is small:

- Cut along a tie around  $f_1$  and  $f_2$ .
- Decreased number of holes + cylinders.



# $X_1$ is not free:

- Curve *c* around  $f_1$  with  $|G \cap c| < |X_1|$ .
- Cut around *c*: decreased number of roots + cylinder.

