
In the last lesson, we gave the following sufficient condition for the exis-
tence of a rooted edgeless minor in an embedded graph. For an integer p, we
say a drawing of a graph G is p-generic if

• every G-normal curve with ends in different cuffs intersects G in at
least p points, and

• if a simple closed G-normal non-contractible curve c intersects G in less
than p points, then there exists a cuff k such that G∩ k ⊆ G∩ c and c
is homotopic to k.

Let H be an edgeless graph and let r be a normal root function in G. We say
r is topologically feasible if there exists a forest F drawn without crossings
in Σ such that for each v ∈ V (H), the forest F has a component Fv with
r(v) ⊆ V (Fv), and Fv 6= Fw for distinct v, w ∈ V (H).

Theorem 1. For every surface Σ and integer k, there exists p such that
the following holds. Let G be a graph with a normal drawing in a surface Σ
with at least two holes, such that at most k vertices of G are drawn in the
boundary of Σ, and each cuff contains at least one vertex of G. Let H be an
edgeless graph and let r be a normal root function assigning to each vertex
of H a non-empty set. If r is topologically feasible and the drawing of G is
p-generic, then H is a minor of G rooted in r.

Our aim now is to get a stronger result in terms of respectful tangles, and
to apply it to obtain a polynomial-time algorithm. First, we need a technical
result about grid-like substructures in these graphs.

1 Sleeves

Let G be a graph with a 2-cell drawing in a surface Σ and let T be a respectful
tangle in G. Let X be a set of t vertices of G, all incident with the same
face f . Let C = {C0, C1, . . . , C2p} be a set of vertex-disjoint cycles and
P = {P1, P2, . . . , Ptp} a set of vertex-disjoint paths in G. We say (C,P) is a
sleeve around (f,X) of order p if

• there exists a disk ∆ ⊆ Σ containing f , C, and P such that dT (f, a) ≤
(t+ 14)p+ 10 for every atom a of G contained in ∆,

• for any i < j, Ci separates f from Cj,

• every atom a such that dT (f, a) ≤ tp is drawn between f and C2p,
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• for any i and j, Ci ∩ Pj is a connected path, and

• there exist disjoint paths Q1, . . . , Qt ⊂ Cp, each containing the in-
tersection of Cp with p paths of P , and disjoint paths L1, . . . , Lp in
G, where Li has one end in X, the other end in Qi, and is otherwise
disjoint from Cp.

We say that ∆ is the locus of the sleeve, Cp is the belt of the sleeve, and
Q = {Q1, . . . , Qt} and L = {L1, . . . , Lt} form a seam of the sleeve. Recall
that a set X is free in a tangle T if there is no separation (A,B) ∈ T of order
less than |X| such that X ⊆ V (A). We refer to the metric derived from T
as the T -distance, to distinguish it from the distance in the graph.

Lemma 2. For all integers t ≤ p and every surface Σ without boundary,
there exists θ0 such that the following holds. Let G be a graph with a 2-cell
drawing in Σ and let T be a respectful tangle in G of order θ ≥ θ0. Let X be
a set of t vertices of G, all incident with the same face f of G. If X is free,
then G contains a sleeve around (f,X) of order p.

Proof. Recall that for every l < θ, the union U of atoms of the radial drawing
R(G) of G at T -distance at most l from the vertex R(f) corresponding to f
is simply-connected. We apply this observation for l = (t+14)p+10, and we
let ∆ ⊆ U be a maximal disk containing f . Then dT (f, a) ≤ (t + 14)p + 10
for every atom a of G contained in ∆, and conversely, every atom a such that
dT (f, a) ≤ (t+ 14)p+ 8 is contained in ∆.

Consider now any l such that 3 ≤ l ≤ (t+ 14)p+ 5, and let Zl be the set
of vertices v of G such that |dT (f, v)− l| ≤ 1. Then Zl separates f from the
boundary of ∆, and thus there exists a simple closed curve cl intersecting
G only in vertices of Zl and separating f from the boundary of ∆. Let Wl

be the closed walk in G passing through the vertices cl ∩ G, and between
them following the boundaries of the faces through which cl passes. Then
|dT (f, v) − l| ≤ 3 for every v ∈ V (Wl). Moreover, Wl is homotopic to cl,
and thus there exists a cycle Sl with V (Sl) ⊆ V (Wl) separating f from the
boundary of ∆. For i = 0, . . . , 2p, let C ′i = Stp+3+7i. Note that every atom a
such that dT (f, a) ≤ tp is drawn between f and C ′2p.

We claim there exist tp pairwise disjoint paths P ′1, . . . , P ′tp from C ′0 to
C ′2p. Indeed, otherwise by Menger’s theorem, there would exist a simple
G-normal closed curve c separating C ′0 from C ′2p with |c ∩ G| < tp. Let
W be the closed walk in R(G) tracing c. If f ⊂ insT (W ), we would have
V (C ′0) ⊂ insT (W ), implying dT (f, v) < tp for v ∈ V (C ′0), contradicting the
choice of C ′0. Otherwise, for any v ∈ V (C ′2p) and any atom a of G not in ∆,
we have dT (v, a) < tp, and thus dT (f, a) < (2t+ 14)p+ 6 < θ for every such
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atom a; this inequality holds also for all atoms intersecting ∆, contradicting
the fact that some edge of G is at T -distance θ from f .

We can now apply (a variation of) the loom cleaning procedure from
the second lecture to obtain cycles C = {C0, C1, . . . , C2p} and paths P =
{P1, P2, . . . , Ptp} such that C2p = C ′2p,

⋃
C ∪

⋃
P ⊆

⋃2p
i=1C

′
i ∪

⋃tp
j=1 P

′
j , for

any i < j, Ci separates f from Cj, and for any i and j, Ci∩Pj is a connected
path.

Therefore, it remains to find a seam for the sleeve. Choose disjoint paths
Q1, . . . , Qt ⊂ Cp each containing the intersection of Cp with p paths of
P arbitrarily, so that V (Cp) = V (Q1) ∪ . . . ∪ V (Qt). Let G′ be obtained
from G by contracting each of the paths Qi to a single vertex qi, and let
Y = {q1, . . . , qt}. It suffices to prove that G′ contains t disjoint paths from
X to Y . If not, Menger’s theorem implies there exists a simple closed curve
c separating X from Y and intersecting G′ in less than t vertices. Note that
c cannot pass through a vertex in Y , as otherwise it would have to intersect
either C0, . . . , Cp−1 or all paths in P . Consequently, c also intersects G in
less than t vertices and separates f from the boundary of ∆. Let W be the
closed walk in R(G) corresponding to c. Since X is free, we cannot have
X ⊂ insT (W ), and thus C2p ⊂ insT (W ). However, that implies dT (f, a) <
(t+ 14)p+ 6 + t < θ for every atom a of G, which is a contradiction.

2 Minors from a respectful tangle

Theorem 3. For every surface Σ without boundary and integer k, there
exists θ0 such that the following holds. Let G be a graph with a 2-cell drawing
in Σ and let T be a respectful tangle in G of order θ ≥ θ0. For some q ≤ k,
let f1, . . . , fq be distinct faces of G and let X be a set of k vertices of G,
each incident with one of these faces; let Xi denote the set of vertices of X
incident with fi. Let Σ′ = Σ− (f1∪ . . .∪fq). Let H be an edgeless graph and
let r be a root function assigning to each vertex of H a non-empty subset of
X. If r is topologically feasible in Σ′, dT (fi, fj) ≥ θ0 for all distinct i and j
and Xi is free for i = 1, . . . , q, then H is a minor of G rooted in r.

Proof. We can assume Xi 6= ∅ for all i, as otherwise we can ignore the face
fi. We can also assume q ≥ 2: if q = 0, we can choose f1 arbitrarily and
add an incident vertex to X, increasing q to 1; for q = 1, we can choose
f2 at T -distance at least θ0 from f1 and add a vertex incident with f1 to
X. The assumption that X1 and X2 are free is trivially satisfied, since G is
connected. We also make all vertice of X roots by modifying r if necessary.
It follows that Σ′ has at least two cuffs, each incident with a root vertex.
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By Lemma 2, for i = 1, . . . , q, G contains a sleeve (Ci,Pi) around (fi, Xi)
of order p with locus ∆i and seam (Qi,Li). Note that for i 6= j, we have
∆i ∩∆j = ∅, since dT (fi, fj) ≥ θ0. Let G′ be the graph obtained from G by,
for i = 1, . . . , q,

• deleting everything in the open disk bounded by the belt of Ci contain-
ing fi, and

• contracting each path of Qi to a single vertex; let X ′i denote the result-
ing set of vertices, and for x ∈ Xi, let x′ be the vertex of X ′i to which
it is connected by a path in Li.

We view G′ as drawn in a surface Σ′′ homeomorphic to Σ′, where the i-th cuff
intersects G′ exactly in X ′i. Let r′ be the root function where, for z ∈ V (H),
r′(z) = {x′ : x ∈ r(z)}. Note that a minor of H in G′ rooted in r′ can be
transformed into a minor of H in G rooted in r, by decontracting the paths
in Q1, . . . , Qq and adding the paths in L1, . . . , Lq. Furthermore, since r is
topologically feasible in Σ′, r′ is topologically feasible in Σ′′. Therefore, to
finish the proof by using Theorem 1, it suffices to argue that the drawing of
G′ in Σ′′ is p-generic.

For any simple G′-normal curve c with ends in distinct cuffs of Σ′, let fi
and fj be the corresponding faces and Ci and Cj the corresponding belts. We
have |c∩G′| ≥ 1

2
(dT (fi, fj)−dT (fi, Ci)−dT (fj, Cj)) ≥ 1

2
(θ0−2(k+14)p−20) >

p, as required.
Consider now a simple closed non-contractible G′-normal curve c inter-

secting G′ in less than p vertices. Suppose first that c is disjoint from the cuffs
of Σ′′, and thus c is also G-normal and intersects G in less than p vertices
when drawn in Σ. Let W be the corresponding closed walk in R(G). Since c
is non-contractible in Σ′′ and dT (fi, fj) > p for distinct i and j, there exists
unique i such that fi ⊂ insT (W ). Hence, dT (fi, v) < p for v ∈ V (G)∩ c, and
thus c is drawn between fi and the last cycle in Ci. If c intersects the cuff, we
obtain the same conclusion since c cannot intersect all cycles in Ci between
the belt and the last one.

If there existed x′ ∈ X ′i not belonging to c, then let P1, . . . , Pp be the
paths of Pi intersecting the path of Qi that was contracted to x′. Then c
must intersect all of P1, . . . , Pp, contradicting the assumption |G ∩ c| < p.
We conclude that X ′i ⊆ G ∩ c, confirming that the drawing of G′ in Σ′′ is
p-generic.

Let us now give a simple application.

Corollary 4. For every surface Σ without boundary and a graph H drawn
in Σ, there exists θ1 such that the following holds. Let G be a 2-connected
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graph with a 2-cell drawing in Σ and let T be a respectful tangle in G of order
θ ≥ θ1. Let r be a root function such that r(x) consists of a single vertex vx
for every x ∈ V (H). If dT (vx, vy) ≥ θ1 for every distinct x, y ∈ V (H), then
G contains H as a minor rooted in r.

Proof. Let k = |V (H)| and m = |E(H)|. There exists edges e and e′ of G
such that dT (e, e′) ≥ θ1, and thus on a path from e to e′ in G, we can find
edges e1, . . . , ek+m such that dT (ei, ej) ≥ θ1

4(k+m)
for distinct i and j. Each

vertex vx is at T -distance less than θ1
8(k+m)

from at most one of these edges,
and thus we can assume that for i = 1, . . . ,m, the T -distance between ei and
vx is at least θ1

8(k+m)
for every x ∈ V (H). Assign to each edge h = xy ∈ E(H)

one of these edges and denote its ends hx and hy. Note that {hx, hy} is free,
since G is 2-connected. Let H ′ be the edgeless graph with V (H ′) = V (H),
and let r′ be the root function such that for each x ∈ V (H ′), r′(x) consists
of vx and the vertices hx for all edges h of H incident with x. Applying
Theorem 3, we obtain a minor of H ′ in G rooted in r′. In combination with
the edges e1, . . . , em, this gives a minor of H in G rooted in r.

3 Algorithm

Suppose we are given a graph G drawn normally in a surface Σ with boundary
and an edgeless graph H with a normal root function r, and we want to decide
whether H is a minor of G rooted in r. We will construct the algorithm
inductively according to the complexity of the surface—the triple (g, h, k),
where g is the genus of the surface, h is the number of holes, and k is the
number of root vertices, sorted lexicographically.

The basic operation we use is cutting : Suppose for example that there
exists a non-contractible separating G-normal curve c such that |G∩ c| ≤ k′,
for some k′ depending only on (g, h, k). There are only finitely many ways
how a minor of H can intersect G ∩ c, and for each of them, we obtain a
problem of the form: do prescribed rooted minors exist in both graphs into
which G is cut along c? Both of these subproblems can be solved recursively,
since each of the resulting surfaces has complexity at most (g − 2, h+ 1, k +
k′) ≺ (g, h, k).

We aim to keep simplifying the instance by cutting until Theorem 3 can
be applied, or until we reduce to one of the cases we already dealt with in
the previous lecture or in the homework assignment (disk, cylinder). Let
Σ′ denote the surface obtained from Σ by patching each cuff, let f1, . . . , fh
be the faces corresponding to these patches, and for i = 1, . . . , h, let Xi be
the set of roots incident with fi. Let us go over each of the assumptions of
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Theorem 3 and present a reduction in case it is not satisfied:

• G does not contain a respectful tangle T of order θ0. If Σ′ is the
sphere, this implies G has treewidth at most 3

2
θ0, and we can apply

an algorithm for graphs with bounded treewidth (the fact that H is a
rooted minor of G can be expressed in monadic second-order logic). If
Σ′ is not the sphere, this implies G drawn in Σ′ has representativity less
than θ0. Cutting along the corresponding curve reduces the problem
to subproblems of complexity at most (g− 1, h+ 2, k+ 2θ0) ≺ (g, h, k).

• r is not topologically feasible in Σ: Then H cannot appear in G as a
rooted minor.

• dT (fi, fj) < θ0 for some distinct i and j. Let W be a tie in R(G)
certifying this. If W is a path from fi to fj, then cutting along W
reduces the problem to subproblems of complexity (g, h− 1, k+ 2θ0) ≺
(g, h, k). If W is a lollipop or a dumbbell, then cutting along W reduces
the problem to subproblems of complexity (g, h− 1, k+ 2θ0) ≺ (g, h, k)
and to ones in a cylinder.

• If Xi is not free, then there exists a cycle W in R(G) intersecting
G in less than |Xi| vertices and such that Xi ⊂ insT (W ). Cutting
along W educes the problem to subproblems of complexity at most
(g, h, k − 1) ≺ (g, h, k) and to ones in a cylinder.
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