In the last lesson, we gave the following sufficient condition for the existence of a rooted edgeless minor in an embedded graph. For an integer p, we say a drawing of a graph G is p-generic if

- every G-normal curve with ends in different cuffs intersects G in at least p points, and
- if a simple closed G-normal non-contractible curve c intersects G in less than p points, then there exists a cuff k such that $G \cap k \subseteq G \cap c$ and c is homotopic to k.

Let H be an edgeless graph and let r be a normal root function in G. We say r is topologically feasible if there exists a forest F drawn without crossings in Σ such that for each $v \in V(H)$, the forest F has a component F_{v} with $r(v) \subseteq V\left(F_{v}\right)$, and $F_{v} \neq F_{w}$ for distinct $v, w \in V(H)$.

Theorem 1. For every surface Σ and integer k, there exists p such that the following holds. Let G be a graph with a normal drawing in a surface Σ with at least two holes, such that at most k vertices of G are drawn in the boundary of Σ, and each cuff contains at least one vertex of G. Let H be an edgeless graph and let r be a normal root function assigning to each vertex of H a non-empty set. If r is topologically feasible and the drawing of G is p-generic, then H is a minor of G rooted in r.

Our aim now is to get a stronger result in terms of respectful tangles, and to apply it to obtain a polynomial-time algorithm. First, we need a technical result about grid-like substructures in these graphs.

1 Sleeves

Let G be a graph with a 2 -cell drawing in a surface Σ and let \mathcal{T} be a respectful tangle in G. Let X be a set of t vertices of G, all incident with the same face f. Let $\mathcal{C}=\left\{C_{0}, C_{1}, \ldots, C_{2 p}\right\}$ be a set of vertex-disjoint cycles and $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{t p}\right\}$ a set of vertex-disjoint paths in G. We say $(\mathcal{C}, \mathcal{P})$ is a sleeve around (f, X) of order p if

- there exists a disk $\Delta \subseteq \Sigma$ containing f, \mathcal{C}, and \mathcal{P} such that $d_{\mathcal{T}}(f, a) \leq$ $(t+14) p+10$ for every atom a of G contained in Δ,
- for any $i<j, C_{i}$ separates f from C_{j},
- every atom a such that $d_{\mathcal{T}}(f, a) \leq t p$ is drawn between f and $C_{2 p}$,
- for any i and $j, C_{i} \cap P_{j}$ is a connected path, and
- there exist disjoint paths $Q_{1}, \ldots, Q_{t} \subset C_{p}$, each containing the intersection of C_{p} with p paths of \mathcal{P}, and disjoint paths L_{1}, \ldots, L_{p} in G, where L_{i} has one end in X, the other end in Q_{i}, and is otherwise disjoint from C_{p}.

We say that Δ is the locus of the sleeve, C_{p} is the belt of the sleeve, and $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{t}\right\}$ and $\mathcal{L}=\left\{L_{1}, \ldots, L_{t}\right\}$ form a seam of the sleeve. Recall that a set X is free in a tangle \mathcal{T} if there is no separation $(A, B) \in \mathcal{T}$ of order less than $|X|$ such that $X \subseteq V(A)$. We refer to the metric derived from \mathcal{T} as the \mathcal{T}-distance, to distinguish it from the distance in the graph.

Lemma 2. For all integers $t \leq p$ and every surface Σ without boundary, there exists θ_{0} such that the following holds. Let G be a graph with a 2-cell drawing in Σ and let \mathcal{T} be a respectful tangle in G of order $\theta \geq \theta_{0}$. Let X be a set of t vertices of G, all incident with the same face f of G. If X is free, then G contains a sleeve around (f, X) of order p.

Proof. Recall that for every $l<\theta$, the union U of atoms of the radial drawing $R(G)$ of G at \mathcal{T}-distance at most l from the vertex $R(f)$ corresponding to f is simply-connected. We apply this observation for $l=(t+14) p+10$, and we let $\Delta \subseteq U$ be a maximal disk containing f. Then $d_{\mathcal{T}}(f, a) \leq(t+14) p+10$ for every atom a of G contained in Δ, and conversely, every atom a such that $d_{\mathcal{T}}(f, a) \leq(t+14) p+8$ is contained in Δ.

Consider now any l such that $3 \leq l \leq(t+14) p+5$, and let Z_{l} be the set of vertices v of G such that $\left|d_{\mathcal{T}}(f, v)-l\right| \leq 1$. Then Z_{l} separates f from the boundary of Δ, and thus there exists a simple closed curve c_{l} intersecting G only in vertices of Z_{l} and separating f from the boundary of Δ. Let W_{l} be the closed walk in G passing through the vertices $c_{l} \cap G$, and between them following the boundaries of the faces through which c_{l} passes. Then $\left|d_{\mathcal{T}}(f, v)-l\right| \leq 3$ for every $v \in V\left(W_{l}\right)$. Moreover, W_{l} is homotopic to c_{l}, and thus there exists a cycle S_{l} with $V\left(S_{l}\right) \subseteq V\left(W_{l}\right)$ separating f from the boundary of Δ. For $i=0, \ldots, 2 p$, let $C_{i}^{\prime}=S_{t p+3+7 i}$. Note that every atom a such that $d_{\mathcal{T}}(f, a) \leq t p$ is drawn between f and $C_{2 p}^{\prime}$.

We claim there exist $t p$ pairwise disjoint paths $P_{1}^{\prime}, \ldots, P_{t p}^{\prime}$ from C_{0}^{\prime} to $C_{2 p}^{\prime}$. Indeed, otherwise by Menger's theorem, there would exist a simple G-normal closed curve c separating C_{0}^{\prime} from $C_{2 p}^{\prime}$ with $|c \cap G|<t p$. Let W be the closed walk in $R(G)$ tracing c. If $f \subset \operatorname{ins}_{\mathcal{T}}(W)$, we would have $V\left(C_{0}^{\prime}\right) \subset \operatorname{ins}_{\mathcal{T}}(W)$, implying $d_{\mathcal{T}}(f, v)<t p$ for $v \in V\left(C_{0}^{\prime}\right)$, contradicting the choice of C_{0}^{\prime}. Otherwise, for any $v \in V\left(C_{2 p}^{\prime}\right)$ and any atom a of G not in Δ, we have $d_{\mathcal{T}}(v, a)<t p$, and thus $d_{\mathcal{T}}(f, a)<(2 t+14) p+6<\theta$ for every such
atom a; this inequality holds also for all atoms intersecting Δ, contradicting the fact that some edge of G is at \mathcal{T}-distance θ from f.

We can now apply (a variation of) the loom cleaning procedure from the second lecture to obtain cycles $\mathcal{C}=\left\{C_{0}, C_{1}, \ldots, C_{2 p}\right\}$ and paths $\mathcal{P}=$ $\left\{P_{1}, P_{2}, \ldots, P_{t p}\right\}$ such that $C_{2 p}=C_{2 p}^{\prime}, \cup \mathcal{C} \cup \bigcup \mathcal{P} \subseteq \bigcup_{i=1}^{2 p} C_{i}^{\prime} \cup \bigcup_{j=1}^{t p} P_{j}^{\prime}$, for any $i<j, C_{i}$ separates f from C_{j}, and for any i and $j, C_{i} \cap P_{j}$ is a connected path.

Therefore, it remains to find a seam for the sleeve. Choose disjoint paths $Q_{1}, \ldots, Q_{t} \subset C_{p}$ each containing the intersection of C_{p} with p paths of \mathcal{P} arbitrarily, so that $V\left(C_{p}\right)=V\left(Q_{1}\right) \cup \ldots \cup V\left(Q_{t}\right)$. Let G^{\prime} be obtained from G by contracting each of the paths Q_{i} to a single vertex q_{i}, and let $Y=\left\{q_{1}, \ldots, q_{t}\right\}$. It suffices to prove that G^{\prime} contains t disjoint paths from X to Y. If not, Menger's theorem implies there exists a simple closed curve c separating X from Y and intersecting G^{\prime} in less than t vertices. Note that c cannot pass through a vertex in Y, as otherwise it would have to intersect either C_{0}, \ldots, C_{p-1} or all paths in \mathcal{P}. Consequently, c also intersects G in less than t vertices and separates f from the boundary of Δ. Let W be the closed walk in $R(G)$ corresponding to c. Since X is free, we cannot have $X \subset \operatorname{ins}_{\mathcal{T}}(W)$, and thus $C_{2 p} \subset \operatorname{ins}_{\mathcal{T}}(W)$. However, that implies $d_{\mathcal{T}}(f, a)<$ $(t+14) p+6+t<\theta$ for every atom a of G, which is a contradiction.

2 Minors from a respectful tangle

Theorem 3. For every surface Σ without boundary and integer k, there exists θ_{0} such that the following holds. Let G be a graph with a 2 -cell drawing in Σ and let \mathcal{T} be a respectful tangle in G of order $\theta \geq \theta_{0}$. For some $q \leq k$, let f_{1}, \ldots, f_{q} be distinct faces of G and let X be a set of k vertices of G, each incident with one of these faces; let X_{i} denote the set of vertices of X incident with f_{i}. Let $\Sigma^{\prime}=\Sigma-\left(f_{1} \cup \ldots \cup f_{q}\right)$. Let H be an edgeless graph and let r be a root function assigning to each vertex of H a non-empty subset of X. If r is topologically feasible in $\Sigma^{\prime}, d_{\mathcal{T}}\left(f_{i}, f_{j}\right) \geq \theta_{0}$ for all distinct i and j and X_{i} is free for $i=1, \ldots, q$, then H is a minor of G rooted in r.

Proof. We can assume $X_{i} \neq \emptyset$ for all i, as otherwise we can ignore the face f_{i}. We can also assume $q \geq 2$: if $q=0$, we can choose f_{1} arbitrarily and add an incident vertex to X, increasing q to 1 ; for $q=1$, we can choose f_{2} at \mathcal{T}-distance at least θ_{0} from f_{1} and add a vertex incident with f_{1} to X. The assumption that X_{1} and X_{2} are free is trivially satisfied, since G is connected. We also make all vertice of X roots by modifying r if necessary. It follows that Σ^{\prime} has at least two cuffs, each incident with a root vertex.

By Lemma 2, for $i=1, \ldots, q, G$ contains a sleeve $\left(\mathcal{C}_{i}, \mathcal{P}_{i}\right)$ around $\left(f_{i}, X_{i}\right)$ of order p with locus Δ_{i} and seam $\left(\mathcal{Q}_{i}, \mathcal{L}_{i}\right)$. Note that for $i \neq j$, we have $\Delta_{i} \cap \Delta_{j}=\emptyset$, since $d_{\mathcal{T}}\left(f_{i}, f_{j}\right) \geq \theta_{0}$. Let G^{\prime} be the graph obtained from G by, for $i=1, \ldots, q$,

- deleting everything in the open disk bounded by the belt of \mathcal{C}_{i} containing f_{i}, and
- contracting each path of \mathcal{Q}_{i} to a single vertex; let X_{i}^{\prime} denote the resulting set of vertices, and for $x \in X_{i}$, let x^{\prime} be the vertex of X_{i}^{\prime} to which it is connected by a path in \mathcal{L}_{i}.

We view G^{\prime} as drawn in a surface $\Sigma^{\prime \prime}$ homeomorphic to Σ^{\prime}, where the i-th cuff intersects G^{\prime} exactly in X_{i}^{\prime}. Let r^{\prime} be the root function where, for $z \in V(H)$, $r^{\prime}(z)=\left\{x^{\prime}: x \in r(z)\right\}$. Note that a minor of H in G^{\prime} rooted in r^{\prime} can be transformed into a minor of H in G rooted in r, by decontracting the paths in $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{q}$ and adding the paths in $\mathcal{L}_{1}, \ldots, \mathcal{L}_{q}$. Furthermore, since r is topologically feasible in $\Sigma^{\prime}, r^{\prime}$ is topologically feasible in $\Sigma^{\prime \prime}$. Therefore, to finish the proof by using Theorem 1, it suffices to argue that the drawing of G^{\prime} in $\Sigma^{\prime \prime}$ is p-generic.

For any simple G^{\prime}-normal curve c with ends in distinct cuffs of Σ^{\prime}, let f_{i} and f_{j} be the corresponding faces and C_{i} and C_{j} the corresponding belts. We have $\left|c \cap G^{\prime}\right| \geq \frac{1}{2}\left(d_{\mathcal{T}}\left(f_{i}, f_{j}\right)-d_{\mathcal{T}}\left(f_{i}, C_{i}\right)-d_{\mathcal{T}}\left(f_{j}, C_{j}\right)\right) \geq \frac{1}{2}\left(\theta_{0}-2(k+14) p-20\right)>$ p, as required.

Consider now a simple closed non-contractible G^{\prime}-normal curve c intersecting G^{\prime} in less than p vertices. Suppose first that c is disjoint from the cuffs of $\Sigma^{\prime \prime}$, and thus c is also G-normal and intersects G in less than p vertices when drawn in Σ. Let W be the corresponding closed walk in $R(G)$. Since c is non-contractible in $\Sigma^{\prime \prime}$ and $d_{\mathcal{T}}\left(f_{i}, f_{j}\right)>p$ for distinct i and j, there exists unique i such that $f_{i} \subset \operatorname{ins}_{\mathcal{T}}(W)$. Hence, $d_{\mathcal{T}}\left(f_{i}, v\right)<p$ for $v \in V(G) \cap c$, and thus c is drawn between f_{i} and the last cycle in \mathcal{C}_{i}. If c intersects the cuff, we obtain the same conclusion since c cannot intersect all cycles in \mathcal{C}_{i} between the belt and the last one.

If there existed $x^{\prime} \in X_{i}^{\prime}$ not belonging to c, then let P_{1}, \ldots, P_{p} be the paths of \mathcal{P}_{i} intersecting the path of \mathcal{Q}_{i} that was contracted to x^{\prime}. Then c must intersect all of P_{1}, \ldots, P_{p}, contradicting the assumption $|G \cap c|<p$. We conclude that $X_{i}^{\prime} \subseteq G \cap c$, confirming that the drawing of G^{\prime} in $\Sigma^{\prime \prime}$ is p-generic.

Let us now give a simple application.
Corollary 4. For every surface Σ without boundary and a graph H drawn in Σ, there exists θ_{1} such that the following holds. Let G be a 2-connected
graph with a 2 -cell drawing in Σ and let \mathcal{T} be a respectful tangle in G of order $\theta \geq \theta_{1}$. Let r be a root function such that $r(x)$ consists of a single vertex v_{x} for every $x \in V(H)$. If $d_{\mathcal{T}}\left(v_{x}, v_{y}\right) \geq \theta_{1}$ for every distinct $x, y \in V(H)$, then G contains H as a minor rooted in r.

Proof. Let $k=|V(H)|$ and $m=|E(H)|$. There exists edges e and e^{\prime} of G such that $d_{\mathcal{T}}\left(e, e^{\prime}\right) \geq \theta_{1}$, and thus on a path from e to e^{\prime} in G, we can find edges e_{1}, \ldots, e_{k+m} such that $d_{\mathcal{T}}\left(e_{i}, e_{j}\right) \geq \frac{\theta_{1}}{4(k+m)}$ for distinct i and j. Each vertex v_{x} is at \mathcal{T}-distance less than $\frac{\theta_{1}}{8(k+m)}$ from at most one of these edges, and thus we can assume that for $i=1, \ldots, m$, the \mathcal{T}-distance between e_{i} and v_{x} is at least $\frac{\theta_{1}}{8(k+m)}$ for every $x \in V(H)$. Assign to each edge $h=x y \in E(H)$ one of these edges and denote its ends h_{x} and h_{y}. Note that $\left\{h_{x}, h_{y}\right\}$ is free, since G is 2-connected. Let H^{\prime} be the edgeless graph with $V\left(H^{\prime}\right)=V(H)$, and let r^{\prime} be the root function such that for each $x \in V\left(H^{\prime}\right), r^{\prime}(x)$ consists of v_{x} and the vertices h_{x} for all edges h of H incident with x. Applying Theorem 3, we obtain a minor of H^{\prime} in G rooted in r^{\prime}. In combination with the edges e_{1}, \ldots, e_{m}, this gives a minor of H in G rooted in r.

3 Algorithm

Suppose we are given a graph G drawn normally in a surface Σ with boundary and an edgeless graph H with a normal root function r, and we want to decide whether H is a minor of G rooted in r. We will construct the algorithm inductively according to the complexity of the surface - the triple (g, h, k), where g is the genus of the surface, h is the number of holes, and k is the number of root vertices, sorted lexicographically.

The basic operation we use is cutting: Suppose for example that there exists a non-contractible separating G-normal curve c such that $|G \cap c| \leq k^{\prime}$, for some k^{\prime} depending only on (g, h, k). There are only finitely many ways how a minor of H can intersect $G \cap c$, and for each of them, we obtain a problem of the form: do prescribed rooted minors exist in both graphs into which G is cut along c ? Both of these subproblems can be solved recursively, since each of the resulting surfaces has complexity at most $(g-2, h+1, k+$ $\left.k^{\prime}\right) \prec(g, h, k)$.

We aim to keep simplifying the instance by cutting until Theorem 3 can be applied, or until we reduce to one of the cases we already dealt with in the previous lecture or in the homework assignment (disk, cylinder). Let Σ^{\prime} denote the surface obtained from Σ by patching each cuff, let f_{1}, \ldots, f_{h} be the faces corresponding to these patches, and for $i=1, \ldots, h$, let X_{i} be the set of roots incident with f_{i}. Let us go over each of the assumptions of

Theorem 3 and present a reduction in case it is not satisfied:

- G does not contain a respectful tangle \mathcal{T} of order θ_{0}. If Σ^{\prime} is the sphere, this implies G has treewidth at most $\frac{3}{2} \theta_{0}$, and we can apply an algorithm for graphs with bounded treewidth (the fact that H is a rooted minor of G can be expressed in monadic second-order logic). If Σ^{\prime} is not the sphere, this implies G drawn in Σ^{\prime} has representativity less than θ_{0}. Cutting along the corresponding curve reduces the problem to subproblems of complexity at most $\left(g-1, h+2, k+2 \theta_{0}\right) \prec(g, h, k)$.
- r is not topologically feasible in Σ : Then H cannot appear in G as a rooted minor.
- $d_{\mathcal{T}}\left(f_{i}, f_{j}\right)<\theta_{0}$ for some distinct i and j. Let W be a tie in $R(G)$ certifying this. If W is a path from f_{i} to f_{j}, then cutting along W reduces the problem to subproblems of complexity ($g, h-1, k+2 \theta_{0}$) \prec (g, h, k). If W is a lollipop or a dumbbell, then cutting along W reduces the problem to subproblems of complexity $\left(g, h-1, k+2 \theta_{0}\right) \prec(g, h, k)$ and to ones in a cylinder.
- If X_{i} is not free, then there exists a cycle W in $R(G)$ intersecting G in less than $\left|X_{i}\right|$ vertices and such that $X_{i} \subset \operatorname{ins}_{\mathcal{T}}(W)$. Cutting along W educes the problem to subproblems of complexity at most $(g, h, k-1) \prec(g, h, k)$ and to ones in a cylinder.

