Definition

Model μ of a minor of *H* in *G* is a function s.t.

- $\mu(v_1), \ldots, \mu(v_k)$ (where $V(H) = \{v_1, \ldots, v_k\}$ are vertex-disjoint connected subgraphs of *G*, and
- for $e = uv \in E(H)$, $\mu(e)$ is an edge of G with one end in $\mu(u)$ and the other in $\mu(v)$.

For $r : V(H) \to 2^{V(G)}$ such that $r(u) \cap r(v) = \emptyset$ for distinct u, v, the model is rooted in r if $r(v) \subseteq V(\mu(v))$ for each $v \in v(H)$.

•
$$V(H) = \{s_1, t_1, \dots, s_n, t_n\}, E(H) = \{s_1t_1, \dots, s_nt_n\}, r(s_i) = \{u_i\}, r(t_i) = \{v_i\}.$$

• $V(H) = \{p_1, p_n\}, E(H) = \emptyset, r(p_i) = \{u_i, v_i\}.$

Theorem

For every H with vertices v_1, \ldots, v_k drawn in a surface Σ , there exists θ such that the following holds. If G is drawn in Σ has a respectful tangle T of order θ , $r(v_i) = \{u_i\}$ for $i = 1, \ldots, k$, and $d_T(u_i, u_j) = \theta$ for $i \neq j$, then G has a minor of H rooted in r.

For a surface Σ with holes, the components of the boundary are cuffs.

Drawing in Σ is <u>normal</u> if it intersects the boundary only in vertices. Root assignment *r* is <u>normal</u> if $r(v) \subset$ boundary for each *v*.

G drawn normally in the disk, v_1, v_2, \ldots, v_m vertices in the cuff. Root assignment *r* is topologically infeasible if for some $i_1 < i_2 < i_3 < i_4$ and $u \neq v$, $v_{i_1}, v_{i_3} \in r(u)$ and $v_{i_2}, v_{i_4} \in r(v)$.

Topologically feasible otherwise.

A *G*-slice: simple *G*-normal curve *c* intersecting the cuff exactly in its ends, splits the disk into Δ_1 and Δ_2 . $r/c = \{v : r(v) \cap \Delta_1 \neq \emptyset \neq r(v) \cap \Delta_2$. Connectivity-wise feasible: $|G \cap c| \geq |r/c|$ for every *G*-slice *c*.

Theorem

G normally drawn in a disk, r normal root function. Topologically and connectivity-wise feasible \Rightarrow edgeless minor rooted in r.

We can assume $G \cap cuff = roots$.

G-slice disjoint from G splitting G into two parts:

Simple closed curve intersecting *G* in just one vertex, interior contains a part of *G*:

We can assume: faces intersecting cuffs are bounded by paths.

G-slice intersecting G in a root, splitting G into two parts:

$$|r(y)| = 1$$
:

Select *y* spanning minimal arc:

Contract path between consecutive vertices of r(y):

In a surface Σ , a normal drawing of *G* is *p*-generic if

- curves between distinct cuffs intersect *G* at least *p* times
- simple closed *G*-normal non-contractible curve *c* intersects
 G in < *p* points ⇒ for a cuff *k* homotopic to *k*,
 G ∩ *k* ⊆ *G* ∩ *c*.

A normal root assignment *r* is topologically feasible if there exists a forest with components $F_v : v \in \text{dom}(r)$ drawn in Σ such that $r(v) \subseteq V(F_v)$.

Theorem

 $(\forall \Sigma, k)(\exists p)$: Let G be a graph with a normal drawing in a surface Σ with at least two holes, at most k vertices in the boundary of Σ , each cuff contains at least one vertex. Normal root assignment r is topologically feasible and the drawing of G is p-generic \Rightarrow edgeless minor rooted in r.

g genus, h number of holes of $\Sigma, k \ll s \ll p$

G-net N drawn in Σ so that

- $N \cap G = V(N) \cap V(G),$
- each cuff traces a cycle in N, and
- N has exactly one face, homeomorphic to an open disk.

N with $|G \cap N|$ minimum, subject to that with |V(N)| minimum.

- N connected, minimum degree at least two.
- One face \Rightarrow only non-contractible cycles.
- At least two cuffs: not a cycle.

- N': suppress vertices of degree two in N.
 - Minimum degree at least three: $|E(N')| \ge \frac{3}{2}|V(N')|$.
 - One face, *h* holes: |E(N')| = |V(N')| + (h+1) + g 2.
 - $|V(N')| \le 2(g+h-1), |E(N')| \le 3(g+h-1).$

X = vertices of *N* of degree at least three or contained in cuffs: $|X| \le 2(g + h) + k$

- S = the subgraph of N consisting of
 - paths of length at most *s* starting in *X*, and
 - paths of length at most 3s between the vertices of X.

 $|V(S)| \leq 9(g+h)s \ll p$

Drawing of *G* is *p*-generic, all cycles in *N* are non-contractible:

• No path in S internally disjoint from the cuffs has both ends

in cuffs.

• Every cycle in *S* bounds a cuff.

Each component of S is either

- a tree, or
- unicyclic with the cycle tracing a cuff.

For each v in a cuff, there exist p disjoint paths from v to a vertex z in another cuff.

- Otherwise, separated by a set *Z* of less than *p* vertices.
- Non-contractible curve through Z contradicting *p*-genericity of *G*.

At least $\frac{p-|V(S)|}{|V(S)|} \ge s$ of the paths are

- internally disjoint from *S*, and
- leaving v through the same angle a_v of N.

The forest F certifying topological feasibility of r can be shifted so that

- F is disjoint from S except for the cuffs,
- *F* intersects *N* in at most $\gamma_{\Sigma,k} \ll s$ vertices, and
- for v in a cuff, all edges of F leave through the angle a_v .

- Cut Σ along *N*, obtaining *G'* in a disk.
- r': According to components into which F is cut.
- Apply the disk theorem.
- Topological feasibility from the choice of r'.
- We need to verify connectivity-wise feasibility.

For contradiction: G'-slice c, intersecting G' in t < |r'/c| vertices.

- $|r'/c| \leq 2\gamma_{\Sigma,k} \ll s.$
- $N \cup c$ has two faces, cycle *C* separating them.

<u>Case 1: $C \cap X = \emptyset \Rightarrow C - c$ is a path of at least |r'/c| vertices of degree two in *N*.</u>

Replacing C - c by c in N gives a net contradicting the minimality of N.

<u>Case 2: $C \cap X \neq \emptyset$, $C \not\subseteq S \cup c \Rightarrow C - c$ contains a path *R* of $s \gg |r'/c|$ vertices of degree two.</u>

Replacing R by c in N gives a net contradicting the minimality of N.

Case 3: $C \cap X \neq \emptyset$, $C \subseteq S \cup c$

- $r'/c \neq \emptyset \Rightarrow C$ contains a vertex v in a cuff
- The angle a_v in the disk bounded by *C*.
- More than *s* paths internally disjoint from *S* through a_v .
- Contradiction with $t < |r'/c| \le s$.

We have:

Theorem

 $(\forall \Sigma, k)(\exists p)$: Let G be a graph with a normal drawing in a surface Σ with at least two holes, at most k vertices in the boundary of Σ , each cuff contains at least one vertex. Normal root assignment r is topologically feasible and the drawing of G is <u>p-generic</u> \Rightarrow edgeless minor rooted in r.

Want:

- Get rid of "at least two holes", "each cuff contains a vertex".
- Weaken the *p*-generic assumption: For a curve *c* surrounding a cuff *k*, only require |G ∩ c| ≥ |G ∩ k|.