Tangles

Definition

Tangle \mathcal{T} of order $\theta=$ set of separations of G of order less than θ s.t.
(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ for every separation (A, B) of order less than θ.
(T2) $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T} \Rightarrow A_{1} \cup A_{2} \cup A_{3} \neq G$.
(T3) $(A, B) \in \mathcal{T} \Rightarrow V(A) \neq V(G)$.

Definition
Pre-tangle: Only satisfies (T1) and (T2).

Lemma

\mathcal{T} pre-tangle of order θ. Suppose $\left(A_{1}, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right) \in \mathcal{T}$ and $\left|\bigcup_{i=1}^{m} V\left(A_{i} \cap B_{i}\right)\right|<\theta$. Then

$$
\left(\bigcup_{i=1}^{m} A_{i}, \bigcap_{i=1}^{m} B_{i}\right) \in \mathcal{T} .
$$

Tangle(?) in an embedded graph

Drawing is 2-cell if all faces are open disks.

Closed curves

Representativity $=$ minimum number of intersections of G with a non-contractible closed curve.

A curve is G-normal if it intersects G only in vertices.
Radial graph: $V(R(G))=V(G) \cup F(G), E(R(G))=$ incidence between vertices and faces.

- vertices of $G \leftrightarrow$ one part of $V(R(G))$
- faces of $G \leftrightarrow$ the other part of $V(R(G))$
- edges of $G \leftrightarrow$ the faces of $R(G)$
atoms $A(G)$ of G. $R(a)=$ the corresponding object in $R(G)$.

Observation
G-normal curves correspond to walks in $R(G)$.

Observation
 $R(G)=R\left(G^{\star}\right)$.

G
$R(6)$

Observation
G-normal curves correspond to walks in $R(G)$.

Observation
 $R(G)=R\left(G^{\star}\right)$.

$$
G \quad R(G)=R\left(G^{*}\right) \quad G^{*}
$$

Slopes

H : 2-cell drawing in Σ.

Definition

A slope ins of order θ assigns to each cycle $C \subseteq H$ of length less than 2θ a closed disk ins $(C) \subseteq \Sigma$ bounded by C, s.t.
(S1) $\ell\left(C_{1}\right), \ell\left(C_{2}\right)<2 \theta, C_{1} \subseteq \operatorname{ins}\left(C_{2}\right) \Rightarrow \operatorname{ins}\left(C_{1}\right) \subseteq \operatorname{ins}\left(C_{2}\right)$
(S2) $F \subseteq H$ a theta graph, all cycles in F have length less than $2 \theta \Rightarrow$ for some $C \subseteq F$, every cycle $C^{\prime} \subseteq F$ satisfies $\operatorname{ins}\left(C^{\prime}\right) \subseteq \operatorname{ins}(C)$.
(s1)

(S2)
FORBIDDEN:

- Σ not the sphere: Slope exists iff every non-contractible cycle has length at least 2θ; ins unique.
- Σ is the sphere: "Degenerate" slopes.

$F \subseteq H$ is confined if all cycles in F have length less than 2θ.

$$
\operatorname{ins}(F)=F \cup \bigcup_{C \subseteq F} \operatorname{ins}(C)
$$

(S2): F confined $\Rightarrow \operatorname{ins}(F)=\operatorname{ins}(C)$ for some cycle C in F.

Lemma

There exists a cactus $F^{\prime} \subseteq F$ such that $\operatorname{ins}(F)=\operatorname{ins}\left(F^{\prime}\right)$, and for any distinct 2-connected blocks B_{1} and B_{2} of F^{\prime}, ins $\left(B_{1}\right)$ and ins $\left(B_{2}\right)$ intersect in at most one vertex. For some face f of F, $\operatorname{ins}(F)=\Sigma \backslash f$.

Lemma

There exists a cactus $F^{\prime} \subseteq F$ such that $\operatorname{ins}(F)=\operatorname{ins}\left(F^{\prime}\right)$, and for any distinct 2-connected blocks B_{1} and B_{2} of F^{\prime}, ins $\left(B_{1}\right)$ and ins $\left(B_{2}\right)$ intersect in at most one vertex. For some face f of F, $\operatorname{ins}(F)=\Sigma \backslash f$.

$$
\left.(3) \leq \operatorname{ins}_{\operatorname{ins}\left(C_{2}\right)} C_{2}\right) \text { or } \text { br }\left(S_{2}\right)
$$

Z a set of faces of H. $N(Z)$: Vertices and edges incident with both Z and \bar{Z}.

H bipartite, X one of parts.

Definition

A set Z of faces is X-small if $|V(N(Z)) \cap X|<\theta$ and $Z \subset \operatorname{ins}(N(Z))$.

Lemma

$Z_{1}, Z_{2}, Z_{3} X$-small $\Rightarrow Z_{1} \cup Z_{2} \cup Z_{3} \neq$ all faces of H.

Proof.

Complicated. Basic case:

- F theta-subgraph, Z_{i} faces of H inside one of faces of F.
- $Z_{1} \cup Z_{2} \cup Z_{3}=$ all faces of H.
- $N\left(Z_{i}\right)=$ cycle bounding the i-th face of F.
- By (S2), one of Z_{1}, Z_{2}, Z_{3} is not small.
G with 2 -cell drawing in Σ. For a closed disk Δ whose boundary is G-normal,

$$
\left(A_{\Delta}, B_{\Delta}\right)=(G \cap \Delta, G \cap \overline{\Sigma \backslash \Delta}) .
$$

\mathcal{T} : a pre-tangle or tangle of order θ in G.

Definition

\mathcal{T} is respectful if every cycle $C \subseteq R(G)$ of length less than 2θ bounds a disk $\Delta \subseteq \Sigma$ such that $\left(A_{\Delta}, B_{\Delta}\right) \in \mathcal{T}$.
We define $\operatorname{ins}_{\mathcal{T}}(C)=\Delta$.

- $\Sigma \neq$ the sphere: Implies representativity $\geq \theta, \Delta$ unique.
- $\Sigma=$ the sphere: Always true.

Lemma
\mathcal{T} respectful pre-tangle of order θ in $G \Rightarrow i n s_{\mathcal{T}}$ is a slope of order θ in $R(G)$.

Proof.
(si)

$$
\begin{aligned}
& \operatorname{ins}_{\mathcal{\tau}}\left(C_{2}\right) \cup \operatorname{ins}_{\mathcal{J}}\left(C_{1}\right)=\sum \\
& A_{2} \cup A_{1}=G
\end{aligned}
$$

$$
(T 2) \downarrow
$$

Lemma

\mathcal{T} respectful pre-tangle of order θ in $G \Rightarrow$ ins $_{\mathcal{T}}$ is a slope of order θ in $R(G)$.

Proof.
(SQ)

$$
A_{1} \cup A_{2} \cup A_{3}=6
$$

$$
(T Z) \downarrow
$$

From a slope to a pre-tangle

For $A \subseteq G$, let Z_{A} be the faces of $R(G)$ corresponding to the edges of A.
ins: a slope of order θ in $R(G)$

Definition

$\mathcal{T}_{\text {ins }}=$ the set of separations (A, B) of order less than θ such that Z_{A} is $V(G)$-small in $R(G)$.

Note:
$V\left(N\left(Z_{A}\right)\right) \cap V(G)=$ vertices incident with both $E(A)$ and $E(B)$

$$
\subseteq V(A \cap B)
$$

Lemma

ins is a slope of order θ in $R(G) \Rightarrow \mathcal{T}_{\text {ins }}$ is a respectful pre-tangle of order θ in G.

Proof.

(T1) ins $\left(N\left(Z_{A}\right)\right)$ is a complement of a face of $N\left(Z_{A}\right)$,

$$
N\left(Z_{A}\right)=N\left(Z_{B}\right) \Rightarrow Z_{A} \text { or } Z_{B} \text { is } V(G) \text {-small. }
$$

(T2) Union of three $V(G)$-small sets does not contain all faces.
Respectfulness: Z_{1}, Z_{2} partition of $F(R(G))$ with $N\left(Z_{1}\right)=C=N\left(Z_{2}\right), Z_{1}$ or Z_{2} is small.

1: 1 correspondence

Lemma

\mathcal{T} respectful pre-tangle of order θ in G :

$$
\mathcal{T}_{\text {ins }_{\mathcal{T}}}=\mathcal{T} .
$$

Lemma

 ins slope of order θ in $R(G)$:$$
i n s \mathcal{T}_{\text {ins }}=i n s
$$

A slope in $R(G)$ is degenerate if for some face f bounded by a 4-cycle C, $\operatorname{ins}(C) \neq$ the closure of f.

Lemma

For $\theta \geq 3, \mathcal{T}_{\text {ins }}$ is a tangle if and only if ins is non-degenerate.

Proof.

$\Rightarrow f$ of $R(G)$ corresponds to $e \in E(G)$.
By (T3) and (T1), $(e, G-e) \in \mathcal{T}_{\text {ins }}$, so ins $(C)=$ the closure of f.

A slope in $R(G)$ is degenerate if for some face f bounded by a 4-cycle C, $\operatorname{ins}(C) \neq$ the closure of f.

Lemma

For $\theta \geq 3, \mathcal{T}_{\text {ins }}$ is a tangle if and only if ins is non-degenerate.

Proof.

\Leftarrow By the assumption, $(e, G-e) \in \mathcal{T}_{\text {ins }}$ for every $e \in E(G)$. If $(A, B) \in \mathcal{T}_{\text {ins }}$ and $V(A)=V(G)$, then

$$
(G, V(B))=\left(A \cup \bigcup_{e \in E(B)} e, B \cap \bigcap_{e \in E(B)} G-e\right) \in \mathcal{T}_{\text {ins }}
$$

contradicting (T2).

Theorem

G 2-cell drawing in $\Sigma \neq$ the sphere.
G contains a respectful tangle of order $\theta \geq 3$ iff the representativity is at least θ. This respectful tangle is unique.

Proof.

The unique slope is non-degenerate.

Theorem

If G is a plane graph, then G and G^{\star} have the same branchwidth, and thus their treewidths differs by a factor of at most 3/2.

Proof.

Tangles in G and G^{\star} correspond to non-degenerate slopes in $R(G)=R\left(G^{\star}\right)$, branchwidth $=$ maximum order of a tangle.

For a closed walk W in $R(G): G[W]=$ the subgraph on vertices and edges of W, ins $(W)=\operatorname{ins}(G[W])$.

Definition

For $a, b \in A(G)$,

- $d(a, b)=0$ if $a=b$,
- $d(a, b)=\ell / 2$ if \exists a closed walk W in $R(G), \ell(W)<2 \theta$, such that $R(a), R(b) \operatorname{ins}_{\mathcal{T}}(W)$, and ℓ is the length of the shortest such walk,
- $d(a, b)=\theta$ otherwise.

$$
d(f, e) \leq 7
$$

Homework assignment:

- d is a metric
- It suffices to take into account limited types of walks (ties).
- For each $a \in A(G)$ and $k<\theta$, the set

$$
\bigcup_{b \in A(G), d(a, b) \leq k} R(b)
$$

is "almost a disk".

- For each $a \in A(G)$, there exists $e \in E(G)$ s.t. $d(a, b)=\theta$.

