Definition

Tangle T of order θ = set of separations of G of order less than θ s.t.

(T1) $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$ for every separation (A, B) of order less than θ .

(T2) $(A_1, B_1), (A_2, B_2), (A_3, B_3) \in \mathcal{T} \Rightarrow A_1 \cup A_2 \cup A_3 \neq G.$ (T3) $(A, B) \in \mathcal{T} \Rightarrow V(A) \neq V(G).$

Definition

Pre-tangle: Only satisfies (T1) and (T2).

 \mathcal{T} pre-tangle of order θ . Suppose $(A_1, B_1), \dots, (A_m, B_m) \in \mathcal{T}$ and $\left|\bigcup_{i=1}^m V(A_i \cap B_i)\right| < \theta$. Then

$$\left(\bigcup_{i=1}^m A_i, \bigcap_{i=1}^m B_i\right) \in \mathcal{T}.$$

Tangle(?) in an embedded graph

Drawing is 2-cell if all faces are open disks.

Closed curves

Representativity = minimum number of intersections of G with a non-contractible closed curve.

A curve is *G*-normal if it intersects *G* only in vertices. Radial graph: $V(R(G)) = V(G) \cup F(G)$, E(R(G)) = incidence between vertices and faces.

- vertices of $G \leftrightarrow$ one part of V(R(G))
- faces of $G \leftrightarrow$ the other part of V(R(G))
- edges of $G \leftrightarrow$ the faces of R(G)

atoms A(G) of G. R(a) = the corresponding object in R(G).

Observation

G-normal curves correspond to walks in R(G).

Observation

 $R(G) = R(G^{\star}).$

G R (6)

Observation

G-normal curves correspond to walks in R(G).

Observation

 $R(G) = R(G^{\star}).$

Slopes

H: 2-cell drawing in Σ .

Definition

A slope ins of order θ assigns to each cycle $C \subseteq H$ of length less than 2θ a closed disk $ins(C) \subseteq \Sigma$ bounded by C, s.t. (S1) $\ell(C_1), \ell(C_2) < 2\theta, C_1 \subseteq ins(C_2) \Rightarrow ins(C_1) \subseteq ins(C_2)$ (S2) $F \subseteq H$ a theta graph, all cycles in F have length less than $2\theta \Rightarrow$ for some $C \subseteq F$, every cycle $C' \subseteq F$ satisfies $ins(C') \subseteq ins(C)$.

- Σ not the sphere: Slope exists iff every non-contractible cycle has length at least 2θ; ins unique.
- Σ is the sphere: "Degenerate" slopes.

 $F \subseteq H$ is confined if all cycles in *F* have length less than 2θ .

$$\operatorname{ins}(F) = F \cup \bigcup_{C \subseteq F} \operatorname{ins}(C).$$

(S2): *F* confined \Rightarrow ins(*F*) = ins(*C*) for some cycle *C* in *F*.

There exists a cactus $F' \subseteq F$ such that ins(F) = ins(F'), and for any distinct 2-connected blocks B_1 and B_2 of F', $ins(B_1)$ and $ins(B_2)$ intersect in at most one vertex. For some face f of F, $ins(F) = \Sigma \setminus f$.

There exists a cactus $F' \subseteq F$ such that ins(F) = ins(F'), and for any distinct 2-connected blocks B_1 and B_2 of F', $ins(B_1)$ and $ins(B_2)$ intersect in at most one vertex. For some face f of F, $ins(F) = \Sigma \setminus f$.

Z a set of faces of H. N(Z): Vertices and edges incident with both Z and \overline{Z} .

H bipartite, X one of parts.

Definition

A set Z of faces is X-small if $|V(N(Z)) \cap X| < \theta$ and $Z \subset ins(N(Z))$.

$$Z_1, Z_2, Z_3 X$$
-small $\Rightarrow Z_1 \cup Z_2 \cup Z_3 \neq$ all faces of H.

Proof.

Complicated. Basic case:

- F theta-subgraph, Z_i faces of H inside one of faces of F.
- $Z_1 \cup Z_2 \cup Z_3 =$ all faces of *H*.
- $N(Z_i)$ = cycle bounding the *i*-th face of *F*.
- By (S2), one of *Z*₁, *Z*₂, *Z*₃ is not small.

G with 2-cell drawing in Σ . For a closed disk Δ whose boundary is *G*-normal,

$$(A_{\Delta}, B_{\Delta}) = (G \cap \Delta, G \cap \overline{\Sigma \setminus \Delta}).$$

 \mathcal{T} : a pre-tangle or tangle of order θ in G.

Definition

 \mathcal{T} is respectful if every cycle $C \subseteq R(G)$ of length less than 2θ bounds a disk $\Delta \subseteq \Sigma$ such that $(A_{\Delta}, B_{\Delta}) \in \mathcal{T}$.

We define $\operatorname{ins}_{\mathcal{T}}(C) = \Delta$.

- $\Sigma \neq$ the sphere: Implies representativity $\geq \theta$, Δ unique.
- Σ = the sphere: Always true.

\mathcal{T} respectful pre-tangle of order θ in $G \Rightarrow ins_{\mathcal{T}}$ is a slope of order θ in R(G).

Proof.

 $\frac{\operatorname{ins}_{\mathcal{F}}(C_2) \cup \operatorname{ins}_{\mathcal{F}}(C_3)}{A_2} \cup A_1 = G$ (51) С, A. (ins (G)2 (T2) 4 115~16

\mathcal{T} respectful pre-tangle of order θ in $G \Rightarrow ins_{\mathcal{T}}$ is a slope of order θ in R(G).

Proof.

(S2)A1 U A2 U A3 = G (TZ) /2

For $A \subseteq G$, let Z_A be the faces of R(G) corresponding to the edges of A.

ins: a slope of order θ in R(G)

Definition

 \mathcal{T}_{ins} = the set of separations (*A*, *B*) of order less than θ such that Z_A is V(G)-small in R(G).

Note:

 $V(N(Z_A)) \cap V(G)$ = vertices incident with both E(A) and E(B) $\subseteq V(A \cap B)$.

ins is a slope of order θ in $R(G) \Rightarrow T_{ins}$ is a respectful pre-tangle of order θ in G.

Proof.

(T1) ins($N(Z_A)$) is a complement of a face of $N(Z_A)$, $N(Z_A) = N(Z_B) \Rightarrow Z_A$ or Z_B is V(G)-small.

(T2) Union of three V(G)-small sets does not contain all faces. Respectfulness: Z_1 , Z_2 partition of F(R(G)) with $N(Z_1) = C = N(Z_2)$, Z_1 or Z_2 is small.

T respectful pre-tangle of order θ in G:

$$\mathcal{T}_{ins_{\mathcal{T}}} = \mathcal{T}.$$

Lemma

ins slope of order θ in R(G):

$$ins_{\mathcal{T}_{ins}} = ins$$
 .

A slope in R(G) is degenerate if for some face f bounded by a 4-cycle C,

 $ins(C) \neq$ the closure of f.

Lemma

For $\theta \geq 3$, T_{ins} is a tangle if and only if ins is non-degenerate.

Proof.

 \Rightarrow *f* of *R*(*G*) corresponds to *e* \in *E*(*G*).

By (T3) and (T1), $(e, G - e) \in \mathcal{T}_{ins}$, so ins(C) = the closure of f.

A slope in R(G) is degenerate if for some face f bounded by a 4-cycle C,

 $ins(C) \neq$ the closure of f.

Lemma

For $\theta \geq 3$, T_{ins} is a tangle if and only if ins is non-degenerate.

Proof.

⇐ By the assumption, $(e, G - e) \in T_{ins}$ for every $e \in E(G)$. If $(A, B) \in T_{ins}$ and V(A) = V(G), then

$$(G,V(B))=\left(A\cup igcup_{e\in E(B)}e,B\cap igcap_{e\in E(B)}G-e
ight)\in \mathcal{T}_{\mathsf{ins}},$$

contradicting (T2).

Theorem

G 2-cell drawing in $\Sigma \neq$ the sphere.

G contains a respectful tangle of order $\theta \ge 3$ iff the representativity is at least θ . This respectful tangle is unique.

Proof.

The unique slope is non-degenerate.

Theorem

If G is a plane graph, then G and G^* have the same branchwidth, and thus their treewidths differs by a factor of at most 3/2.

Proof.

Tangles in *G* and G^* correspond to non-degenerate slopes in $R(G) = R(G^*)$, branchwidth = maximum order of a tangle.

For a closed walk W in R(G): G[W] = the subgraph on vertices and edges of W, ins(W) = ins(G[W]).

Definition

For $a, b \in A(G)$,

- d(a, b) = 0 if a = b,
- d(a, b) = ℓ/2 if ∃ a closed walk W in R(G), ℓ(W) < 2θ, such that R(a), R(b) ins_T(W), and ℓ is the length of the shortest such walk,
- $d(a, b) = \theta$ otherwise.

Homework assignment:

- *d* is a metric
- It suffices to take into account limited types of walks (ties).
- For each $a \in A(G)$ and $k < \theta$, the set

$$\bigcup_{b\in A(G),d(a,b)\leq k}R(b)$$

is "almost a disk".

• For each $a \in A(G)$, there exists $e \in E(G)$ s.t. $d(a, b) = \theta$.