Flows and linkages

Observation

Edge congestion a, maximum degree $\Delta \Rightarrow$ vertex congestion $\leq \Delta a+1$.

Observation

Flow of size s and vertex congestion $c \Rightarrow$ flow of size s/c and vertex congestion $1 \Rightarrow(A-B)$-linkage of size $\geq s / c$.

Definition

Set W is a-well-linked/node-well-linked if for all $A, B \subset W$ disjoint, of the same size, there exists a flow from A to B of size $|A|$ and edge congestion $\leq a /$ a total $(A-B)$-linkage.

Observation

Either W is a-well-linked, or there exists $X \subseteq V(G)$ such that number of edges leaving $X<\operatorname{amin}(|W \cap X|,|W \backslash X|)$.

Definition

Disjoint sets A and B are node-linked if for all $W \subseteq A$ and $Z \subset B$ of the same size, there exists a total $(W-Z)$-linkage.

Definition

(G, A, B) a brick of height h if A, B disjoint and $|A|=|B|=h$. Node-linked if

- Both A and B are node-well-linked.
- A and B are node-linked.
a-well-linked if $A \cup B$ is a-well-linked.

Path-of-sets system

Lemma

a-well-linked path-of-sets system of height at least $16(\Delta a+1)^{2} h \Rightarrow$ node-linked one of height h.

Theorem

Node-linked path-of-sets system of width $2 n^{2}$ and height $2 n(6 n+9)$ implies a minor of W_{n}.

Homework:

Theorem

If G has treewidth $\Omega\left(t^{4} \sqrt{\log t}\right)$, then G contains a subgraph of maximum degree at most four and treewidth at least t.

Theorem (Chekuri and Chuzhoy)

If G has treewidth $\Omega(t$ polylog $t)$, then G contains a subgraph H of maximum degree at most three and treewidth at least t. Moreover, H contains a node-well-linked set of size t, and all vertices of this set have degree 1 in H .

- Advantage: edge-disjoint paths \sim vertex-disjoint paths.
- Gives a node-linked path-of-sets system of width 1 and height $t / 2$.

The doubling theorem

Theorem

Node-linked path-of-sets system of width w and height $h \Rightarrow$ 64-well-linked path-of-sets system of maximum degree three, width $2 w$ and height $h / 2^{9}$.

- Iterate doubling and making the system node-linked.
- After $\Theta(\log n)$ iterations: width $2 n^{2}$, height $h / n^{c} \geq 2 n(6 n+9)$

Definition

A good semi-brick of height h is (G, A, B), where A, B are disjoint,

- vertices in A and B have degree 1,
- $|A|=h / 64$ and $|B|=h$,
- A and B are node-linked and B is node-well-linked in G.

Definition

A splintering of a semi-brick (G, A, B) of height h :

- X and Y disjoint induced subgraphs of G
- $A^{\prime} \subset A \cap V(X)$ of size $h / 2^{9}, B^{\prime} \subset B \cap V(Y)$ of size $h / 64$
- $C \subset V(X) \backslash A^{\prime}$ and $D \subset V(Y) \backslash B^{\prime}$ of size $h / 2^{9}$
- perfect matching between C and D in G
- $A^{\prime} \cup C$ 64-well-linked in $X, D \cup B^{\prime}\left(64, \frac{h}{512}\right)$-well-linked in Y.

Theorem

Every good semi-brick has a splintering.
Implies Doubling theorem:

Theorem

Every good semi-brick has a splintering.
Implies Doubling theorem:

Definition

A weak splintering of a semi-brick (G, A, B) of height h :

- X and Y disjoint induced subgraphs of $G-(A \cup B)$.
- \mathcal{P} a $(B-X \cup Y)$-linkage, $h / 32$ paths to X and $h / 32$ to Y.
- ends of \mathcal{P} in X and Y are $(64, h / 512)$-well-linked.

Lemma
A weak splintering implies a splintering.

Cleaning lemma

Lemma

\mathcal{P}_{1} an $(R-S)$-linkage of size a_{1}, an $(R-T)$ linkage of size $a_{2} \leq a_{1} \Rightarrow$ an $(R-S \cup T)$-linkage \mathcal{P} of size a_{1} such that

- $a_{1}-a_{2}$ of the paths of \mathcal{P} belong to \mathcal{P}_{1},
- the remaining a_{2} paths end in T.

Proof.

- G minimal containing \mathcal{P}_{1} and an $(R-T)$ linkage \mathcal{P}_{2} of size a_{2}, ending in T_{0}
- augmenting path algorithm starting from \mathcal{P}_{2} gives \mathcal{P}
- paths not to T_{0} belong to \mathcal{P}_{1}

Proof.

- G minimal containing \mathcal{P}_{1} and an $(R-T)$ linkage \mathcal{P}_{2} of size a_{2}, ending in T_{0}
- augmenting path algorithm starting from \mathcal{P}_{2} gives \mathcal{P}
- paths not to T_{0} belong to \mathcal{P}_{1}

Lemma

A weak splintering implies a splintering.

Definition

A cluster in a good semi-brick (G, A, B) is $C \subset G-(A \cup B)$ s.t. each vertex of C has at most one neighbor outside. (a, k)-well-linked if ∂C is (a, k)-well-linked in C.
A balanced C-split: an ordered partition (L, R) of $V(G) \backslash V(C)$ such that $|R \cap B| \geq|L \cap B| \geq|B| / 4$ $\underline{e(L, R)}=$ number of edges from L to R.

A balanced C-split (L, R) is good if $e(L, R) \leq \frac{7}{32} h$, perfect if additionally $\frac{1}{28} h \leq e(L, R)$.

Lemma

(G, A, B) a good semi-brick, C a perfect ($64, h / 512$)-well-linked cluster, $|\partial C| \leq|A|+|B| \Rightarrow(G, A, B)$ contains a weak splintering.

Theorem

(G, A, B) a good semi-brick, C a good 23-well-linked cluster s.t. $|\partial C|$ is minimum and subject to that $|C|$ is minimum. Then either C is perfect or (G, A, B) contains a splintering.

Such C exists and $|\partial C| \leq|A|+|B|:$ Consider $G-(A \cup B)$.

Important ideas:

- Looms (and especially planar looms) can be cleaned to grids.
- Path-of-sets systems and their doubling.
- Bounding the maximum degree, flows imply linkages.
- Cleaning lemma.

