Theorem

If $tw(G) \ge f(n)$, then $W_n \preceq G$.

Upper bounds:

- f exists: Robertson and Seymour'84
- $f(n) \leq 20^{2n^5}$: Robertson, Seymour, and Thomas'94
- $f(n) = O(n^{100})$: Chekuri, Chuzhoy'16
- $f(n) = O(n^9 \text{polylog } n)$: Chekuri, Tan'19

Lower bounds:

- $f(n) = \Omega(n^2)$ because of K_n
- $f(n) = \Omega(n^2 \log n)$ because of random graphs

For every planar graph H, there exists n_H such that $H \leq W_{n_H}$.

Corollary

For H planar, if G does not contain H as a minor, then $tw(G) < f(n_H)$.

(A - B)-linkage: Set \mathcal{L} of disjoint A - B paths. Total if $|A| = |B| = |\mathcal{L}|$. $G_{\mathcal{L}}$: $L_1, L_2 \in \mathcal{L}$ adjancent if G contains a path from L_1 to L_2 disjoint from rest of \mathcal{L} .

Loom (G, A, B, U, D) of order |A| = |B|: For every total (A - B)-linkage containing U and D, $G_{\mathcal{L}}$ is a path from U to D.

From looms to grids

Theorem

Loom (G, A, B, U, D) of order n + 2, \exists a total (A – B)-linkage containing U and D, a (V(U) – V(D))-linkage of size $n \Rightarrow W_n \leq G$.

Planar looms

Definition

A loom (G, A, B, U, D) is <u>planar</u> if G is a plane graph and A, U, B, D appear in the boundary of the outer face in order.

Lemma

The theorem holds for a planar loom of order n.

Loom of order n + 2 + linkages \Rightarrow planar loom of order n + linkages.

Corollary

G plane, outer face bounded by cycle $C = Q_1 \cup ... \cup Q_4$, exists a $(V(Q_1) - V(Q_3))$ -linkage and a $(V(Q_2) - V(Q_4))$ -linkage of order $n \Rightarrow W_n \preceq G$.

Theorem

There exists g(n) = O(n) s.t. G planar, $tw(G) \ge g(n) \Rightarrow W_n \preceq G$.

Proof.

Lecture notes, Theorem 6.

Corollary

G planar \Rightarrow tw(*G*) = *O*($\sqrt{|V(G)|}$) \Rightarrow *G* contains a balanced separator of order *O*($\sqrt{|V(G)|}$).

Disjoint sets *A* and *B* are node-linked if for all $W \subseteq A$ and $Z \subset B$ of the same size, there exists a total (W - Z)-linkage.

Definition

(G, A, B) a brick of height *h* if *A*, *B* disjoint and |A| = |B| = h. Node-linked if *A* and *B* are node-linked.

Connected graph with $\geq 2a(b+5)$ vertices contains either a spanning tree with $\geq a$ leaves, or a path of b vertices of degree two.

Proof.

Lecture notes, Lemma 11.

(G, A, B) a node-linked brick of height 2n(6n + 9), $W_n \not\preceq G \Rightarrow$ an (A - B)-linkage \mathcal{L} of size n, a connected subgraph H disjoint from and with a neighbor in each path of \mathcal{L} .

Proof.

 \mathcal{L}_0 : a total (A - B)-linkage s.t. $G_{\mathcal{L}_0}$ has smallest number of vertices of degree two.

- Spanning tree with *n* leaves: gives *H*.
- Path of 6*n* + 4 vertices of degree two: next slide.

Path-of-sets system

Node-linked path-of-sets system of width $2n^2$ and height 2n(6n + 9), then $W_n \leq G$.

Flow from *A* to *B*: Flow at most 1 starts in each vertex of *A* and ends in each vertex of *B*, no flow is created or lost elsewhere. Edge/vertex congestion: maximum amount of flow over an edge/through a vertex.

Observation

Edge congestion a, maximum degree $\Delta \Rightarrow$ vertex congestion $\leq \Delta a + 1$.

Observation

Flow of size s and vertex congestion $c \Rightarrow$ flow of size s/c and vertex congestion $1 \Rightarrow (A - B)$ -linkage of size $\geq s/c$.

Set *W* is *a*-well-linked/node-well-linked if for all $A, B \subset W$ disjoint, of the same size, there exists a flow from *A* to *B* of size |A| and edge congestion $\leq a / a$ total (A - B)-linkage.

Observation

- Either W is a-well-linked, or there exists $X \subseteq V(G)$ such that $|\partial X| < a \min(|W \cap X|, |W \setminus X|)$.
- Either W is node-well-linked, or there exists a separation (X, Y) of G of order less than $\min(|W \cap V(X)|, |W \cap V(Y)|).$

(C, D) a separation of minimum order such that $|V(C) \cap W|, |V(D) \cap W| \ge |W|/4, |V(C) \cap W| \ge |W|/2 \Rightarrow$ $V(C \cap D)$ is node-well-linked in C.

W a-well-linked $\Rightarrow \exists W' \subseteq W, |W'| \ge \frac{|W|}{4(\Delta a+1)}, W'$ node-well-linked.

W and *Z* node-well-linked of size at least *k*, $W \cup Z$ is a-well-linked $\Rightarrow \forall W' \subset W, Z' \subset Z, |W'|, |Z'|, |W'| \leq \frac{k}{\Delta a+2}$, the sets *W'* and *Z'* are node-linked.

A path-of-sets system is *a*-well-linked if in each brick (H, A, B), the set $A \cup B$ is *a*-well-linked.

Lemma

a-well-linked path-of-sets system of height at least $16(\Delta a + 1)^2 h \Rightarrow$ node-linked one of height h.

Corollary

Maximum degree Δ , an a-well-linked path-of-sets system of width $2n^2$ and height $32(\Delta a + 1)^2n(6n + 9) \Rightarrow a$ minor of W_n .

TODO:

- Graph of large treewidth has a subgraph of large treewidth and bounded maximum degree (homework assignment).
- Large treewidth ⇒ large *a*-well-linked path-of-sets system (next lecture).