The grid theorem

Theorem

If $t w(G) \geq f(n)$, then $W_{n} \preceq G$.
Upper bounds:

- f exists: Robertson and Seymour'84
- $f(n) \leq 20^{2 n^{5}}$: Robertson, Seymour, and Thomas'94
- $f(n)=O\left(n^{100}\right)$: Chekuri, Chuzhoy'16
- $f(n)=O\left(n^{9}\right.$ polylog $\left.n\right)$: Chekuri, Tan'19

Lower bounds:

- $f(n)=\Omega\left(n^{2}\right)$ because of K_{n}
- $f(n)=\Omega\left(n^{2} \log n\right)$ because of random graphs

Lemma

For every planar graph H, there exists n_{H} such that $H \preceq W_{n_{H}}$.

Forbidding a planar graph

Corollary

For H planar, if G does not contain H as a minor, then $t w(G)<f\left(n_{H}\right)$.

Definition

($A-B$)-linkage: Set \mathcal{L} of disjoint $A-B$ paths.
Total if $|A|=|B|=|\mathcal{L}|$.
$G_{\mathcal{L}}: L_{1}, L_{2} \in \mathcal{L}$ adjancent if G contains a path from L_{1} to L_{2} disjoint from rest of \mathcal{L}.

Definition

Loom (G, A, B, U, D) of order $|A|=|B|$: For every total $(A-B)$-linkage containing U and $D, G_{\mathcal{L}}$ is a path from U to D.

From looms to grids

Theorem

Loom (G, A, B, U, D) of order $n+2, \exists$ a total $(A-B)$-linkage containing U and D, $a(V(U)-V(D))$-linkage of size $n \Rightarrow$ $W_{n} \preceq G$.

U

Planar looms

Definition

A loom (G, A, B, U, D) is planar if G is a plane graph and A, U, B, D appear in the boundary of the outer face in order.

Lemma
The theorem holds for a planar loom of order n.

Lemma

Loom of order $n+2+$ linkages \Rightarrow planar loom of order $n+$ linkages.

Remark on planar graphs

Corollary

G plane, outer face bounded by cycle $C=Q_{1} \cup \ldots \cup Q_{4}$, exists a $\left(V\left(Q_{1}\right)-V\left(Q_{3}\right)\right)$-linkage and a $\left(V\left(Q_{2}\right)-V\left(Q_{4}\right)\right)$-linkage of order $n \Rightarrow W_{n} \preceq G$.

Theorem

There exists $g(n)=O(n)$ s.t. G planar, $t w(G) \geq g(n) \Rightarrow W_{n} \preceq G$.

Proof.
Lecture notes, Theorem 6.

Corollary

G planar $\Rightarrow t w(G)=O(\sqrt{|V(G)|}) \Rightarrow G$ contains a balanced separator of order $O(\sqrt{|V(G)|})$.

Definition

Disjoint sets A and B are node-linked if for all $W \subseteq A$ and $Z \subset B$ of the same size, there exists a total $(W-Z)$-linkage.

Definition

(G, A, B) a brick of height h if A, B disjoint and $|A|=|B|=h$. Node-linked if A and B are node-linked.

Lemma

Connected graph with $\geq 2 a(b+5)$ vertices contains either a spanning tree with \geq a leaves, or a path of b vertices of degree two.

Proof.

Lecture notes, Lemma 11.

Lemma

(G, A, B) a node-linked brick of height $2 n(6 n+9), W_{n} \npreceq G \Rightarrow$ an $(A-B)$-linkage \mathcal{L} of size n, a connected subgraph H disjoint from and with a neighbor in each path of \mathcal{L}.

Proof.

\mathcal{L}_{0} : a total
$(A-B)$-linkage s.t. $G_{\mathcal{L}_{0}}$ has smallest number of vertices of degree two.

- Spanning tree with n leaves: gives H.
- Path of $6 n+4$ vertices of degree
 two: next slide.

Path-of-sets system

Lemma

Node-linked path-of-sets system of width $2 n^{2}$ and height $2 n(6 n+9)$, then $W_{n} \preceq G$.

Definition

Flow from A to B : Flow at most 1 starts in each vertex of A and ends in each vertex of B, no flow is created or lost elsewhere. Edge/vertex congestion: maximum amount of flow over an edge/through a vertex.

Observation

Edge congestion a, maximum degree $\Delta \Rightarrow$ vertex congestion $\leq \Delta a+1$.

Observation

Flow of size s and vertex congestion $c \Rightarrow$ flow of size s / c and vertex congestion $1 \Rightarrow(A-B)$-linkage of size $\geq s / c$.

Definition

Set W is a-well-linked/node-well-linked if for all $A, B \subset W$ disjoint, of the same size, there exists a flow from A to B of size $|A|$ and edge congestion $\leq a /$ a total $(A-B)$-linkage.

Observation

- Either W is a-well-linked, or there exists $X \subseteq V(G)$ such that $|\partial X|<\operatorname{amin}(|W \cap X|,|W \backslash X|)$.
- Either W is node-well-linked, or there exists a separation (X, Y) of G of order less than $\min (|W \cap V(X)|,|W \cap V(Y)|)$.

Lemma
(C, D) a separation of minimum order such that $|V(C) \cap W|,|V(D) \cap W| \geq|W| / 4,|V(C) \cap W| \geq|W| / 2 \Rightarrow$ $V(C \cap D)$ is node-well-linked in C.

Lemma
W a-well-linked $\Rightarrow \exists W^{\prime} \subseteq W,\left|W^{\prime}\right| \geq \frac{|W|}{4(\Delta a+1)}, W^{\prime}$ node-well-linked.

$$
\text { nod-well-linked in } C
$$

Lemma

W and Z node-well-linked of size at least $k, W \cup Z$ is a-well-linked $\Rightarrow \forall W^{\prime} \subset W, Z^{\prime} \subset Z,\left|W^{\prime}\right|,\left|Z^{\prime}\right|,\left|W^{\prime}\right| \leq \frac{k}{\Delta a+2}$, the sets W^{\prime} and Z^{\prime} are node-linked.

Definition

A path-of-sets system is a-well-linked if in each brick (H, A, B), the set $A \cup B$ is a-well-linked.

Lemma

a-well-linked path-of-sets system of height at least
 $16(\Delta a+1)^{2} h \Rightarrow$ node-linked one of height h.

Corollary

Maximum degree Δ, an a-well-linked path-of-sets system of width $2 n^{2}$ and height $32(\Delta a+1)^{2} n(6 n+9) \Rightarrow$ a minor of W_{n}.

TODO:

- Graph of large treewidth has a subgraph of large treewidth and bounded maximum degree (homework assignment).
- Large treewidth \Rightarrow large a-well-linked path-of-sets system (next lecture).

