Let $f(a)$ be the minimum integer such that every graph of average degree at least $f(a)$ contains $K_{a}$ as a minor.

## Theorem (Thomasson)

$$
f(a)=(0.638 \ldots+o(1)) a \sqrt{\log a}
$$

## Theorem (Norin and Thomas)

For every a there exists $N$ such that every a-connected graph $G$ with at least $N$ vertices either

- contains $K_{a}$ as a minor, or
- is obtained from a planar graph by adding at most a-5 apex vertices.

We will prove a simpler result:
Theorem (Böhme, Kawarabayashi, Maharry and Mohar)
Every $(3 a+2)$-connected graph of minimum degree at least 20a and with $\gg a, k, s, t$ vertices either

- contains $s K_{a, k}$ as a minor, or
- contains a subdivision of $K_{a, t}$.


## Observation

$$
K_{a} \preceq K_{a-1, a}
$$

## Corollary

Every (3a-1)-connected graph of minimum degree at least 20a and with $\gg$ a vertices contains $K_{a}$ as a minor.

## Corollary

Every $(3 a+2)$-connected graph of minimum degree at least 20a, maximum degree less than $t$, and with $\gg a, k, s, t$ vertices contains $s K_{a, k}$ as a minor.

## Definition

A graph $M$ is $k$-linked if for all distinct
$s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k} \in V(G), M$ contains disjoint paths from $s_{1}$ to $t_{1}, \ldots, s_{k}$ to $t_{k}$.

## Theorem

A graph of average degree at least 13k contains a $k$-linked subgraph.

- A path decomposition $\left(x_{0} x_{1} \ldots x_{m}, \beta\right)$ of $H$.
- $S_{i}=\beta\left(x_{i-1}\right) \cap \beta\left(x_{i}\right)$.


## Definition

$q$-linked if $\left|S_{1}\right|=\left|S_{2}\right|=\ldots=\left|S_{m}\right|=q$ and $H$ contains $q$ vertex-disjoint linking paths from $S_{1}$ to $S_{m}$.


A vertex $v$ is internal if it does not belong to $\beta\left(x_{0}\right) \cup \beta\left(x_{m}\right) \cup \bigcup_{i=1}^{m} S_{i}$.

- $i_{v}: v \in \beta\left(x_{i v}\right)$
- $\beta_{v}=\beta\left(x_{i_{v}}\right), L(v)=S_{i_{v}-1}, R_{v}=S_{i_{v}}$.
- Focus $F$ : Set of internal vertices belonging to distinct bags.


A linking path $P$ is

- F-universal if there exists $u_{P} \in V(P)$ such that $V(P) \cap \beta_{v}=\left\{u_{P}\right\}$ for all $v \in F$.
- $F$-transversal if $V(P) \cap \beta_{V}$ and $V(P) \cap \beta_{V^{\prime}}$ are disjoint for all distinct $v, v^{\prime} \in F$.



## Observation

If $|F| \geq(\ell+3) \ell$, then there exists $F^{\prime} \subseteq F$ of size at least $\ell$ such that $P$ is either $F^{\prime}$-universal or $F^{\prime}$-transversal.

For $v \in F$, let $\Gamma_{v}$ be the graph with $V\left(\Gamma_{v}\right)=\left\{P_{1}, \ldots, P_{q}\right\}$, $P_{i} P_{j} \in E\left(\Gamma_{v}\right)$ iff $H\left[\beta_{v}\right]$ contains a path from $P_{i}$ to $P_{j}$ disjoint from all other linking paths.


## Observation

If $|F| \gg \ell$, then there exists $F^{\prime} \subseteq F$ of size at least $\ell$ such that $\Gamma_{v}=\Gamma_{v^{\prime}}$ for all $v, v^{\prime} \in F^{\prime}$.

## Lemma

Assume for every $v \in F$ :

- $v$ lies on $P_{1}$.
- No separation $(A, B)$ of $H\left[\beta_{v}\right]$ of order less than $3 a+2$ with $L_{v} \cup R_{v} \cup\{v\} \subseteq A$ and $B \nsubseteq A$.
- Vertices of $\beta_{v} \backslash\left(L_{v} \cup R_{v}\right)$ have degree at least 20a-4 in $H\left[\beta_{v}\right]$.
If $|F| \gg a, k, s, t, q$, then $H$ contains $s K_{a, k}$ as a minor or $K_{a, t}$ as a topological minor.

Assume uniformity;

- U: F-universal paths (vertices).
- $\Gamma=\Gamma_{v}$ for $v \in F$.
- $\Gamma_{1}$ : the $U$-bridge containing $P_{1}, \Gamma_{0}=\Gamma_{1}-U$.
- For each $v \in F$, let $H_{1}(v)$ be the $U$-bridge of $H\left[\beta_{v}\right]$ containing $v$.
- $H_{1}(v)$ is intersected exactly by linking paths in $\Gamma_{1}$.
- Let $H_{1}$ consist of
- linking paths in $\Gamma_{1}$ and
- $H_{1}(v)$ for $v \in F$.
- Let $H_{0}(v)=H_{1}(v)-U, H_{0}=H_{1}-U$.



## Observation

If for sk $\binom{q}{a}$ vertices $v \in F$, there exists $x \in V\left(H_{0}(v)\right)$ with $\geq 2 a+1$ neighbors in $\left(L_{v} \cup R_{v}\right) \backslash U$, then $s K_{a, k} \preceq H$.


Observation
If for $t\binom{q}{a}$ vertices $v \in F$, there exist a disjoint paths from $v$ to $U$ in $H_{1}(v)$, then $H$ contains a subdivision of $K_{a, t}$.

For all other $v \in F$ :

- Separation $\left(A_{v}, B_{v}\right)$ of $H_{1}(v)$ of order less than a with $v \in V\left(A_{v}\right) \backslash V\left(B_{V}\right)$ and $U \cap V\left(H_{1}\right) \subseteq V\left(B_{v}\right)$.
- $H\left[A_{v}-\left(\{v\} \cup L_{v} \cup R_{v} \cup V\left(B_{v}\right)\right)\right]$ has minimum degree at least $17 a-5 \Rightarrow(a+1)$-linked subgraph $M_{v}$.
- By assumptions: $3 a+2$ disjoint paths from $M_{v}$ to $L_{v} \cup R_{v} \cup\{v\}$.
- $2 a+2$ end in $\left(L_{v} \cup R_{v}\right) \backslash U$.
- Can be redirected so that $a+1$ end in $X_{v} \subseteq L_{v} \backslash U$ and $a+1$ in $Y_{v} \subseteq R_{V} \backslash U$.


For all other $v \in F$ :

- Separation $\left(A_{v}, B_{v}\right)$ of $H_{1}(v)$ of order less than a with $v \in V\left(A_{v}\right) \backslash V\left(B_{v}\right)$ and $U \cap V\left(H_{1}\right) \subseteq V\left(B_{v}\right)$.
- $H\left[A_{v}-\left(\{v\} \cup L_{v} \cup R_{v} \cup V\left(B_{v}\right)\right)\right]$ has minimum degree at least $17 a-5 \Rightarrow(a+1)$-linked subgraph $M_{v}$.
- By assumptions: $3 a+2$ disjoint paths from $M_{v}$ to $L_{v} \cup R_{v} \cup\{v\}$.
- $2 a+2$ end in $\left(L_{v} \cup R_{v}\right) \backslash U$.
- Can be redirected so that $a+1$ end in $X_{v} \subseteq L_{v} \backslash U$ and $a+1$ in $Y_{V} \subseteq R_{V} \backslash U$.


For all other $v \in F$ :

- Separation $\left(A_{v}, B_{v}\right)$ of $H_{1}(v)$ of order less than a with $v \in V\left(A_{v}\right) \backslash V\left(B_{v}\right)$ and $U \cap V\left(H_{1}\right) \subseteq V\left(B_{v}\right)$.
- $H\left[A_{v}-\left(\{v\} \cup L_{v} \cup R_{v} \cup V\left(B_{v}\right)\right)\right]$ has minimum degree at least $17 a-5 \Rightarrow(a+1)$-linked subgraph $M_{v}$.
- By assumptions: $3 a+2$ disjoint paths from $M_{v}$ to $L_{v} \cup R_{v} \cup\{v\}$.
- $2 a+2$ end in $\left(L_{v} \cup R_{v}\right) \backslash U$.
- Can be redirected so that $a+1$ end in $X_{v} \subseteq L_{v} \backslash U$ and $a+1$ in $Y_{v} \subseteq R_{V} \backslash U$.



## Observation

If there are at least $a+1$ vertices of $F$ between $v$ and $v^{\prime}$ and $A \subseteq R_{v}$ and $B \subseteq L_{v^{\prime}}$ have size $a+1$, then $H_{0}$ contains $a+1$ disjoint paths from $A$ to $B$.


## Observation

If there are at least $a+1$ vertices of $F$ between $v$ and $v^{\prime}$ and $A \subseteq R_{v}$ and $B \subseteq L_{v^{\prime}}$ have size $a+1$, then $H_{0}$ contains $a+1$ disjoint paths from $A$ to $B$.


$$
s K_{a, k} \preceq H .
$$



A tree decomposition $(T, \beta)$ of a graph $G$ is

- linked if for any $x, y \in V(T)$ and an integer $k$, either
- G contains $k$ vertex-disjoint paths from $\beta(x)$ to $\beta(y)$, or
- there exists $z \in V(T)$ separating $x$ from $y$ in $T$ such that $|\beta(z)|<k$.
- nondegenerate if no two bags are the same.


## Theorem (Thomas)

Every graph $G$ has a nondegenerate linked tree decomposition of width $t w(G)$.

## Lemma

Every $(3 a+2)$-connected graph of minimum degree at least 20a, treewidth at most $q$ and with $\gg a, k, s, t, q$ vertices either contains $s K_{a, k}$ as a minor or $K_{a, t}$ as a topological minor.


## Lemma

Every $(3 a+2)$-connected graph of minimum degree at least 20a, treewidth at most $q$ and with $\gg a, k, s, t, q$ vertices either contains $s K_{a, k}$ as a minor or $K_{a, t}$ as a topological minor.


Local structure decomposition with a wall:


Apex vertices $A$, a vortex $R$ with boundary $\partial R=v_{0} v_{1} \ldots v_{m}$.

- $R$ is $q$-linked: its path decomposition $\left(v_{1} \ldots v_{m}, \beta\right)$ satisfies
- $\beta\left(v_{i}\right) \cap\left\{v_{0}, \ldots, v_{m}\right\}=\left\{v_{i-1}, v_{i}\right\}$ for $i=1, \ldots, m$,
- $\left|\beta\left(v_{i}\right) \cap \beta\left(v_{i+1}\right)\right|=q+1$ for $i=1, \ldots, m-1$, and
- $R-\partial R$ contains $q$ paths from $\beta\left(v_{1}\right)$ to $\beta\left(v_{m}\right)$.
- $v \in \partial R$ is local if all but at most four neighbors of $v$ belong to $V(A \cup R)$.
- $F \subseteq \partial R$ is attached to a comb if there exist paths outside of $R \cup A$ from $F$ to a path, ending in order.



## Lemma

$(3 a+2)$-connected graph $G$ of minimum degree at least $20 a$, apices $A$, $q$-linked vortex $R, F \subseteq \partial R$ local vertices attached to a comb, $|F| \gg a, k, s, t, q,|A| \Rightarrow G$ contains $s K_{a, k}$ as a minor or $K_{a, t}$ as a topological minor.


- Many vertices with $\geq a$ neighbors in $A$, or
- many pieces attaching to the surface part imply subdivision of $K_{a, t}$.

- Large treewidth $\Rightarrow$ large wall $W$.
- No $s K_{a, k}$-minor $\Rightarrow$ decomposition with respect to $W$;
- we can assume the vortices are linked.
- No subdivision of $K_{a, t} \Rightarrow$ subwall $W^{\prime}$ with no attaching parts, all vertices $<$ a neighbors in $A,\left|V\left(W^{\prime}\right)\right| \geq M$.
- Local vertices of vortices cut off by small cuts $\rightarrow G^{\prime}$.
- Contract vortex interiors $\Rightarrow \leq M$ vertices of degree $<6$.
$6\left(\left|V\left(G^{\prime}\right)\right|-M\right)+(19 a-6) M \leq 2\left|E\left(G^{\prime}\right)\right| \leq 6\left|V\left(G^{\prime}\right)\right|+6 g$ z


