Let f(a) be the minimum integer such that every graph of average degree at least f(a) contains K_a as a minor.

Theorem (Thomasson)

$$f(a) = (0.638\ldots + o(1))a\sqrt{\log a}$$

Theorem (Norin and Thomas)

For every a there exists N such that every a-connected graph G with at least N vertices either

- contains K_a as a minor, or
- is obtained from a planar graph by adding at most a 5 apex vertices.

We will prove a simpler result:

Theorem (Böhme, Kawarabayashi, Maharry and Mohar)

Every (3a + 2)-connected graph of minimum degree at least 20a and with $\gg a, k, s, t$ vertices either

- contains sK_{a,k} as a minor, or
- contains a subdivision of K_{a,t}.

$$K_a \preceq K_{a-1,a}$$

Corollary

Every (3a - 1)-connected graph of minimum degree at least 20a and with \gg a vertices contains K_a as a minor.

Corollary

Every (3a + 2)-connected graph of minimum degree at least 20a, maximum degree less than t, and with $\gg a, k, s, t$ vertices contains s $K_{a,k}$ as a minor.

Definition

A graph *M* is *k*-linked if for all distinct $s_1, \ldots, s_k, t_1, \ldots, t_k \in V(G)$, *M* contains disjoint paths from s_1 to t_1, \ldots, s_k to t_k .

Theorem

A graph of average degree at least 13k contains a k-linked subgraph.

- A path decomposition $(x_0x_1 \dots x_m, \beta)$ of *H*.
- $S_i = \beta(x_{i-1}) \cap \beta(x_i)$.

Definition

q-linked if $|S_1| = |S_2| = ... = |S_m| = q$ and *H* contains *q* vertex-disjoint linking paths from S_1 to S_m .

A vertex ν is internal if it does not belong to $\beta(x_0) \cup \beta(x_m) \cup \bigcup_{i=1}^m S_i$.

- i_{v} : $v \in \beta(x_{i_{v}})$
- $\beta_{v} = \beta(x_{i_{v}}), L(v) = S_{i_{v}-1}, R_{v} = S_{i_{v}}.$
- Focus F: Set of internal vertices belonging to distinct bags.

A linking path P is

- <u>*F*-universal</u> if there exists $u_P \in V(P)$ such that $V(P) \cap \beta_v = \{u_P\}$ for all $v \in F$.
- <u>*F*-transversal</u> if V(P) ∩ β_v and V(P) ∩ β_{v'} are disjoint for all distinct v, v' ∈ F.

Observation

If $|F| \ge (\ell + 3)\ell$, then there exists $F' \subseteq F$ of size at least ℓ such that P is either F'-universal or F'-transversal.

For $v \in F$, let Γ_v be the graph with $V(\Gamma_v) = \{P_1, \ldots, P_q\}$, $P_i P_j \in E(\Gamma_v)$ iff $H[\beta_v]$ contains a path from P_i to P_j disjoint from all other linking paths.

Observation

If $|F| \gg \ell$, then there exists $F' \subseteq F$ of size at least ℓ such that $\Gamma_v = \Gamma_{v'}$ for all $v, v' \in F'$.

Lemma

Assume for every $v \in F$:

- v lies on P₁.
- No separation (A, B) of $H[\beta_v]$ of order less than 3a + 2 with $L_v \cup R_v \cup \{v\} \subseteq A$ and $B \not\subseteq A$.
- Vertices of β_ν \ (L_ν ∪ R_ν) have degree at least 20a − 4 in H[β_ν].

If $|F| \gg a, k, s, t, q$, then H contains $sK_{a,k}$ as a minor or $K_{a,t}$ as a topological minor.

Assume uniformity;

- U: F-universal paths (vertices).
- $\Gamma = \Gamma_v$ for $v \in F$.
- Γ_1 : the *U*-bridge containing P_1 , $\Gamma_0 = \Gamma_1 U$.

- For each v ∈ F, let H₁(v) be the U-bridge of H[β_ν] containing v.
 - $H_1(v)$ is intersected exactly by linking paths in Γ_1 .
- Let H₁ consist of
 - linking paths in Γ_1 and
 - $H_1(v)$ for $v \in F$.
- Let $H_0(v) = H_1(v) U$, $H_0 = H_1 U$.

If for $sk \begin{pmatrix} q \\ a \end{pmatrix}$ vertices $v \in F$, there exists $x \in V(H_0(v))$ with $\geq 2a + 1$ neighbors in $(L_v \cup R_v) \setminus U$, then $sK_{a,k} \preceq H$.

If for $t\binom{q}{a}$ vertices $v \in F$, there exist a disjoint paths from v to U in $H_1(v)$, then H contains a subdivision of $K_{a,t}$.

For all other $v \in F$:

- Separation (A_v, B_v) of $H_1(v)$ of order less than *a* with $v \in V(A_v) \setminus V(B_v)$ and $U \cap V(H_1) \subseteq V(B_v)$.
- $H[A_v (\{v\} \cup L_v \cup R_v \cup V(B_v))]$ has minimum degree at least $17a 5 \Rightarrow (a + 1)$ -linked subgraph M_v .
- By assumptions: 3a + 2 disjoint paths from M_v to $L_v \cup R_v \cup \{v\}$.
 - 2a + 2 end in $(L_v \cup R_v) \setminus U$.
 - Can be redirected so that a + 1 end in $X_v \subseteq L_v \setminus U$ and a + 1 in $Y_v \subseteq R_v \setminus U$.

For all other $v \in F$:

- Separation (A_v, B_v) of $H_1(v)$ of order less than *a* with $v \in V(A_v) \setminus V(B_v)$ and $U \cap V(H_1) \subseteq V(B_v)$.
- $H[A_v (\{v\} \cup L_v \cup R_v \cup V(B_v))]$ has minimum degree at least $17a 5 \Rightarrow (a + 1)$ -linked subgraph M_v .
- By assumptions: 3a + 2 disjoint paths from M_v to $L_v \cup R_v \cup \{v\}$.
 - 2a + 2 end in $(L_v \cup R_v) \setminus U$.
 - Can be redirected so that a + 1 end in $X_v \subseteq L_v \setminus U$ and a + 1 in $Y_v \subseteq R_v \setminus U$.

For all other $v \in F$:

- Separation (A_v, B_v) of $H_1(v)$ of order less than *a* with $v \in V(A_v) \setminus V(B_v)$ and $U \cap V(H_1) \subseteq V(B_v)$.
- $H[A_v (\{v\} \cup L_v \cup R_v \cup V(B_v))]$ has minimum degree at least $17a 5 \Rightarrow (a + 1)$ -linked subgraph M_v .
- By assumptions: 3a + 2 disjoint paths from M_v to $L_v \cup R_v \cup \{v\}$.
 - 2a + 2 end in $(L_v \cup R_v) \setminus U$.
 - Can be redirected so that a + 1 end in $X_v \subseteq L_v \setminus U$ and a + 1 in $Y_v \subseteq R_v \setminus U$.

If there are at least a + 1 vertices of F between v and v' and $A \subseteq R_v$ and $B \subseteq L_{v'}$ have size a + 1, then H_0 contains a + 1 disjoint paths from A to B.

If there are at least a + 1 vertices of F between v and v' and $A \subseteq R_v$ and $B \subseteq L_{v'}$ have size a + 1, then H_0 contains a + 1 disjoint paths from A to B.

 $sK_{a,k} \preceq H.$

A tree decomposition (T, β) of a graph G is

- <u>linked</u> if for any $x, y \in V(T)$ and an integer k, either
 - *G* contains *k* vertex-disjoint paths from $\beta(x)$ to $\beta(y)$, or
 - there exists $z \in V(T)$ separating x from y in T such that $|\beta(z)| < k$.
- <u>nondegenerate</u> if no two bags are the same.

Theorem (Thomas)

Every graph G has a nondegenerate linked tree decomposition of width tw(G).

Lemma

Every (3a + 2)-connected graph of minimum degree at least 20*a*, treewidth at most *q* and with $\gg a, k, s, t, q$ vertices either contains $sK_{a,k}$ as a minor or $K_{a,t}$ as a topological minor.

Lemma

Every (3a + 2)-connected graph of minimum degree at least 20a, treewidth at most q and with $\gg a, k, s, t, q$ vertices either contains $sK_{a,k}$ as a minor or $K_{a,t}$ as a topological minor.

Local structure decomposition with a wall:

Apex vertices *A*, a vortex *R* with boundary $\partial R = v_0 v_1 \dots v_m$.

- *R* is <u>*q*-linked</u>: its path decomposition ($v_1 \dots v_m$, β) satisfies
 - $\overline{\beta(v_i) \cap \{v_0, \ldots, v_m\}} = \{v_{i-1}, v_i\}$ for $i = 1, \ldots, m$,
 - $|\beta(v_i) \cap \beta(v_{i+1})| = q + 1$ for i = 1, ..., m 1, and
 - $R \partial R$ contains q paths from $\beta(v_1)$ to $\beta(v_m)$.
- *v* ∈ ∂*R* is <u>local</u> if all but at most four neighbors of *v* belong to *V*(*A*∪*R*).
- *F* ⊆ ∂*R* is <u>attached to a comb</u> if there exist paths outside of *R* ∪ *A* from *F* to a path, ending in order.

Lemma

(3a + 2)-connected graph G of minimum degree at least 20a, apices A, q-linked vortex R, $F \subseteq \partial R$ local vertices attached to a comb, $|F| \gg a, k, s, t, q, |A| \Rightarrow G$ contains $sK_{a,k}$ as a minor or $K_{a,t}$ as a topological minor.

- Many vertices with $\geq a$ neighbors in A, or
- many pieces attaching to the surface part imply subdivision of $K_{a,t}$.

- Large treewidth \Rightarrow large wall W.
- No sK_{a,k}-minor ⇒ decomposition with respect to W;
 we can assume the vortices are linked.
- No subdivision of $K_{a,t} \Rightarrow$ subwall W' with no attaching parts, all vertices $\langle a \text{ neighbors in } A, |V(W')| \geq M$.
- Local vertices of vortices cut off by small cuts \rightarrow *G*['].
- Contract vortex interiors $\Rightarrow \leq M$ vertices of degree < 6.
- $6(|V(G')| M) + (19a 6)M \le 2|E(G')| \le 6|V(G')| + 6g$

