
There exist graphs of minimum degree Ω(a
√

log a) that do not contain
Ka as a minor. However, it turns out that assuming sufficiently large con-
nectivity, such graphs must have bounded number of vertices. Indeed, the
following claim holds.

Theorem 1 (Norin and Thomas). For every a there exists N such that every
a-connected graph G with at least N vertices either

• contains Ka as a minor, or

• is obtained from a planar graph by adding at most a− 5 apex vertices.

The proof of this theorem is extremely involved. Instead, we will show
a much simpler claim due to Böhme, Kawarabayashi, Maharry and Mohar,
that nevertheless showcases some of the ideas of the proof.

Theorem 2. For all a, k, s, t, there exists N such that every (3a+2)-connected
graph of minimum degree at least 20a and with at least N vertices either

• contains sKa,k (s disjoint copies of Ka,k) as a minor, or

• contains a subdivision of Ka,t.

Relating this to Theorem 1, note that Ka is a minor of Ka−1,a (contract
a perfect matching). In particular, we have the following (for a replaced by
a− 1, k = t = a, and s = 1):

Corollary 3. For every a there exists N such that every (3a− 1)-connected
graph of minimum degree at least 20a and with at least N vertices contains
Ka as a minor.

Moreover, for graphs of bounded maximum degree, the second outcome
of Theorem 2 does not occur, and we have the following.

Corollary 4. For all a, k, s, t, there exists N such that every (3a + 2)-
connected graph of minimum degree at least 20a, maximum degree less than
t, and with at least N vertices contains sKa,k as a minor.

1 Within path decompositions

A graph M is k-linked if for any sequence v1, . . . , v2k vertices of M , there
exists disjoint paths from v1 to v2, from v3 to v4, . . . , from v2k−1 to v2k. We
need the following result.
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Theorem 5. A graph of average degree at least 13k contains a k-linked sub-
graph.

Consider a path decomposition (Q, β) of a graphH, whereQ = x0x1 . . . xm.
For i = 1, . . . ,m, let Si = β(xi−1) ∩ β(xi). We say that the decomposition
is q-linked if |S1| = |S2| = . . . = |Sm| = q and H contains q vertex-disjoint
paths P1, . . . , Pq from S1 to Sm. A vertex of S1 ∪ . . . Sm is an interface
vertex, all other vertices are internal ; note that each internal vertex belongs
to exactly one bag. A focus F is a set of internal vertices, each belonging to
a distinct bag different from β(x0) and β(xm); for v ∈ F , let iv denote the
unique vertex of Q such that v ∈ β(xiv), let βv = β(xiv), Lv = Siv−1, and
Rv = Siv .

A path Pi is F -universal if there exists a vertex w such that V (Pi)∩βv =
{w} for every v ∈ F , and F -transversal if V (Pi) ∩ βv and V (Pi) ∩ βv′ are
disjoint for all distinct v, v′ ∈ F . We say that the paths P1, . . . , Pq are
F -uniform if each of them is F -universal or F -transversal.

Observation 6. If s′ � s, q and F ′ is a focus of size at least s′, then there
exists a focus F ⊆ F ′ of size at least s such that each of the paths P1, . . . ,
Pq are F -uniform.

Proof. Process the paths P1, . . . , Pq one by one. For each i, if there exists
w ∈ V (Pi) such that βv ∩ V (Pi) = {w} for many (say b) vertices v ∈ V (F ′),
restrict F” to such vertices v, so that Pi is F ′-universal. Otherwise, take
every (b + 2)-nd vertex from F ′ in order along w; this ensures Pi is F ′-
transversal.

We say that paths Pi and Pj are F -adjacent if for each v ∈ F , there exists
a path in H[βv] from Pi to Pj disjoint from all other paths P1, . . . , Pq, and
and F -nonadjacent if no such path exists for every v ∈ F . We say that the
focus is adjacency-uniform if for all i 6= j, the paths Pi and Pj are either
F -adjacent or F -nonadjacent. Similarly to the proof of Observation 6, we
have the following.

Observation 7. If s′ � s, q and F ′ is a focus of size at least s′, then there
exists an adjacency-uniform focus F ⊆ F ′ of size at least s.

We say that the path decomposition is internally k-connected with respect
to F if for each v ∈ F , there exists no separation (A,B) of H[βv] of order less
than k such that {v}∪Lv ∪Rv ⊆ V (A) and V (B) 6⊆ V (A). It has internally
minimum degree at least d with respect to F if for each v ∈ F , all vertices in
βv \ (Lv ∪Rv) have degree at least d.
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Lemma 8. For all a, k, s, t, q, there exists N0 as follows. Let (Q, β) be a
q-linked path decomposition of a graph H, and let P1, . . . , Pq be the linking
paths. Let F be a focus such that the decomposition is internally (3a + 2)-
connected and internally has minimum degree at least 20a− 4 with respect to
F . If V (P1) ∩ βv ⊆ {v} ∪ Lv ∪Rv for each v ∈ F , then let H ′ = H −E(P1),
otherwise let H ′ = H. If |F | ≥ N0, then either

• H contains sKa,k as a minor, or

• H ′ contains a subdivision of Ka,t.

Proof. By Observations 6 and 7, we can assume F is adjacency-uniform and
P1, . . . , Pq are F -uniform. Without loss of generality, we can assume paths
P1, . . . , Pc′ are F -transversal and the remaining ones are F -apex; let A′

denote their set, and for P ∈ A′, let wP be the vertex in which P intersects
βv for v ∈ F . Let Γ be the graph on paths P1, . . . , Pc′ , where the two paths
are adjacent iff they are F -adjacent. Let {P1, . . . , Pc} be the component of
Γ−A′ containing P1, and let A ⊆ A′ consist of paths with a neighbor in this
component.

Let l and r be the leftmost and the rightmost vertex of F in the path Q,
and let L = Ll and R = Rr. Let H0 be the graph consisting of the segments
of P1, . . . , Pc between L and R and for each v ∈ F , the connected component
of H[β(v)] − A intersecting these segments. Note that H0 is disjoint from
Pc+1, . . . , Pq. Let B = {wP : P ∈ A}. Let H1 be the subgraph of H obtained
from H0 by adding B and the edges from these vertices to H0. Note that H1

is separated by L ∪B ∪R from the rest of H.
If there are many vertices v ∈ F such that some xv ∈ βv ∩ V (H0) has

neighbors in at least a+ 1 of the paths P1, . . . , Pc, then excluding the path
on which xv lies and using the pigeonhole principle, we can assume many
such vertices xv have a neighbor on the same a of these paths and do not
lie on them; contracting the appropriate path segments, we obtain a minor
of sKa,k in H. Hence, by removing all v such that xv exists from F , we can
assume that for each v ∈ F , every vertex in βv ∩ V (H0) has neighbors in at
most a of the paths P1, . . . , Pc, and in particular has at most 2a neighbors
in (Lv ∪Rv) ∩ V (H0).

If many vertices v ∈ F have at least a neighbors in B, then we similarly
obtain Ka,t ⊆ H − E(P1), and thus we can analogously assume each v ∈ F
has at most a − 1 neighbors in B. Since the decomposition internally has
minimum degree at least 20a−4 > 3a−1 with respect to F , v has a neighbor
v′ ∈ βv \ (Lv ∪Rv ∪B).

If for many v ∈ F , there exist at least a disjoint paths in H1− ({v}∪Lv∪
Rv) from v′ to B, then we similarly obtain a subdivision of Ka,t in H ′ (using
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the assumption that V (P1) ∩ βv ⊆ {v} ∪ Lv ∪Rv if H ′ 6= H). Hence, we can
assume that this is not the case for any v ∈ F , and thus there exists a set
Xv of at most a − 1 vertices separating v′ from B in H1 − ({v} ∪ Lv ∪ Rv).
Let Cv be the component of H1 − ({v} ∪ Lv ∪ Rv ∪Xv) containing v′. Note
that Cv has minimum degree at least 20a−4−3a = 17a−4. By Theorem 5,
there exists an (a+ 1)-linked subgraph Mv ⊆ Cv.

Since the decomposition is internally (3a + 2)-connected with respect to
F , H1 contains 3a + 2 disjoint paths from Mv to {v} ∪ Lv ∪ Rv; by the
previous paragraph, at least 2a+2 from them end in (Lv∪Rv)\B. Consider
such a system Lv of 2a + 2 paths with minimum number of edges outside
P1 ∪ . . . ∪ Pc, If a path Pi intersects at least two paths from Lv, then the
minimality implies that one of the paths from Lv follows it to Lv and another
one to Rv. If Pi is intersected only once, we can freely choose whether the
path from Lv follows Pi to Lv or to Rv. Hence, we can balance the numbers
and assume Lv contains a+ 1 paths to Lv and a+ 1 paths to Rv.

Moreover, consider any vertices v1, v2 ∈ F such that at least a vertices of
F appear between v1 and v2 on Q, and any subsets X ⊆ Lv1 ∩ V (H0) and
Y ⊆ Rv2 ∩ V (H0) of size a + 1. We claim the part of H0 between Lv1 and
Rv2 contains a + 1 disjoint paths from X to Y . Indeed, deleting a vertices
Z cannot separate X from Y : there exists v ∈ F between v1 and v2 with βv
disjoint from Z, and a path Pi from X to βv and Pi′ from Y to βv disjoint
from Z.

For v ∈ F and j = 1, . . . , a + 1, let {yv,j} = Lv ∩ Pj. For sufficiently
distant u, v ∈ F and any b ∈ {2, . . . , a + 1} we can obtain disjoint paths
Sj from uu,j to yv,j and a disjoint path T from S1 to Sb as follows: there
exists an edge Pk1 , Pk2 ∈ Γ for some i, j ≤ c. Use the path systems from the
previous two paragraps to connect yu,1 and yu,b to yw,k1 and yw,k1 for some
w between u and v, take T in H0 ∩ βw, then again use the path systems to
match the ends to yv,j.

Using these jumps and contracting the appropriate segments of S1, we
obtain a minor of sKa,k in H.

2 Within tree decompositions

A tree decomposition (T, β) of a graph G is linked if for any x, y ∈ V (T ) and
an integer k, either G contains k vertex-disjoint paths from β(x) to β(y), or
there exists z ∈ V (T ) separating x from y in T such that |β(z)| < k. A tree
decomposition is nondegenerate if no two bags are the same.

Theorem 9 (Thomas). Every graph G has a nondegenerate linked tree de-
composition of width tw(G).
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We can now prove Theorem 2 for graphs of bounded treewidth.

Lemma 10. For all a, k, s, t, ω, there exists N such that every (3a + 2)-
connected graph G of minimum degree at least 20a, treewidth at most ω,
and with at least N vertices either contains sKa,k as a minor, or contains a
subdivision of Ka,t.

Proof. Let (T, β) be an optimal non-degenerate linked tree decomposition of
F . If T contains a long path, find a long segment of this path such that all
bags on it have size at least q and many have size exactly q. Contracting
along the path, we obtain a q-linked path decomposition. Otherwise, T has
a vertex of large degree. Contracting subtrees and adding the root bag to
all bags, we obtain a (trivially) linked path decomposition. Choose internal
vertices in its bags arbitrarily to obtain a focus and apply Lemma 8.

3 Using the structure theorem

As we have seen in the homework assignment, in the local version of the
structure theorem with respect to a prescribed wall W , we can assume:

• Up to 3-separations, W is drawn planarly in the surface part of the
decomposition.

• Each vortex F with boundary v0v1 . . . vm has a path decomposition
(v1 . . . vm, β) such that

– β(vi) ∩ {v0, . . . , vm} = {vi−1, vi}, and

– considered as a decomposition of P + v0v1 . . . vm, it is q-linked for
some bounded q.

A boundary vertex of a vortex F is local if all but at most four neighbors
of its neighbors belong to the vortex or are the apex vertices. The vortex
F is N-wide if there exist indices 1 ≤ i1 < i2 < . . . < iN ≤ m − 1 such
that vertices vij for j = 1, . . . , N are local and there exists a path P and
paths Z1, . . . , ZN from vi1 , . . . , viN to P whose ends in P are in order, such
that P ∪ Z1 ∪ . . . ∪ ZN is disjoint from F and the apex vertices except for
{vi1 , . . . , viN}.

Lemma 11. If the decomposition of a (3a+2)-connected graph G of minimum
degree at least 20a contains a sufficiently wide vortex, then G either contains
sKa,k as a minor, or contains a subdivision of Ka,t.
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Proof. Add the apex vertices to the vortex. Contract the paths Z1, . . . ,
ZN and appropriate subpaths of P to obtain a path with vertex set vi1 ,
. . . , viN . Modify the decomposition of the vortex plus this path: Join bags
around these vertices to obtain a focus, merge the bags between them. Apply
Lemma 8.

In the proof of Theorem 2, we can assume sKa,k is not a minor of G,
and thus the structure theorem applies. In view of Lemmas 10 and 11, it
suffices to deal with the case G contains a large wall W and the correspond-
ing decomposition does not contain a wide vortex. If many vertices of the
embedded part have at least a neighbors among the apex vertices, we obtain
Ka,t ⊆ G. Similarly, suppose many parts attach to cliques of size at most
three in the embedded part; since G is (3a+ 2)-connected, in each such part
we have more than a disjoint paths from a vertex to the apices, obtaining
a subdivision of Ka,t in G. Hence, most of the embedded part is indeed a
subgraph of G; and since G has minimum degree at least 20a, most of the
embedded part has minimum degree more than 19a.

If W cannot be separated by a small cut from many of the local vertices
of one of the vortices, then there exist many paths from these vertices to
the outer cycle of W , and (using Erdős-Szekerés to ensure the right ordering
of the ends), we conclude the vortex is wide. Otherwise, local vertices of
vortices can be cut off by a number of vertices Y which is negligible compared
to the size of W . Consider the Y -bridge of the embedded part containing
W . After replacing each vortex by a vertex, remaining non-local boundary
vertices (not in Y ) have degree at least six, while almost all other vertices
have degree more than 19a� 6. Since the number of vertices of W is large
compared to the number of exceptional vertices (of degree less than 6), this
implies the average degree is too large (compared to the bound from the
Euler’s formula), a contradiction.
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