There exist graphs of minimum degree $\Omega(a \sqrt{\log a})$ that do not contain K_{a} as a minor. However, it turns out that assuming sufficiently large connectivity, such graphs must have bounded number of vertices. Indeed, the following claim holds.

Theorem 1 (Norin and Thomas). For every a there exists N such that every a-connected graph G with at least N vertices either

- contains K_{a} as a minor, or
- is obtained from a planar graph by adding at most a -5 apex vertices.

The proof of this theorem is extremely involved. Instead, we will show a much simpler claim due to Böhme, Kawarabayashi, Maharry and Mohar, that nevertheless showcases some of the ideas of the proof.

Theorem 2. For all a, k, s, t, there exists N such that every (3a+2)-connected graph of minimum degree at least $20 a$ and with at least N vertices either

- contains $s K_{a, k}$ (s disjoint copies of $K_{a, k}$) as a minor, or
- contains a subdivision of $K_{a, t}$.

Relating this to Theorem 1, note that K_{a} is a minor of $K_{a-1, a}$ (contract a perfect matching). In particular, we have the following (for a replaced by $a-1, k=t=a$, and $s=1$):

Corollary 3. For every a there exists N such that every (3a-1)-connected graph of minimum degree at least $20 a$ and with at least N vertices contains K_{a} as a minor.

Moreover, for graphs of bounded maximum degree, the second outcome of Theorem 2 does not occur, and we have the following.

Corollary 4. For all a, k, s, t, there exists N such that every $(3 a+2)$ connected graph of minimum degree at least $20 a$, maximum degree less than t, and with at least N vertices contains $s K_{a, k}$ as a minor.

1 Within path decompositions

A graph M is k-linked if for any sequence $v_{1}, \ldots, v_{2 k}$ vertices of M, there exists disjoint paths from v_{1} to v_{2}, from v_{3} to v_{4}, \ldots, from $v_{2 k-1}$ to $v_{2 k}$. We need the following result.

Theorem 5. A graph of average degree at least $13 k$ contains a k-linked subgraph.

Consider a path decomposition (Q, β) of a graph H, where $Q=x_{0} x_{1} \ldots x_{m}$. For $i=1, \ldots, m$, let $S_{i}=\beta\left(x_{i-1}\right) \cap \beta\left(x_{i}\right)$. We say that the decomposition is q-linked if $\left|S_{1}\right|=\left|S_{2}\right|=\ldots=\left|S_{m}\right|=q$ and H contains q vertex-disjoint paths P_{1}, \ldots, P_{q} from S_{1} to S_{m}. A vertex of $S_{1} \cup \ldots S_{m}$ is an interface vertex, all other vertices are internal; note that each internal vertex belongs to exactly one bag. A focus F is a set of internal vertices, each belonging to a distinct bag different from $\beta\left(x_{0}\right)$ and $\beta\left(x_{m}\right)$; for $v \in F$, let i_{v} denote the unique vertex of Q such that $v \in \beta\left(x_{i_{v}}\right)$, let $\beta_{v}=\beta\left(x_{i_{v}}\right), L_{v}=S_{i_{v}-1}$, and $R_{v}=S_{i_{v}}$.

A path P_{i} is F-universal if there exists a vertex w such that $V\left(P_{i}\right) \cap \beta_{v}=$ $\{w\}$ for every $v \in F$, and F-transversal if $V\left(P_{i}\right) \cap \beta_{v}$ and $V\left(P_{i}\right) \cap \beta_{v^{\prime}}$ are disjoint for all distinct $v, v^{\prime} \in F$. We say that the paths P_{1}, \ldots, P_{q} are F-uniform if each of them is F-universal or F-transversal.

Observation 6. If $s^{\prime} \gg s, q$ and F^{\prime} is a focus of size at least s^{\prime}, then there exists a focus $F \subseteq F^{\prime}$ of size at least s such that each of the paths P_{1}, \ldots, P_{q} are F-uniform.

Proof. Process the paths P_{1}, \ldots, P_{q} one by one. For each i, if there exists $w \in V\left(P_{i}\right)$ such that $\beta_{v} \cap V\left(P_{i}\right)=\{w\}$ for many (say b) vertices $v \in V\left(F^{\prime}\right)$, restrict $F^{\prime \prime}$ to such vertices v, so that P_{i} is F^{\prime}-universal. Otherwise, take every $(b+2)$-nd vertex from F^{\prime} in order along w; this ensures P_{i} is F^{\prime} transversal.

We say that paths P_{i} and P_{j} are F-adjacent if for each $v \in F$, there exists a path in $H\left[\beta_{v}\right]$ from P_{i} to P_{j} disjoint from all other paths P_{1}, \ldots, P_{q}, and and F-nonadjacent if no such path exists for every $v \in F$. We say that the focus is adjacency-uniform if for all $i \neq j$, the paths P_{i} and P_{j} are either F-adjacent or F-nonadjacent. Similarly to the proof of Observation 6, we have the following.

Observation 7. If $s^{\prime} \gg s, q$ and F^{\prime} is a focus of size at least s^{\prime}, then there exists an adjacency-uniform focus $F \subseteq F^{\prime}$ of size at least s.

We say that the path decomposition is internally k-connected with respect to F if for each $v \in F$, there exists no separation (A, B) of $H\left[\beta_{v}\right]$ of order less than k such that $\{v\} \cup L_{v} \cup R_{v} \subseteq V(A)$ and $V(B) \nsubseteq V(A)$. It has internally minimum degree at least d with respect to F if for each $v \in F$, all vertices in $\beta_{v} \backslash\left(L_{v} \cup R_{v}\right)$ have degree at least d.

Lemma 8. For all a, k, s, t, q, there exists N_{0} as follows. Let (Q, β) be a q-linked path decomposition of a graph H, and let P_{1}, \ldots, P_{q} be the linking paths. Let F be a focus such that the decomposition is internally $(3 a+2)$ connected and internally has minimum degree at least $20 a-4$ with respect to F. If $V\left(P_{1}\right) \cap \beta_{v} \subseteq\{v\} \cup L_{v} \cup R_{v}$ for each $v \in F$, then let $H^{\prime}=H-E\left(P_{1}\right)$, otherwise let $H^{\prime}=H$. If $|F| \geq N_{0}$, then either

- H contains $s K_{a, k}$ as a minor, or
- H^{\prime} contains a subdivision of $K_{a, t}$.

Proof. By Observations 6 and 7, we can assume F is adjacency-uniform and P_{1}, \ldots, P_{q} are F-uniform. Without loss of generality, we can assume paths $P_{1}, \ldots, P_{c^{\prime}}$ are F-transversal and the remaining ones are F-apex; let A^{\prime} denote their set, and for $P \in A^{\prime}$, let w_{P} be the vertex in which P intersects β_{v} for $v \in F$. Let Γ be the graph on paths $P_{1}, \ldots, P_{c^{\prime}}$, where the two paths are adjacent iff they are F-adjacent. Let $\left\{P_{1}, \ldots, P_{c}\right\}$ be the component of $\Gamma-A^{\prime}$ containing P_{1}, and let $A \subseteq A^{\prime}$ consist of paths with a neighbor in this component.

Let l and r be the leftmost and the rightmost vertex of F in the path Q, and let $L=L_{l}$ and $R=R_{r}$. Let H_{0} be the graph consisting of the segments of P_{1}, \ldots, P_{c} between L and R and for each $v \in F$, the connected component of $H[\beta(v)]-A$ intersecting these segments. Note that H_{0} is disjoint from P_{c+1}, \ldots, P_{q}. Let $B=\left\{w_{P}: P \in A\right\}$. Let H_{1} be the subgraph of H obtained from H_{0} by adding B and the edges from these vertices to H_{0}. Note that H_{1} is separated by $L \cup B \cup R$ from the rest of H.

If there are many vertices $v \in F$ such that some $x_{v} \in \beta_{v} \cap V\left(H_{0}\right)$ has neighbors in at least $a+1$ of the paths P_{1}, \ldots, P_{c}, then excluding the path on which x_{v} lies and using the pigeonhole principle, we can assume many such vertices x_{v} have a neighbor on the same a of these paths and do not lie on them; contracting the appropriate path segments, we obtain a minor of $s K_{a, k}$ in H. Hence, by removing all v such that x_{v} exists from F, we can assume that for each $v \in F$, every vertex in $\beta_{v} \cap V\left(H_{0}\right)$ has neighbors in at most a of the paths P_{1}, \ldots, P_{c}, and in particular has at most $2 a$ neighbors in $\left(L_{v} \cup R_{v}\right) \cap V\left(H_{0}\right)$.

If many vertices $v \in F$ have at least a neighbors in B, then we similarly obtain $K_{a, t} \subseteq H-E\left(P_{1}\right)$, and thus we can analogously assume each $v \in F$ has at most $a-1$ neighbors in B. Since the decomposition internally has minimum degree at least $20 a-4>3 a-1$ with respect to F, v has a neighbor $v^{\prime} \in \beta_{v} \backslash\left(L_{v} \cup R_{v} \cup B\right)$.

If for many $v \in F$, there exist at least a disjoint paths in $H_{1}-\left(\{v\} \cup L_{v} \cup\right.$ R_{v}) from v^{\prime} to B, then we similarly obtain a subdivision of $K_{a, t}$ in H^{\prime} (using
the assumption that $V\left(P_{1}\right) \cap \beta_{v} \subseteq\{v\} \cup L_{v} \cup R_{v}$ if $\left.H^{\prime} \neq H\right)$. Hence, we can assume that this is not the case for any $v \in F$, and thus there exists a set X_{v} of at most $a-1$ vertices separating v^{\prime} from B in $H_{1}-\left(\{v\} \cup L_{v} \cup R_{v}\right)$. Let C_{v} be the component of $H_{1}-\left(\{v\} \cup L_{v} \cup R_{v} \cup X_{v}\right)$ containing v^{\prime}. Note that C_{v} has minimum degree at least $20 a-4-3 a=17 a-4$. By Theorem 5 , there exists an $(a+1)$-linked subgraph $M_{v} \subseteq C_{v}$.

Since the decomposition is internally $(3 a+2)$-connected with respect to F, H_{1} contains $3 a+2$ disjoint paths from M_{v} to $\{v\} \cup L_{v} \cup R_{v}$; by the previous paragraph, at least $2 a+2$ from them end in $\left(L_{v} \cup R_{v}\right) \backslash B$. Consider such a system \mathcal{L}_{v} of $2 a+2$ paths with minimum number of edges outside $P_{1} \cup \ldots \cup P_{c}$, If a path P_{i} intersects at least two paths from \mathcal{L}_{v}, then the minimality implies that one of the paths from \mathcal{L}_{v} follows it to L_{v} and another one to R_{v}. If P_{i} is intersected only once, we can freely choose whether the path from \mathcal{L}_{v} follows P_{i} to L_{v} or to R_{v}. Hence, we can balance the numbers and assume \mathcal{L}_{v} contains $a+1$ paths to L_{v} and $a+1$ paths to R_{v}.

Moreover, consider any vertices $v_{1}, v_{2} \in F$ such that at least a vertices of F appear between v_{1} and v_{2} on Q, and any subsets $X \subseteq L_{v_{1}} \cap V\left(H_{0}\right)$ and $Y \subseteq R_{v_{2}} \cap V\left(H_{0}\right)$ of size $a+1$. We claim the part of H_{0} between $L_{v_{1}}$ and $R_{v_{2}}$ contains $a+1$ disjoint paths from X to Y. Indeed, deleting a vertices Z cannot separate X from Y : there exists $v \in F$ between v_{1} and v_{2} with β_{v} disjoint from Z, and a path P_{i} from X to β_{v} and $P_{i^{\prime}}$ from Y to β_{v} disjoint from Z.

For $v \in F$ and $j=1, \ldots, a+1$, let $\left\{y_{v, j}\right\}=L_{v} \cap P_{j}$. For sufficiently distant $u, v \in F$ and any $b \in\{2, \ldots, a+1\}$ we can obtain disjoint paths S_{j} from $u_{u, j}$ to $y_{v, j}$ and a disjoint path T from S_{1} to S_{b} as follows: there exists an edge $P_{k_{1}}, P_{k_{2}} \in \Gamma$ for some $i, j \leq c$. Use the path systems from the previous two paragraps to connect $y_{u, 1}$ and $y_{u, b}$ to $y_{w, k_{1}}$ and $y_{w, k_{1}}$ for some w between u and v, take T in $H_{0} \cap \beta_{w}$, then again use the path systems to match the ends to $y_{v, j}$.

Using these jumps and contracting the appropriate segments of S_{1}, we obtain a minor of $s K_{a, k}$ in H.

2 Within tree decompositions

A tree decomposition (T, β) of a graph G is linked if for any $x, y \in V(T)$ and an integer k, either G contains k vertex-disjoint paths from $\beta(x)$ to $\beta(y)$, or there exists $z \in V(T)$ separating x from y in T such that $|\beta(z)|<k$. A tree decomposition is nondegenerate if no two bags are the same.
Theorem 9 (Thomas). Every graph G has a nondegenerate linked tree decomposition of width $\operatorname{tw}(G)$.

We can now prove Theorem 2 for graphs of bounded treewidth.
Lemma 10. For all a, k, s, t, ω, there exists N such that every $(3 a+2)$ connected graph G of minimum degree at least $20 a$, treewidth at most ω, and with at least N vertices either contains $s K_{a, k}$ as a minor, or contains a subdivision of $K_{a, t}$.

Proof. Let (T, β) be an optimal non-degenerate linked tree decomposition of F. If T contains a long path, find a long segment of this path such that all bags on it have size at least q and many have size exactly q. Contracting along the path, we obtain a q-linked path decomposition. Otherwise, T has a vertex of large degree. Contracting subtrees and adding the root bag to all bags, we obtain a (trivially) linked path decomposition. Choose internal vertices in its bags arbitrarily to obtain a focus and apply Lemma 8 .

3 Using the structure theorem

As we have seen in the homework assignment, in the local version of the structure theorem with respect to a prescribed wall W, we can assume:

- Up to 3 -separations, W is drawn planarly in the surface part of the decomposition.
- Each vortex F with boundary $v_{0} v_{1} \ldots v_{m}$ has a path decomposition $\left(v_{1} \ldots v_{m}, \beta\right)$ such that
$-\beta\left(v_{i}\right) \cap\left\{v_{0}, \ldots, v_{m}\right\}=\left\{v_{i-1}, v_{i}\right\}$, and
- considered as a decomposition of $P+v_{0} v_{1} \ldots v_{m}$, it is q-linked for some bounded q.

A boundary vertex of a vortex F is local if all but at most four neighbors of its neighbors belong to the vortex or are the apex vertices. The vortex F is N-wide if there exist indices $1 \leq i_{1}<i_{2}<\ldots<i_{N} \leq m-1$ such that vertices $v_{i_{j}}$ for $j=1, \ldots, N$ are local and there exists a path P and paths Z_{1}, \ldots, Z_{N} from $v_{i_{1}}, \ldots, v_{i_{N}}$ to P whose ends in P are in order, such that $P \cup Z_{1} \cup \ldots \cup Z_{N}$ is disjoint from F and the apex vertices except for $\left\{v_{i_{1}}, \ldots, v_{i_{N}}\right\}$.

Lemma 11. If the decomposition of a $(3 a+2)$-connected graph G of minimum degree at least $20 a$ contains a sufficiently wide vortex, then G either contains $s K_{a, k}$ as a minor, or contains a subdivision of $K_{a, t}$.

Proof. Add the apex vertices to the vortex. Contract the paths Z_{1}, \ldots, Z_{N} and appropriate subpaths of P to obtain a path with vertex set $v_{i_{1}}$, $\ldots, v_{i_{N}}$. Modify the decomposition of the vortex plus this path: Join bags around these vertices to obtain a focus, merge the bags between them. Apply Lemma 8 .

In the proof of Theorem 2, we can assume $s K_{a, k}$ is not a minor of G, and thus the structure theorem applies. In view of Lemmas 10 and 11, it suffices to deal with the case G contains a large wall W and the corresponding decomposition does not contain a wide vortex. If many vertices of the embedded part have at least a neighbors among the apex vertices, we obtain $K_{a, t} \subseteq G$. Similarly, suppose many parts attach to cliques of size at most three in the embedded part; since G is $(3 a+2)$-connected, in each such part we have more than a disjoint paths from a vertex to the apices, obtaining a subdivision of $K_{a, t}$ in G. Hence, most of the embedded part is indeed a subgraph of G; and since G has minimum degree at least $20 a$, most of the embedded part has minimum degree more than $19 a$.

If W cannot be separated by a small cut from many of the local vertices of one of the vortices, then there exist many paths from these vertices to the outer cycle of W, and (using Erdős-Szekerés to ensure the right ordering of the ends), we conclude the vortex is wide. Otherwise, local vertices of vortices can be cut off by a number of vertices Y which is negligible compared to the size of W. Consider the Y-bridge of the embedded part containing W. After replacing each vortex by a vertex, remaining non-local boundary vertices (not in Y) have degree at least six, while almost all other vertices have degree more than $19 a \gg 6$. Since the number of vertices of W is large compared to the number of exceptional vertices (of degree less than 6), this implies the average degree is too large (compared to the bound from the Euler's formula), a contradiction.

