There exist graphs of minimum degree §2(ay/loga) that do not contain
K, as a minor. However, it turns out that assuming sufficiently large con-
nectivity, such graphs must have bounded number of vertices. Indeed, the
following claim holds.

Theorem 1 (Norin and Thomas). For every a there exists N such that every
a-connected graph G with at least N vertices either

e contains K, as a minor, or
e is obtained from a planar graph by adding at most a — 5 apex vertices.

The proof of this theorem is extremely involved. Instead, we will show
a much simpler claim due to Bohme, Kawarabayashi, Maharry and Mohar,
that nevertheless showcases some of the ideas of the proof.

Theorem 2. Foralla, k, s, t, there exists N such that every (3a+2)-connected
graph of minimum degree at least 20a and with at least N wvertices either

o contains sK,y (s disjoint copies of K,1) as a minor, or
e contains a subdivision of K.

Relating this to Theorem , note that K, is a minor of K, 1, (contract
a perfect matching). In particular, we have the following (for a replaced by
a—1,k=t=a,and s =1):

Corollary 3. For every a there exists N such that every (3a — 1)-connected
graph of minimum degree at least 20a and with at least N vertices contains
K, as a minor.

Moreover, for graphs of bounded maximum degree, the second outcome
of Theorem [2| does not occur, and we have the following.

Corollary 4. For all a,k,s,t, there exists N such that every (3a + 2)-
connected graph of minimum degree at least 20a, mazximum degree less than
t, and with at least N vertices contains sK, as a minor.

1 Within path decompositions

A graph M is k-linked if for any sequence vy, ..., vg vertices of M, there
exists disjoint paths from v; to ve, from w3 to vy, ..., from vep_1 to vor. We
need the following result.



Theorem 5. A graph of average degree at least 13k contains a k-linked sub-
graph.

Consider a path decomposition (Q, 8) of a graph H, where Q = zoz1 ... Tp,.
For i =1,...,m, let S; = B(x;—1) N B(x;). We say that the decomposition
is g-linked if |Sy| = |S2| = ... = |Sm| = ¢ and H contains ¢ vertex-disjoint
paths P, ..., P, from S; to S,,. A vertex of S; U...S,, is an interface
vertex, all other vertices are internal; note that each internal vertex belongs
to exactly one bag. A focus F'is a set of internal vertices, each belonging to
a distinct bag different from §(z¢) and 5(z,,); for v € F, let i, denote the
unique vertex of @) such that v € §(z;,), let 5, = B(x;,), L, = S;, 1, and
Rv — Siv'

A path P, is F-universal if there exists a vertex w such that V(P,) NS, =
{w} for every v € F, and F-transversal if V(P;) N 3, and V(P;) N B, are
disjoint for all distinct v,v" € F. We say that the paths P, ..., P, are
F-uniform if each of them is F-universal or F-transversal.

Observation 6. If s’ > s,q and F’ is a focus of size at least s, then there
exists a focus F' C F' of size at least s such that each of the paths Py, ...,
P, are F-uniform.

Proof. Process the paths P, ..., P, one by one. For each i, if there exists
w € V(P;) such that 8, N V(P;) = {w} for many (say b) vertices v € V(F"),
restrict F” to such vertices v, so that P; is F'-universal. Otherwise, take
every (b + 2)-nd vertex from F’ in order along w; this ensures P; is F'-
transversal. O]

We say that paths P; and P; are F'-adjacent if for each v € F', there exists
a path in H[3,] from P; to P; disjoint from all other paths P, ..., F,, and
and F-nonadjacent if no such path exists for every v € F. We say that the
focus is adjacency-uniform if for all @ # j, the paths P; and P; are either
F-adjacent or F-nonadjacent. Similarly to the proof of Observation [, we
have the following.

Observation 7. If s > s,q and F' is a focus of size at least ', then there
exists an adjacency-uniform focus F C F' of size at least s.

We say that the path decomposition is internally k-connected with respect
to F' if for each v € F', there exists no separation (A, B) of H[f,] of order less
than k such that {v} UL, UR, C V(A) and V(B) € V(A). It has internally
mainimum degree at least d with respect to F' if for each v € F', all vertices in
By \ (L, U R,) have degree at least d.



Lemma 8. For all a,k,s,t,q, there exists Ny as follows. Let (Q,5) be a
q-linked path decomposition of a graph H, and let Py, ..., P, be the linking
paths. Let F' be a focus such that the decomposition is internally (3a + 2)-
connected and internally has minimum degree at least 20a — 4 with respect to
F. IfV(P)NB, C{v}UL,UR, for eachv € F, then let H' = H — E(P,),
otherwise let H' = H. If |F| > Ny, then either

e H contains sK,j as a minor, or
o H' contains a subdivision of K, ;.

Proof. By Observations [0 and [7], we can assume F' is adjacency-uniform and
P, ..., P, are F-uniform. Without loss of generality, we can assume paths
Py, ..., P, are F-transversal and the remaining ones are F-apex; let A’
denote their set, and for P € A’, let wp be the vertex in which P intersects
B, for v € F'. Let T" be the graph on paths P, ..., P., where the two paths
are adjacent iff they are F-adjacent. Let {Pi,..., P.} be the component of
[' — A’ containing P;, and let A C A’ consist of paths with a neighbor in this
component.

Let [ and 7 be the leftmost and the rightmost vertex of F' in the path @),
and let L = L, and R = R,. Let Hy be the graph consisting of the segments
of P, ..., P.between L and R and for each v € F', the connected component
of H[B(v)] — A intersecting these segments. Note that Hy is disjoint from
P.i1,..., P, Let B={wp: P € A}. Let Hy be the subgraph of H obtained
from Hy by adding B and the edges from these vertices to Hy. Note that Hy
is separated by L U B U R from the rest of H.

If there are many vertices v € F such that some z, € 8, NV (H) has
neighbors in at least a + 1 of the paths P, ..., P., then excluding the path
on which x, lies and using the pigeonhole principle, we can assume many
such vertices z, have a neighbor on the same a of these paths and do not
lie on them; contracting the appropriate path segments, we obtain a minor
of sK, in H. Hence, by removing all v such that z, exists from F, we can
assume that for each v € F, every vertex in /3, NV (Hy) has neighbors in at
most a of the paths Py, ..., P., and in particular has at most 2a neighbors
in (L, UR,) NV (H,).

If many vertices v € F' have at least a neighbors in B, then we similarly
obtain K,; C H — E(P,), and thus we can analogously assume each v € F
has at most a — 1 neighbors in B. Since the decomposition internally has
minimum degree at least 20a —4 > 3a — 1 with respect to F', v has a neighbor
v e B, \ (L, UR,UB).

If for many v € F', there exist at least a disjoint paths in H; — ({v}UL,U
R,) from v’ to B, then we similarly obtain a subdivision of K, in H' (using
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the assumption that V(P) N g, C {v} UL, UR, if H' # H). Hence, we can
assume that this is not the case for any v € F', and thus there exists a set
X, of at most a — 1 vertices separating v’ from B in H; — ({v} U L, U R,).
Let C, be the component of H; — ({v} U L, U R, U X,) containing v’. Note
that C, has minimum degree at least 20a —4 — 3a = 17a — 4. By Theorem
there exists an (a + 1)-linked subgraph M, C C,.

Since the decomposition is internally (3a + 2)-connected with respect to
F, H; contains 3a + 2 disjoint paths from M, to {v} U L, U R,; by the
previous paragraph, at least 2a+ 2 from them end in (L, UR,)\ B. Consider
such a system L, of 2a + 2 paths with minimum number of edges outside
PU...UP,., If a path P; intersects at least two paths from L,, then the
minimality implies that one of the paths from £, follows it to L, and another
one to R,. If P, is intersected only once, we can freely choose whether the
path from L, follows P; to L, or to R,. Hence, we can balance the numbers
and assume L, contains a + 1 paths to L, and a + 1 paths to R,.

Moreover, consider any vertices v1, v, € F' such that at least a vertices of
F appear between v; and vy on @, and any subsets X C L, NV (Hy) and
Y C R, NV (Hy) of size a + 1. We claim the part of Hy between L,, and
R,, contains a + 1 disjoint paths from X to Y. Indeed, deleting a vertices
Z cannot separate X from Y: there exists v € F' between v; and vy with 3,
disjoint from Z, and a path P, from X to 3, and Py from Y to (5, disjoint
from Z.

Forve Fand j =1,...,a+1, let {y,;} = L, N P;. For sufficiently
distant w,v € F and any b € {2,...,a + 1} we can obtain disjoint paths
S; from wu, ; to y,; and a disjoint path 7" from S; to S, as follows: there
exists an edge Py, , P, € I' for some 7, j < c. Use the path systems from the
previous two paragraps to connect y, 1 and Yup YO Y ks and Yo,k for some
w between u and v, take T in Hy N 3, then again use the path systems to
match the ends to y,, ;.

Using these jumps and contracting the appropriate segments of S, we
obtain a minor of sK, in H. O

2 Within tree decompositions

A tree decomposition (T, 3) of a graph G is linked if for any z,y € V(T') and
an integer k, either G contains k vertex-disjoint paths from 5(z) to 5(y), or
there exists z € V(T') separating = from y in T such that |3(2)] < k. A tree
decomposition is nondegenerate if no two bags are the same.

Theorem 9 (Thomas). Every graph G has a nondegenerate linked tree de-
composition of width tw(Q).



We can now prove Theorem [2] for graphs of bounded treewidth.

Lemma 10. For all a,k,s,t,w, there exists N such that every (3a + 2)-
connected graph G of minimum degree at least 20a, treewidth at most w,
and with at least N wvertices either contains sK, as a minor, or contains a
subdivision of K.

Proof. Let (T, 3) be an optimal non-degenerate linked tree decomposition of
F. If T contains a long path, find a long segment of this path such that all
bags on it have size at least ¢ and many have size exactly ¢q. Contracting
along the path, we obtain a ¢-linked path decomposition. Otherwise, T" has
a vertex of large degree. Contracting subtrees and adding the root bag to
all bags, we obtain a (trivially) linked path decomposition. Choose internal
vertices in its bags arbitrarily to obtain a focus and apply Lemma [§ O]

3 Using the structure theorem

As we have seen in the homework assignment, in the local version of the
structure theorem with respect to a prescribed wall W, we can assume:

e Up to 3-separations, W is drawn planarly in the surface part of the
decomposition.

e Each vortex F' with boundary vgv;...v,, has a path decomposition
(v1 ...V, ) such that

— B(v;) N{vg, ..., v} = {vi_1,v;}, and
— considered as a decomposition of P + vguy ... v, it is ¢-linked for
some bounded gq.

A boundary vertex of a vortex F'is local if all but at most four neighbors
of its neighbors belong to the vortex or are the apex vertices. The vortex
F is N-wide if there exist indices 1 < 7 < 49 < ... < iy < m — 1 such
that vertices v;; for j = 1,..., N are local and there exists a path P and
paths Zy, ..., Zy from v;,, ..., v;, to P whose ends in P are in order, such
that PU Z; U ... U Zy is disjoint from F' and the apex vertices except for

{’Uil, c. >UiN}-
Lemma 11. If the decomposition of a (3a+2)-connected graph G of minimum

degree at least 20a contains a sufficiently wide vortex, then G either contains
sK,x as a minor, or contains a subdivision of K.



Proof. Add the apex vertices to the vortex. Contract the paths 2, ...,
Zn and appropriate subpaths of P to obtain a path with vertex set v,

.., Viy. Modify the decomposition of the vortex plus this path: Join bags
around these vertices to obtain a focus, merge the bags between them. Apply
Lemma [8 ]

In the proof of Theorem , we can assume sK,; is not a minor of G,
and thus the structure theorem applies. In view of Lemmas and [T}, it
suffices to deal with the case G' contains a large wall W and the correspond-
ing decomposition does not contain a wide vortex. If many vertices of the
embedded part have at least a neighbors among the apex vertices, we obtain
K,; € G. Similarly, suppose many parts attach to cliques of size at most
three in the embedded part; since G is (3a + 2)-connected, in each such part
we have more than a disjoint paths from a vertex to the apices, obtaining
a subdivision of K,,; in GG. Hence, most of the embedded part is indeed a
subgraph of G; and since G has minimum degree at least 20a, most of the
embedded part has minimum degree more than 19a.

If W cannot be separated by a small cut from many of the local vertices
of one of the vortices, then there exist many paths from these vertices to
the outer cycle of W, and (using Erdés-Szekerés to ensure the right ordering
of the ends), we conclude the vortex is wide. Otherwise, local vertices of
vortices can be cut off by a number of vertices Y which is negligible compared
to the size of W. Consider the Y-bridge of the embedded part containing
W. After replacing each vortex by a vertex, remaining non-local boundary
vertices (not in Y') have degree at least six, while almost all other vertices
have degree more than 19a > 6. Since the number of vertices of W is large
compared to the number of exceptional vertices (of degree less than 6), this
implies the average degree is too large (compared to the bound from the
Euler’s formula), a contradiction.



	Within path decompositions
	Within tree decompositions
	Using the structure theorem

