H is a minor of G if H is obtained from a subgraph of G by contracting vertex-disjoint connected subgraphs.

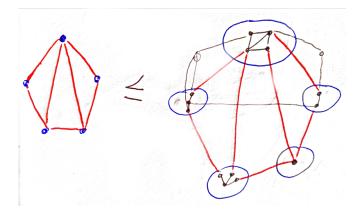
We write $H \leq G$.

Definition

Model μ of a minor of *H* in *G* is a function s.t.

• $\mu(v_1), \ldots, \mu(v_k)$ (where $V(H) = \{v_1, \ldots, v_k\}$ are vertex-disjoint connected subgraphs of *G*, and

• for $e = uv \in E(H)$, $\mu(e)$ is an edge of *G* with one end in $\mu(u)$ and the other in $\mu(v)$.



Tree decompositions

Definition

A tree decomposition of a graph G is a pair (T, β) , where

- *T* is a tree and $\beta(x) \subseteq V(G)$ for every $x \in V(T)$,
- for every $uv \in E(G)$, there exists $x \in V(T)$ s.t. $u, v \in \beta(x)$, and
- for every v ∈ V(G), {x ∈ V(T) : v ∈ β(x)} induces a non-empty connected subtree of T.

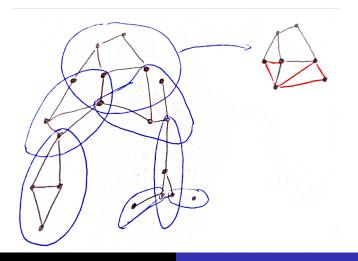
The width of the decomposition is $\max\{|\beta(x)| : x \in V(T)\} - 1$.

Treewidth tw(G): the min. width of a tree decomposition of G.

Lemma

 $H \preceq G \Rightarrow tw(H) \leq tw(G).$

Let (T, β) be a tree decomposition of *G*. The torso of $x \in V(T)$ is obtained from $G[\beta(x)]$ by adding cliques on $\beta(x) \cap \beta(y)$ for all $xy \in E(T)$.



Structural theorems

Theorem (Kuratowski)

$K_5, K_{3,3} \not\preceq G \Leftrightarrow G$ is planar.

Theorem (Robertson and Seymour)

For every planar graph H, there exists a constant c_H s.t.

 $H \not\preceq G \Rightarrow tw(G) \leq c_H.$

Theorem (Wagner)

If $K_5 \not\preceq G$, then G has a tree decomposition in which each torso is either planar, or has at most 8 vertices.

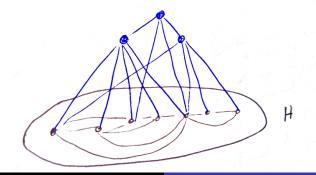
Apex vertices

Observation

If $K_n \not\preceq G - v$, then $K_{n+1} \not\preceq G$.

Definition

G is obtained from *H* by adding *a* apices if H = G - A for some set $A \subseteq V(G)$ of size *a*.



Apex vertices in structural theorems

Observation

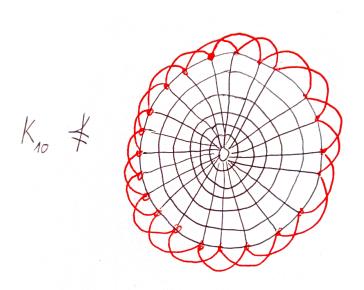
 $K_6 \not\leq planar + one apex.$

Theorem (Robertson and Seymour)

For some fixed a, If $K_6 \not\preceq G$, then G has a tree decomposition in which each torso is either

- obtained from a planar graph by adding at most a apices, or
- has at most a vertices.

Vortices



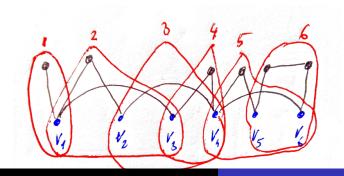
Vortices

Definition

A graph *H* is a vortex of depth *d* and <u>boundary sequence</u> $\underline{v_1, \ldots, v_k}$ if *H* has a path decomposition (T, β) of width at most *d* such that

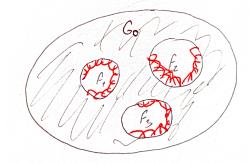
• $T = v_1 v_2 \dots v_k$, and

•
$$v_i \in \beta(v_i)$$
 for $i = 1, \ldots, k$



For G_0 drawn in a surface, a graph G is an outgrowth of G_0 by *m* vortices of depth *d* if

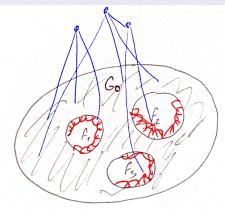
- $G = G_0 \cup H_1 \cup H_m$, where $H_i \cap H_j = \emptyset$ for distinct *i* and *j*,
- for all *i*, *H_i* is a vortex of depth *d* intersecting *G* only in its boundary sequence,
- for some disjoint faces f_1, \ldots, f_k of G_0 , the boundary sequence of H_i appears in order on the boundary of f_i .



Near-embeddability

Definition

A graph *G* is <u>*a*-near-embeddable</u> in a surface Σ if for some graph G_0 drawn in Σ , *G* is obtained from <u>an outgrowth of G_0 by at most *a* vortices of depth *a* by adding at most *a* apices.</u>



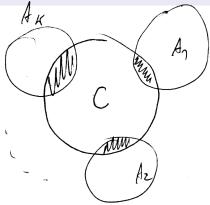
Theorem (Robertson and Seymour)

For every graph H, there exists a such that the following holds. If $H \not\preceq G$, then G has a tree decomposition such that each torso either

- has at most a vertices, or
- is a-near-embeddable in some surface Σ in which <u>H</u> cannot be drawn.

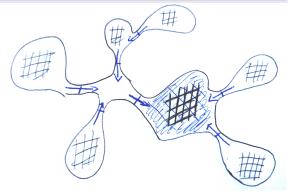
A location in *G* is a set of separations \mathcal{L} such that for distinct $(A_1, B_1), (A_2, B_2) \in \mathcal{L}$, we have $A_1 \subseteq B_2$.

The center of the location is the graph *C* obtained from $\bigcap_{(A,B)\in\mathcal{L}} B$ by adding all edges of cliques with vertex sets $V(A \cap B)$ for $(A, B) \in \mathcal{L}$.



Theorem (Robertson and Seymour)

For every graph H, there exists a such that the following holds. If $H \not\preceq G$ and $\underline{\mathcal{T}}$ is a tangle in G of order at least a, then there exists a location $\mathcal{L} \subseteq \underline{\mathcal{T}}$ whose center is a-near-embeddable in some surface Σ in which H cannot be drawn.



Generalization:

Theorem (Robertson and Seymour)

For every graph H, there exists a such that the following holds. If $H \not\leq G$ and $W \subseteq V(G)$ has at most 3a vertices, then G has a tree decomposition (T, β) with root r s.t. each torso either

- has at most 4a vertices, or
- is 4a-near-embeddable in some surface Σ in which H cannot be drawn,

and furthermore, $W \subseteq \beta(r)$ and the above holds for the torso of r + a clique on W.

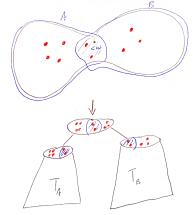
Case (a): W breakable

Separation (A, B) of order < a such that $|W \setminus V(A)| \le 2a$ and $|W \setminus V(B)| \le 2a$:

Induction on

- A with $W_A = (W \setminus V(B)) \cup V(A \cap B)$ and
- *B* with $W_B = (W \setminus V(A)) \cup V(A \cap B)$.

Root bag with $\beta(r) = W \cup V(A \cap B).$



Case (b): W not breakable

For every separation (A, B) of order < a, either $|W \setminus V(A)| > 2a$ or $|W \setminus V(B)| > 2a$:

 $\mathcal{T} = \{(A, B) : \text{separation of order} < a, |W \setminus V(A)| > 2a\}$ is a tangle of order *a*.

- Local Structure Theorem: location L ⊆ T with a-near-embeddable center C.
- For (*A*, *B*) ∈ *L*, induction on *A* with *W_A* = (*W* \ *V*(*B*)) ∪ *V*(*A* ∩ *B*).
- Root bag with $\beta(r) = V(C) \cup W$: at most 3*a* apices.

