1 Goals

Towards the structure theorem:

1. Tangles (specifying a highly connected part), structure relative to a tangle \rightarrow global structure.
2. Grid theorem (forbidding a planar graph).
3. Minors in graphs with large representativity.
4. Tangles and metric in graphs on surfaces.
5. Flat grid theorem (weak structure theorem), testing presence of a minor.
6. Basic ideas of the structure theorem proof.

Applications of the structure theorem:

1. Decomposition to bounded treewidth graphs.
2. Existence of bipartite minors in graphs of large connectivity.

WQO:

1. bounded treewidth
2. graphs on surfaces

2 Tangles

For a graph H, let $|H|$ denote the number of vertices of H. Separation in a graph G is a pair (A, B) of edge-disjoint subgraphs such that $A \cup B=$ G; its order $o(A, B)$ is $|A \cap B|$. Suppose (T, β) is a tree decomposition of G. For $u v \in T$, let $T_{u v}$ be the subtree of $T-u v$ containing u, and let $G_{u v}=G\left[\bigcup_{x \in V\left(T_{u v}\right)} \beta(x)\right]$ and let $G^{u v}$ be the graph with vertex set $G\left[\bigcup_{x \in V\left(T_{v u}\right)} \beta(x)\right]$ and edge set $E(G) \backslash E\left(G_{u v}\right)$. Then $\left(G_{u v}, G^{u v}\right)$ is a separation of G of order $|\beta(u) \cap \beta(v)|$.

Tangle of order θ is a set \mathcal{T} of separations of G of order less than θ such that
(T1) for every separation (A, B) of order less than θ, either $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$,
(T2) $G \neq A_{1} \cup A_{2} \cup A_{3}$ for all $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T}$, and
(T3) $V(A) \neq V(G)$ for all $(A, B) \in \mathcal{T}$.
$(A, B) \in \mathcal{T}$: " A is the small side of the separation (A, B) "; the tangle \mathcal{T} "points towards a single well-connected piece of the graph".

Lemma 1. Suppose \mathcal{T} is a tangle of order θ in a graph G.

1. If $(A, B) \in \mathcal{T}$, then $(B, A) \notin \mathcal{T}$.
2. If $(A, B) \in \mathcal{T}$ and $\left(A^{\prime}, B^{\prime}\right)$ is a separation of G of order less than θ such that $A^{\prime} \subseteq A$, then $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}$.
3. If $\left(A_{1}, B_{1}\right) \in \mathcal{T},\left(A_{2}, B_{2}\right) \in \mathcal{T}$, and $\left(A_{1} \cup A_{2}, B_{1} \cap B_{2}\right)$ has order less than θ, then $\left(A_{1} \cup A_{2}, B_{1} \cap B_{2}\right) \in \mathcal{T}$.

Proof. 1. By (T2) applied to $(A, B),(B, A),(B, A)$.
2. By (T 2), we have $\left(B^{\prime}, A^{\prime}\right) \notin \mathcal{T}$, and thus $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}$ by (T 1).
3. Since $A_{1} \cup A_{2} \cup\left(B_{1} \cap B_{2}\right)=\left(A_{1} \cup A_{2} \cup B_{1}\right) \cap\left(A_{1} \cup A_{2} \cup B_{2}\right)=G \cap G=G$, the claim follows by (T2) and (T1).

Corollary 2. If G has a tangle \mathcal{T} of order θ, then $\operatorname{tw}(G) \geq \theta-1$.

Proof. For a contradiction, suppose (T, β) is a tree decomposition of G of width less than $\theta-1$. By (T1) and Lemma $1, T$ has an orientation \vec{T} such that $u v \in E(\vec{T})$ if and only if $\left(G_{u v}, G^{u v}\right) \in \Theta$. Since T is a tree, \vec{T} has a sink x. By (T3) and (T1), we have $(G[\beta(x)], G-E(G[\beta(x)])) \in \mathcal{T}$, and iteratively applying the last item of Lemma 1 to this separation and separations $\left(G_{y x}, G^{y x}\right) \in \mathcal{T}$ for all edges $x y$ of T incident with x, we conclude $(G, B) \in \mathcal{T}$ for some $B \subseteq G[\beta(x)]$, contradicting (T3).

Examples of tangles:

- In $K_{n},(A, B) \in \mathcal{T}$ iff $|V(A)|<\frac{2}{3} n$ is a tangle of order $\frac{2}{3} n$-for (T2), note there exists a vertex v belonging to at most one of A_{1}, A_{2}, and A_{3}, but not all edges incident with v can appear in this subgraph.
- In an $n \times n$ grid, $(A, B) \in \mathcal{T}$ iff its order is less than n and A does not contain any of the rows is a tangle of order n. For (T1), if A and B both contained a row, then in each column there would have to be a vertex of $A \cap B$, and (A, B) would have order at least n. (T2) is not easy to see (a 1-page proof). We call this tangle canonical.

We will need the following simple observation.
Lemma 3. Suppose $\theta \geq 3$. Let \mathcal{T} be a set of separations in a graph G of order less than θ that satisfies (T1), (T2), and such that $(e, G-e) \in \mathcal{T}$ for every $e \in E(G)$. Then \mathcal{T} is a tangle of order θ.

Proof. It suffices to prove that (T3) holds. We did not use (T3) in the proof of Lemma 1, and thus this lemma holds for \mathcal{T}. Consider any separation (A, B) of G of order less than θ such that $V(A)=V(G)$, and suppose for a contradiction that $(A, B) \in \mathcal{T}$. Since the separation has order less than θ, we have $|B|<\theta$. Applying Lemma 1 for all separations ($e, G-e$) with $e \in E(B)$, we can assume $E(B)=\emptyset$, and thus $A=G$. This contradicts (T2).
H is a minor of G with model μ if μ assigns to vertices of H pairwise vertex-disjoint connected subgraphs of G, and for each edge $e=u v$ of H, $\mu(e)$ is a distinct edge of G not contained in any of these subgraphs and with one end in $\mu(u)$ and the other end in $\mu(v)$.

Lemma 4. Suppose \mathcal{T}^{\prime} is a tangle of order $\theta \geq 3$ in H, and μ is a model of a minor of H in a graph G. Let \mathcal{T} be the set of separations (A, B) of order less than θ such that \mathcal{T}^{\prime} contains a separation $\left(A^{\prime}, B^{\prime}\right)$ such that $E\left(A^{\prime}\right)=$ $\mu^{-1}(E(A))$. Then \mathcal{T} is a tangle of order θ in G.

Proof. For a separation (A, B) of G of order less than θ, consider the separation $\left(A^{\prime}, B^{\prime}\right)$ of H, where $E\left(A^{\prime}\right)=\mu^{-1}(E(A)), E\left(B^{\prime}\right)=\mu^{-1}(E(B))$, $V\left(A^{\prime}\right)=\{v \in V(H): \mu(v) \cap A \neq \emptyset\}$ and $V\left(B^{\prime}\right)=\{v \in V(H): \mu(v) \cap B \neq \emptyset\}$. Since the subgraphs in $\mu(V(H))$ are pairwise vertex-disjoint and connected, $\left(A^{\prime}, B^{\prime}\right)$ has order at most the order of (A, B). By (T1) we have $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}^{\prime}$ or $\left(B^{\prime}, A^{\prime}\right) \in \mathcal{T}^{\prime}$, and thus $(A, B) \in \mathcal{T}$ or $(B, A) \in \mathcal{T}$, implying (T1) for \mathcal{T}.

If $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right),\left(A_{3}, B_{3}\right) \in \mathcal{T}$ and $A_{1} \cup A_{2} \cup A_{3}=G$, then there would exist $\left(A_{1}^{\prime}, B_{1}^{\prime}\right),\left(A_{2}^{\prime}, B_{2}^{\prime}\right),\left(A_{3}^{\prime}, B_{3}^{\prime}\right) \in \mathcal{T}^{\prime}$ with $E\left(A_{1}^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime}\right)=E(H)$. Since $\theta>0,(v, H-v) \in \mathcal{T}^{\prime}$ for every isolated vertex $v \in H$ by (T1) and (T3), and thus using Lemma 1 , we can assume all isolated vertices of H are in $A_{1}^{\prime}-V\left(B_{1}^{\prime}\right)$. Hence, $A_{1}^{\prime} \cup A_{2}^{\prime} \cup A_{3}^{\prime}=H$, contradicting (T2). This implies (T2) holds for \mathcal{T}^{\prime}.

By Lemma 3, it suffices to prove that for every $e \in E(G)$, we have $(e, G-e) \in \mathcal{T}$. Indeed, consider the separation $\left(A^{\prime}, B^{\prime}\right)$ of H, where A^{\prime} is the subgraph consisting of at most one edge $\mu^{-1}(e)$ and $V\left(B^{\prime}\right)=V(H)$. By (T 1) and (T 3), we have $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{T}^{\prime}$, and thus $(e, G-e) \in \mathcal{T}$,

We say \mathcal{T} is induced by \mathcal{T}^{\prime} and μ in G. We say that a tangle \mathcal{T}_{1} of order at least θ in G is conformal with \mathcal{T}^{\prime} and μ if $\mathcal{T} \subseteq \mathcal{T}_{1}$, i.e., \mathcal{T} consists exactly of separations from \mathcal{T}_{1} of order less than θ.

3 Grids, brambles and unbreakable sets

A set \mathcal{B} of non-empty subsets of $V(G)$ is a bramble in G if

- for every $B \in \mathcal{B}, G[B]$ is connected, and
- for every $B_{1}, B_{2} \in \mathcal{B}, G\left[B_{1} \cup B_{2}\right]$ is connected.

A set $X \subseteq V(G)$ is the hitting set of the bramble if $X \cap B \neq \emptyset$ for every $B \in \mathcal{B}$. The order of the bramble is the size of the smallest hitting set.

A set $W \subseteq V(G)$ is s-breakable if there exists a separation (A, B) of order less than s such that $|W \backslash V(A)| \leq \frac{2}{3}|W|$ and $|W \backslash V(B)| \leq \frac{2}{3}|W|$, and s-unbreakable otherwise.

Lemma 5. For a graph G :

- $n \times n$ grid minor \Rightarrow a tangle of order n
- a tangle of order $\theta \Rightarrow a(\theta / 3-1)$-unbreakable set of size $\theta-1$
- an s-unbreakable set $\Rightarrow a$ bramble of order at least s
- a bramble of order at least $s \Rightarrow$ a tangle of order $s / 3$

Proof. The first part is by Lemma 4.
For the second part, let (A, B) be a separation of order less than θ in the tangle \mathcal{T} with B minimal and subject to that with A maximal, and let $W=A \cap B$. The maximality of A implies $|W|=\theta-1$, as otherwise we can add a vertex from $V(B) \backslash V(A)$ to A (as an isolated vertex) by Lemma 1 . Suppose W is $(\theta / 3-1)$-breakable, as shown by a separation $\left(A^{\prime}, B^{\prime}\right)$, which by (T1) we can assume to belong to \mathcal{T}. Then $\left(A \cup A^{\prime}, B \cap B^{\prime}\right)$ has order at most $o\left(A^{\prime}, B^{\prime}\right)+\frac{2}{3} o(A, B)<\theta$, and thus $\left(A \cup A^{\prime}, B \cap B^{\prime}\right) \in \mathcal{T}$ by Lemma 1 . The minimality of B implies $B \subseteq B^{\prime}$. But then $W \subseteq V\left(B^{\prime}\right)$, and thus $\left|W \backslash V\left(A^{\prime}\right)\right|=\left|W \backslash V\left(A^{\prime} \cap B^{\prime}\right)\right|>\frac{2}{3} \theta>\frac{2}{3}|W|$, a contradiction.

For the third part, let W be an s-unbreakable set and let \mathcal{B} consists of all $X \subseteq V(G)$ such that $G[X]$ is connected and $|X \cap W|>|W| / 2$. Clearly \mathcal{B} is a bramble, as any two elements of \mathcal{B} intersect. Suppose for a contradiction S is a hitting set for \mathcal{B} of size less than s. Each component of $G-S$ contains at most $|W| / 2$ vertices of W, as otherwise it would belong to \mathcal{B} and be disjoint from S. We can distribute the components into two parts such that each of them contains at most $\frac{2}{3}|W|$ elements of W, thus obtaining a separation (A, B) with $S=V(A \cap B)$ that shows that W is s-breakable. This is a contradiction.

For the last part, let \mathcal{T} consist of all separations (A, B) of order less than $s / 3$ such that some element $X \in \mathcal{B}$ is a subset of $V(B) \backslash V(A)$. For (T2), note that $\sum_{i=1}^{3} o\left(A_{i}, B_{i}\right)<s$, and thus and thus some element $X \in \mathcal{B}$ is disjoint from $V\left(A_{i} \cap B_{i}\right)$ for all i. Since $V\left(B_{i}\right) \backslash V\left(A_{i}\right)$ contains some $X_{i} \in \mathcal{B}$ and $G\left[X \cup X_{i}\right]$ is connected, we have $X \subseteq B_{i} \backslash A_{i}$ for all i. But then $A_{1} \cup A_{2} \cup A_{3}$ is disjoint from X, and thus it is not equal to G. (T3) is easy to prove.

In the next lecture, we will consider the important Grid Theorem.
Theorem 6. There exists a function f as follows. If \mathcal{T} is a tangle of order at least $f(n)$ in a graph G, then G contains an $n \times n$ grid H as a minor with model μ such that \mathcal{T} is conformal with the canonical tangle in H and μ.

4 From a local structure to a global one

A set \mathcal{L} of separations in a graph G is a location if for all distinct separations $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right) \in \mathcal{L}$, we have $A_{1} \subseteq B_{2}$. The center of the location is the graph C obtained from $\bigcap_{(A, B) \in \mathcal{L}} B$ by adding all edges of cliques with vertex sets $V(A \cap B)$ for $(A, B) \in \mathcal{L}$.

Let \mathcal{G} be a class of graphs (e.g., graphs embeddable in a surface of bounded genus up to a bounded number of apex vertices and vortices). We say a graph G is \mathcal{G}-decomposable with respect to a tangle \mathcal{T} if there exists a location $\mathcal{L} \subseteq \mathcal{T}$ with center belonging to \mathcal{G}. An a-extension of a graph G is a graph $G^{\prime} \supseteq G$ such that for some $A \subseteq V\left(G^{\prime}\right)$ of size at most $a, V\left(G^{\prime}\right) \backslash V(G) \subseteq A$ and every edge of $E\left(G^{\prime}\right) \backslash E(G)$ is incident with a vertex of A.

For a tree decomposition (T, β) of a graph G, the torso of $x \in V(T)$ is the graph obtained from $G[\beta(x)]$ by adding cliques on $\beta(x) \cap \beta(y)$ for all $x y \in E(T)$.

Theorem 7. Suppose every subgraph of a graph G is \mathcal{G}-decomposable with respect to every tangle of order θ. Then G has a tree decomposition (T, β) such that for every $x \in V(T)$, either $|\beta(x)| \leq 4 \theta$ or the torso of x is a 3θ extension of a graph from \mathcal{G}. Equivalently, G can be obtained from graphs of size at most 4θ and from 3θ-extensions of graphs from \mathcal{G} by clique-sums.

Proof. We prove the claim in the following stronger form: For every $W \subseteq$ $V(G)$ of size at most 3θ, there exists such a tree decomposition with root r such that $W \subseteq \beta(r)$ and either $|\beta(r)| \leq 4 \theta$ or the torso of r together with a clique on W is a 3θ-extension of a graph from \mathcal{G}. We prove this claim by induction on the number of vertices of G.

If $|V(G)| \leq 4 \theta$, we can let T be a tree with the single vertex r and $\beta(r)=V(G)$. Hence, we can assume $|V(G)|>4 \theta$. Without loss of generality, we can assume $|W|=3 \theta$, as otherwise we can add more vertices to W.

Suppose first W is θ-breakable, via a separation (A, B) of G. Let $W_{A}=$ $\left(W \cup V(B) \cap V(A)\right.$ and $W_{B}=(W \cup V(A)) \cap V(B)$. Note that $\left|W_{A}\right| \leq \theta-1+$ $\frac{2}{3}|W|<|W|$, and thus $V(A) \neq V(G)$. Hence, we can apply the induction to A and W_{A} and obtain a tree decomposition $\left(T_{A}, \beta_{A}\right)$. Analogously, we obtain a tree decomposition $\left(T_{B}, \beta_{B}\right)$ for B and W_{B}. Let T be obtained from T_{A} and T_{B} by adding a vertex r adjacent to their root, and let β match β_{A} on T_{A}, β_{B} on T_{B}, and $\beta(r)=W \cup V(A \cap B)$. We have $|\beta(r)|<4 \theta$, and thus (T, β) satisfies the conditions.

Suppose now that W is not θ-breakable. Let \mathcal{T} consist of separations (A, B) of G of order less than θ such that $|W \backslash V(A)|>\frac{2}{3}|W|$. Observe this defines a tangle of order θ. By assumptions, there exists a location $\mathcal{L} \subseteq \mathcal{T}$ with center C belonging to \mathcal{G}. For $(A, B) \in \mathcal{L}$, let $W_{A}=(W \cup V(B)) \cap V(A)$; we have $W_{A}<\theta-1+|W| / 3<|W|$; apply the induction to A and W_{A} and obtain a tree decomposition $\left(T_{A}, \beta_{A}\right)$. Let (T, β) be obtained from these decompositions by adding a new vertex r adjacent to their roots and setting $\beta(r)=W \cup \bigcap_{(A, B) \in \mathcal{L}} B$. Note that the torso of r is a 3θ-extension of the center of \mathcal{L} (which belongs to \mathcal{G}) even if we add a clique on W.

In particular, in case that \mathcal{G} does not contain any tangle of order θ, the assumptions of Theorem 7 are satisfied even with $\mathcal{G}=\emptyset$. Hence, we have the following conclusion.

Corollary 8. If G does not contain any tangle of order θ, then G has treewidth less than 4θ.

Actually, in this situation $\operatorname{tw}(G) \leq \frac{3}{2} \theta$; but we will not need this stronger bound.

