Let \mathbf{V} be a vector space over a field \mathbf{F}. Let $B=v_{1}, \ldots, v_{n}$ be a basis of \mathbf{V}.

Definition

The coordinates of a vector $v \in \mathbf{V}$ with respect to the basis B are given by the (unique) vector $[v]_{B}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{F}^{n}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n} .
$$

Linearity of coordinates

Observation

Let \mathbf{V} be a vector space over field \mathbf{F}, and let B be a basis of \mathbf{V}.

- For every $u, v \in \mathbf{V}$,

$$
[u+v]_{B}=[u]_{B}+[v]_{B} .
$$

- For every $\boldsymbol{v} \in \mathbf{V}$ and $\alpha \in \mathbf{F}$,

$$
[\alpha v]_{B}=\alpha[v]_{B} .
$$

Instead of computing in (possibly complicated) V, compute in $\mathbf{F}^{\operatorname{dim}(\mathbf{V})}$!

Example

Consider the following bases of \mathbf{R}^{2} :

- $B_{1}=(1,0),(0,1)$
- $B_{2}=(1,1),(-1,1)$
- $B_{3}=(1,2),(3,4)$

Let $v=(3,2)$. Then

- $[v]_{B_{1}}=(3,2)$, since $(3,2)=3(1,0)+2(0,1)$
- $[v]_{B_{2}}=(5 / 2,-1 / 2)$, since $(3,2)=\frac{5}{2}(1,1)-\frac{1}{2}(-1,1)$
- $[v]_{B_{3}}=(-3,2)$, since $(3,2)=-3(1,2)+2(3,4)$

Coordinate transformation

- Let $B=b_{1}, \ldots, b_{n}$ and $C=c_{1}, \ldots, c_{n}$ be two bases of a vector space \mathbf{V}.
- let $[v]_{B}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ and $[v]_{C}=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$.

What is the relationship between $[v]_{B}$ and $[v]_{C}$?

- For $i=1, \ldots, n$, let $\left[b_{i}\right]_{c}=\left(\alpha_{1, i}, \alpha_{2, i}, \ldots, \alpha_{n, i}\right)$.

$$
\begin{aligned}
v & =\beta_{1} b_{1}+\ldots+\beta_{n} b_{n} \\
& =\beta_{1} \sum_{j=1}^{n} \alpha_{j, 1} c_{j}+\ldots+\beta_{n} \sum_{j=1}^{n} \alpha_{j, n} c_{j} \\
& =\gamma_{1} c_{1}+\ldots+\gamma_{n} c_{n} .
\end{aligned}
$$

Hence, for $j=1, \ldots, n$:

$$
\gamma_{j}=\alpha_{j, 1} \beta_{1}+\alpha_{j, 2} \beta_{2}+\ldots+\alpha_{j, n} \beta_{n}
$$

Basis transition matrix

Definition

Let $B=b_{1}, \ldots, b_{n}$ and C be two bases of a vector space \mathbf{V}. The matrix

$$
[\mathrm{id}]_{B, C}=\left(\begin{array}{ccc}
\alpha_{1,1} & \ldots & \alpha_{1, n} \\
\alpha_{2,1} & \ldots & \alpha_{2, n} \\
& \ldots & \\
\alpha_{n, 1} & \ldots & \alpha_{n, n}
\end{array}\right)
$$

where $\left[b_{i}\right]_{C}=\left(\alpha_{1, i}, \alpha_{2, i}, \ldots, \alpha_{n, i}\right)$ for $i=1, \ldots, n$, is the basis transition matrix from B to C.

The i-th column of $[\mathrm{id}]_{B, C}$ gives the coordinates of b_{i} in C.

Lemma

For any vector v,

$$
[v]_{C}^{T}=[i d]_{B, C}[v]_{B}^{T}
$$

Properties of basis transitions

Lemma

Let $B=b_{1}, \ldots, b_{n}, C$, and D be bases of a vector space \mathbf{V}.

$$
\begin{aligned}
{[i d]_{B, C} } & =[i d]_{C, B}^{-1} \\
{[i d]_{B, D} } & =[i d]_{C, D}[i d]_{B, C}
\end{aligned}
$$

Proof.

The i-th column of $[\mathrm{id}]_{C, B}[\mathrm{id}]_{B, C}$ is

$$
[\mathrm{id}]_{C, B}[\mathrm{id}]_{B, C} e_{i}^{T}=[\mathrm{id}]_{C, B}[\mathrm{id}]_{B, C}\left[b_{i}\right]_{B}^{T}=[\mathrm{id}]_{C, B}\left[b_{i}\right]_{C}^{T}=\left[b_{i}\right]_{B}^{T}=e_{i}^{T},
$$ hence $[\mathrm{id}]_{C, B}[\mathrm{id}]_{B, C}=I$.

Properties of basis transitions

Lemma

Let $B=b_{1}, \ldots, b_{n}, C$, and D be bases of a vector space \mathbf{V}.

$$
\begin{aligned}
{[i d]_{B, C} } & =[i d]_{C, B}^{-1} \\
{[i d]_{B, D} } & =[i d]_{C, D}[i d]_{B, C}
\end{aligned}
$$

Proof.

The i-th column of $[\mathrm{id}]_{C, D}[\mathrm{id}]_{B, C}$ is

$$
[\mathrm{id}]_{C, D}[\mathrm{id}]_{B, C} e_{i}^{T}=[\mathrm{id}]_{C, D}[\mathrm{id}]_{B, C}\left[b_{i}\right]_{B}^{T}=[\mathrm{id}]_{C, D}\left[b_{i}\right]_{C}^{T}=\left[b_{i}\right]_{D}^{T},
$$

the same as the i-th column of $[\text { id }]_{B, D}$.

Computing a basis transition matrix

Problem

Let $B=(1,1),(-1,1)$ and $C=(1,2),(3,4)$. Compute the basis transition matrix $[i d]_{B, C}$.

Let $D=(1,0),(0,1)$ be the standard basis. Then

$$
[\mathrm{id}]_{B, D}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad[\mathrm{id}]_{C, D}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
$$

- $[\mathrm{id}]_{B, C}=[\mathrm{id}]_{D, C}[\mathrm{id}]_{B, D}=[\mathrm{id}]_{C, D}^{-1}[\mathrm{id}]_{B, D}$.
- Recall: if X is regular, then $\operatorname{RREF}(X \mid Y)=\left(I \mid X^{-1} Y\right)$.

$$
\begin{aligned}
\operatorname{RREF}\left(\begin{array}{cc|cc}
1 & 3 & 1 & -1 \\
2 & 4 & 1 & 1
\end{array}\right) & =\left(\begin{array}{cc|cc}
1 & 0 & -1 / 2 & 7 / 2 \\
0 & 1 & 1 / 2 & -3 / 2
\end{array}\right) \\
{[\mathrm{id}]_{B, C} } & =\left(\begin{array}{cc}
-1 / 2 & 7 / 2 \\
1 / 2 & -3 / 2
\end{array}\right)
\end{aligned}
$$

Using a basis transition matrix

Problem

Let $B=(1,1),(-1,1)$ and $C=(1,2),(3,4)$. If $[v]_{B}=(5 / 2,-1 / 2)$, what are the coordinates of v with respect to C ?

$$
[v]_{C}^{T}=[\mathrm{id}]_{B, C}[v]_{B}^{T}=\left(\begin{array}{cc}
-1 / 2 & 7 / 2 \\
1 / 2 & -3 / 2
\end{array}\right)\binom{5 / 2}{-1 / 2}=\binom{-3}{2},
$$

hence

$$
[v]_{C}=(-3,2) .
$$

Using a basis transition matrix

Problem

Let $B=(1,1),(-1,1)$ and $C=(1,2),(3,4)$. If $[v]_{B}=(5 / 2,-1 / 2)$, what are the coordinates of v with respect to C ?

$$
[v]_{C}^{T}=[\mathrm{id}]_{B, C}[v]_{B}^{T}=\left(\begin{array}{cc}
-1 / 2 & 7 / 2 \\
1 / 2 & -3 / 2
\end{array}\right)\binom{5 / 2}{-1 / 2}=\binom{-3}{2}
$$

hence

$$
[v]_{C}=(-3,2)
$$

Note: only practical when transforming several vectors.
Otherwise, compute $v=\frac{5}{2}(1,1)-\frac{1}{2}(-1,1)=(3,2)$ and determine $[v]_{C}$ by solving linear equations.

Application: (idea of) fast polynomial multiplication

Let p, q be polynomials of degree at most n, let $\alpha_{1}, \ldots, \alpha_{2 n+1}$ be distinct complex numbers.

- The straightforward algorithm to compute $p q$ needs $\approx n^{2}$ operations.
- Given $p\left(\alpha_{1}\right), \ldots, p\left(\alpha_{2 n+1}\right), q\left(\alpha_{1}\right), \ldots, q\left(\alpha_{2 n+1}\right)$:
- The values

$$
\begin{aligned}
(p q)\left(\alpha_{1}\right) & =p\left(\alpha_{1}\right) q\left(\alpha_{1}\right) \\
(p q)\left(\alpha_{2}\right) & =p\left(\alpha_{2}\right) q\left(\alpha_{2}\right) \\
& \ldots \\
(p q)\left(\alpha_{2 n+1}\right) & =p\left(\alpha_{2 n+1}\right) q\left(\alpha_{2 n+1}\right)
\end{aligned}
$$

can be computed using $\approx n$ operations.

- These values uniquely determine $p q \in \mathcal{P}_{2 n}$.

Application: (idea of) fast polynomial multiplication

Let $B=1, x, x^{2}, \ldots, x^{2 n}, C=\ell_{1}, \ldots, \ell_{2 n+1}$ be bases of $\mathcal{P}_{2 n}$, where

- $\ell_{i}\left(\alpha_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}$

For a polynomial $p=\pi_{0}+\pi_{1} x+\ldots+\pi_{2 n} x^{2 n}$:

- $[p]_{B}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{2 n}\right)$
- $[p]_{C}=\left(p\left(\alpha_{1}\right), \ldots, p\left(\alpha_{2 n+1}\right)\right)$

Application: (idea of) fast polynomial multiplication

To compute the coefficients $[p q]_{B}$ of $p q$:

- Compute

$$
\begin{aligned}
{[p]_{C}^{T} } & =\left[\operatorname{id}_{B, C}\right][p]_{B}^{T} \\
{[q]_{C}^{T} } & =\left[\mathrm{id}_{B, C}\right][q]_{B}^{T}
\end{aligned}
$$

- Compute $[p q]_{C}$ by multiplying $[p]_{C}$ and $[q]_{C}$ element-by-element.
- Compute $[p q]_{B}^{T}=\left[\mathrm{id}_{C, B}\right][p q]_{C}^{T}$.

Application: (idea of) fast polynomial multiplication

To compute the coefficients $[p q]_{B}$ of $p q$:

- Compute

$$
\begin{aligned}
{[p]_{C}^{T} } & =\left[\operatorname{id}_{B, C}\right][p]_{B}^{T} \\
{[q]_{C}^{T} } & =\left[\operatorname{id}_{B, C}\right][q]_{B}^{T}
\end{aligned}
$$

- Compute $[p q]_{C}$ by multiplying $[p]_{C}$ and $[q]_{C}$ element-by-element.
- Compute $[p q]_{B}^{T}=\left[\mathrm{id}_{C, B}\right][p q]_{C}^{T}$.

To perform the multiplications by $\left[\mathrm{id}_{B, C}\right]$ and [id ${ }_{C, B}$] efficiently:

- Choose $\alpha_{1}, \ldots, \alpha_{2 n+1}$ cleverly
- so that $\left[\mathrm{id}_{B, C}\right]$ and $\left[\mathrm{id}_{C, B}\right]$ have very special form
- FFT algorithm

Needs only $\approx n \log n$ operations.

Linear functions

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Definition

A function $f: \mathbf{U} \rightarrow \mathbf{V}$ is linear if

- For every $u_{1}, u_{2} \in \mathbf{U}$,

$$
f\left(u_{1}+u_{2}\right)=f\left(u_{1}\right)+f\left(u_{2}\right) .
$$

- For every $\boldsymbol{u} \in \mathbf{U}$ and $\alpha \in \mathbf{F}$,

$$
f(\alpha u)=\alpha f(u) .
$$

Also called linear maps, transformations, operators, ...

Examples of linear functions

- Mapping of v to $[v]_{B}$.
- $f: \mathbf{R}^{2} \rightarrow \mathbf{R}, f(x, y)=2 x+3 y$.
- For any $m \times n$ matrix $A, f: \mathbf{R}^{n \times 1} \rightarrow \mathbf{R}^{m \times 1}$ defined by $f(x)=A x$.
- Let \mathbf{S} be the vector space of infinite sequences. "shift left" $D: \mathbf{S} \rightarrow \mathbf{S}, D\left(a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$
- Derivative is a linear function from \mathcal{P}^{n} to \mathcal{P}^{n-1}.
- $g: \mathbf{U} \rightarrow \mathbf{V}, g(u)=0$.
- id : $\mathbf{V} \rightarrow \mathbf{V}, \operatorname{id}(v)=v$.

Linear transformations of the plane

Rotation by 80 degrees.

Linear transformations of the plane

Reflection across the y axis.

Linear transformations of the plane

Projection to the x axis.

Linear transformations of the plane

Enlarging by half in the y direction.

Linear transformations of the plane

Translation by $(-4,-1)$ is not linear.

Properties of linear functions

Lemma

If $f: \mathbf{U} \rightarrow \mathbf{V}$ is linear, then

- $f(o)=0$
- $f\left(\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n}\right)=\alpha_{1} f\left(u_{1}\right)+\ldots+\alpha_{n} f\left(u_{n}\right)$.

Linear functions and bases

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}, let $B=u_{1}, \ldots, u_{n}$ be a basis of \mathbf{U}.

Lemma

For every $v_{1}, \ldots, v_{n} \in \mathbf{V}$, there exists a unique linear function $f: \mathbf{U} \rightarrow \mathbf{V}$ such that

$$
f\left(u_{1}\right)=v_{1}, \ldots, f\left(u_{n}\right)=v_{n} .
$$

Proof.

For every $u=\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n} \in \mathbf{U}$, let

$$
f(u)=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

- Linear by the linearity of coordinates.
- $f\left(u_{i}\right)=v_{i}$ for $i=1, \ldots, n$.

Linear functions and bases

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}, let $B=u_{1}, \ldots, u_{n}$ be a basis of \mathbf{U}.

Lemma

For every $v_{1}, \ldots, v_{n} \in \mathbf{V}$, there exists a unique linear function $f: \mathbf{U} \rightarrow \mathbf{V}$ such that

$$
f\left(u_{1}\right)=v_{1}, \ldots, f\left(u_{n}\right)=v_{n} .
$$

Proof.

Uniqueness:
$f\left(\alpha_{1} u_{1}+\ldots+\alpha_{n} u_{n}\right)=\alpha_{1} f\left(u_{1}\right)+\ldots+\alpha_{n} f\left(u_{n}\right)=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}$
by linearity.

Matrix of a linear function

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F},

- let $B=u_{1}, \ldots, u_{n}$ be a basis of \mathbf{U},
- let C be a basis of \mathbf{V}.

Definition

For a linear function $f: \mathbf{U} \rightarrow \mathbf{V}$, the matrix of the function with respect to bases B and C is the ($\operatorname{dim} \mathbf{V} \times \operatorname{dim} \mathbf{U}$)-matrix whose i-th column consists of the coordinates of $f\left(u_{i}\right)$:

$$
[f]_{B, C}=\left(\left[f\left(u_{1}\right)\right]_{C}^{T}\left|\left[f\left(u_{2}\right)\right]_{C}^{T}\right| \ldots \mid\left[f\left(u_{n}\right)\right]_{C}^{T}\right)
$$

- $[f]_{B, C}$ uniquely determines f, and
- for any $(\operatorname{dim} \mathbf{V} \times \operatorname{dim} \mathbf{U})$-matrix A, there exists a linear function $f: \mathbf{U} \rightarrow \mathbf{V}$ such that $[f]_{B, C}=A$.

Example(1)

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the reflection across the y axis,

$$
f(x, y)=(-x, y)
$$

Let $B=C=(1,0),(0,1)$ be the standard basis. Then

$$
\begin{aligned}
f(1,0) & =(-1,0) \\
f(0,1) & =(0,1) \\
{[f]_{B, C} } & =\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Example(2)

Let $d: \mathcal{P}^{3} \rightarrow \mathcal{P}^{2}$ be the derivative. Let

- $B=1, x, x^{2}, x^{3}$ a basis of \mathcal{P}^{3},
- $C_{1}=1, x, x^{2}$ a basis of \mathcal{P}^{2},
- $C_{2}=1,1+x, 1+x+x^{2}$ another basis of \mathcal{P}^{2}.

$$
\begin{aligned}
d(1) & =0 \\
d(x) & =1 \\
d\left(x^{2}\right) & =2 x=2(1+x)-2 \\
d\left(x^{3}\right) & =3 x^{2}=3\left(1+x+x^{2}\right)-3(1+x) \\
{[d]_{B, C_{1}} } & =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) \\
{[d]_{B, C_{2}} } & =\left(\begin{array}{llll}
0 & 1 & -2 & 0 \\
0 & 0 & 2 & -3 \\
0 & 0 & 0 & 3
\end{array}\right)
\end{aligned}
$$

Meaning of the matrix of a linear function

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F},

- let $B=u_{1}, \ldots, u_{n}$ be a basis of \mathbf{U},
- let C be a basis of \mathbf{V}.

Lemma

If $f: \mathbf{U} \rightarrow \mathbf{V}$ is a linear function and $u \in \mathbf{U}$, then

$$
[f(u)]_{C}^{T}=[f]_{B, C}[u]_{B}^{T}
$$

Instead of computing the function directly, we can evaluate it on coordinates using matrix multiplication.

Meaning of the matrix of a linear function

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F},

- let $B=u_{1}, \ldots, u_{n}$ be a basis of \mathbf{U},
- let C be a basis of \mathbf{V}.

Lemma

If $f: \mathbf{U} \rightarrow \mathbf{V}$ is a linear function and $u \in \mathbf{U}$, then

$$
[f(u)]_{C}^{T}=[f]_{B, C}[u]_{B}^{T} .
$$

Proof.

$[f]_{B, C}\left[u_{i}\right]_{B}^{T}=[f]_{B, C} \boldsymbol{e}_{i}^{T}$ is the i-th column of $[f]_{B, C}$, equals $\left[f\left(u_{i}\right)\right]_{C}^{T}$. If $[u]_{B}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, then

$$
[f]_{B, C}[u]_{B}^{T}=\sum_{i=1}^{n} \alpha_{i}[f]_{B, C}\left[u_{i}\right]_{B}^{T}=\sum_{i=1}^{n} \alpha_{i}\left[f\left(u_{i}\right)\right]_{C}^{T}=[f(u)]_{C}^{T} .
$$

Composition

Let \mathbf{U}, \mathbf{V}, and \mathbf{W} be vector spaces over the same field \mathbf{F}, with bases $B=u_{1}, \ldots, u_{n}, C$, and D, respectively.

Lemma

For any linear $f: \mathbf{U} \rightarrow \mathbf{V}$ and $g: \mathbf{V} \rightarrow \mathbf{W}$,

$$
[g f]_{B, D}=[g]_{C, D}[f]_{B, C}
$$

Proof.

The i-th column of $[g]_{C, D}[f]_{B, C}$ is

$$
[g]_{C, D}[f]_{B, C} e_{i}^{T}=[g]_{C, D}[f]_{B, C}\left[u_{i}\right]_{B}^{T}=[g]_{C, D}\left[f\left(u_{i}\right)\right]_{C}^{T}=\left[g\left(f\left(u_{i}\right)\right)\right]_{D}^{T},
$$ which is the same as the i-th column of $[g f]_{B, D}$.

Basis transition matrix vs. linear functions

- Basis transition matrix [id] $]_{B, C}$ maps coordinates of v with respect to B to coordinates of v with respect to C.
- I.e., it is the matrix of the identity function id with respect to bases B and C.
- Hence the notation $[i d]_{B, C}$.

Isomorphisms

Definition

A linear function $f: \mathbf{U} \rightarrow \mathbf{V}$ is an isomorphism if f is bijective (1-to-1 and onto).

- If there exists an isomorphism from \mathbf{U} to \mathbf{V}, then \mathbf{U} and \mathbf{V} are isomorphic.
- f "renames" the elements of \mathbf{U} to elements of \mathbf{V}, preserving their linear combinations.
- In particular, $\operatorname{dim}(\mathbf{U})=\operatorname{dim}(\mathbf{V})$.
- Since f is bijective, it has an inverse f^{-1} defined by

$$
f^{-1}(v)=u \text { if and only if } f(u)=v .
$$

- $f\left(f^{-1}(v)\right)=v$ for every $v \in \mathbf{V}$
- $f^{-1}(f(u))=u$ for every $u \in \mathbf{U}$

Inverse

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F},

- let $B=u_{1}, \ldots, u_{n}$ be a basis of \mathbf{U},
- let C be a basis of \mathbf{V}.

Lemma

If $f: \mathbf{U} \rightarrow \mathbf{V}$ is an isomorphism, then f^{-1} is linear and

$$
\left[f^{-1}\right]_{C, B}=[f]_{B, C}^{-1}
$$

Proof.

Linearity: let $v_{1}, v_{2} \in \mathbf{V}, \alpha \in \mathbf{F}$.

$$
\begin{aligned}
f^{-1}\left(v_{1}+v_{2}\right) & =f^{-1}\left(f\left(f^{-1}\left(v_{1}\right)\right)+f\left(f^{-1}\left(v_{2}\right)\right)\right) \\
& =f^{-1}\left(f\left(f^{-1}\left(v_{1}\right)+f^{-1}\left(v_{2}\right)\right)\right)=f^{-1}\left(v_{1}\right)+f^{-1}\left(v_{2}\right) \\
f^{-1}\left(\alpha v_{1}\right) & =f^{-1}\left(\alpha f\left(f^{-1}\left(v_{1}\right)\right)\right)=f^{-1}\left(f\left(\alpha f^{-1}\left(v_{1}\right)\right)\right)=\alpha f^{-1}\left(v_{1}\right)
\end{aligned}
$$

Inverse

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F},

- let $B=u_{1}, \ldots, u_{n}$ be a basis of \mathbf{U},
- let C be a basis of \mathbf{V}.

Lemma

If $f: \mathbf{U} \rightarrow \mathbf{V}$ is an isomorphism, then f^{-1} is linear and

$$
\left[f^{-1}\right]_{C, B}=[f]_{B, C}^{-1}
$$

Proof.

The i-th column of $\left[f^{-1}\right]_{C, B}[f]_{B, C}$ is

$$
\begin{aligned}
{\left[f^{-1}\right]_{C, B}[f]_{B, C} e_{i}^{T} } & =\left[f^{-1}\right]_{C, B}[f]_{B, C}\left[u_{i}\right]_{B}^{T}=\left[f^{-1}\right]_{C, B}\left[f\left(u_{i}\right)\right]_{C}^{T} \\
& =\left[f^{-1}\left(f\left(u_{i}\right)\right)\right]_{B}^{T}=\left[u_{i}\right]_{B}^{T}=e_{i}^{T}
\end{aligned}
$$

hence $\left[f^{-1}\right]_{C, B}[f]_{B, C}=I$.

Example: linear transformations of the plane

Problem

Let p be the line in \mathbf{R}^{2} through the origin in 30 degrees angle. To which point is (x, y) mapped by reflection across the p axis?

The reflection across the p axis defines an isomorphism g : $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$.
Let r be the rotation by 30 degrees and f the reflection across the x axis. Then,

$$
g=r f r^{-1}
$$

and $[g]=[r][f][r]^{-1}$ with respect to the standard basis.

Example: linear transformations of the plane

Problem

Let p be the line in \mathbf{R}^{2} through the origin in 30 degrees angle. To which point is (x, y) mapped by reflection across the p axis?

$$
\left.\begin{array}{rlrl}
r(1,0) & =(\sqrt{3} / 2,1 / 2) & f(1,0) & =(1,0) \\
r(0,1) & =(-1 / 2, \sqrt{3} / 2) & f(0,1) & =(0,-1)
\end{array}\right] \begin{array}{cr}
{[r]=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)} & {[f]=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)} \\
{[g]} & =\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right)
\end{array}
$$

Hence, $g(x, y)=(x / 2+\sqrt{3} y / 2, \sqrt{3} x / 2-y / 2)$.

Example: composition of rotations

Let $r_{\alpha}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation by angle α.

$$
\begin{aligned}
r_{\alpha}(1,0) & =(\cos \alpha, \sin \alpha) \\
r_{\alpha}(0,1) & =(-\sin \alpha, \cos \alpha) \\
{\left[r_{\alpha}\right] } & =\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
\end{aligned}
$$

Note that $r_{\alpha+\beta}=r_{\alpha} r_{\beta}$, and $\left[r_{\alpha+\beta}\right]=\left[r_{\alpha}\right]\left[r_{\beta}\right]$:

$$
\begin{aligned}
\left(\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right) & =\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & -\cos \alpha \sin \beta-\sin \alpha \cos \beta \\
\sin \alpha \cos \beta+\cos \alpha \sin \beta & -\sin \alpha \sin \beta+\cos \alpha \cos \beta
\end{array}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

