Let **V** be a vector space over a field **F**. Let $B = v_1, \ldots, v_n$ be a basis of **V**.

Definition

The coordinates of a vector $v \in \mathbf{V}$ with respect to the basis B are given by the (unique) vector $[v]_B = (\alpha_1, \ldots, \alpha_n) \in \mathbf{F}^n$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \ldots + \alpha_n \mathbf{v}_n.$$

Observation

Let V be a vector space over field F, and let B be a basis of V.

• For every $u, v \in \mathbf{V}$,

$$[u+v]_B = [u]_B + [v]_B.$$

• For every
$$v \in V$$
 and $\alpha \in F$,

$$[\alpha \mathbf{v}]_{\mathbf{B}} = \alpha [\mathbf{v}]_{\mathbf{B}}.$$

Instead of computing in (possibly complicated) V, compute in $\mathbf{F}^{\text{dim}(V)}!$

Consider the following bases of \mathbf{R}^2 :

- $B_1 = (1,0), (0,1)$
- $B_2 = (1, 1), (-1, 1)$
- $B_3 = (1, 2), (3, 4)$

Let v = (3, 2). Then

- $[v]_{B_1} = (3,2)$, since (3,2) = 3(1,0) + 2(0,1)
- $[v]_{B_2} = (5/2, -1/2)$, since $(3, 2) = \frac{5}{2}(1, 1) \frac{1}{2}(-1, 1)$
- $[v]_{B_3} = (-3, 2)$, since (3, 2) = -3(1, 2) + 2(3, 4)

Coordinate transformation

Let B = b₁,..., b_n and C = c₁,..., c_n be two bases of a vector space V.

• let
$$[v]_B = (\beta_1, ..., \beta_n)$$
 and $[v]_C = (\gamma_1, ..., \gamma_n)$.

What is the relationship between $[v]_B$ and $[v]_C$?

• For
$$i = 1, ..., n$$
, let $[b_i]_C = (\alpha_{1,i}, \alpha_{2,i}, ..., \alpha_{n,i})$.

$$\mathbf{v} = \beta_1 \mathbf{b}_1 + \ldots + \beta_n \mathbf{b}_n$$

= $\beta_1 \sum_{j=1}^n \alpha_{j,1} \mathbf{c}_j + \ldots + \beta_n \sum_{j=1}^n \alpha_{j,n} \mathbf{c}_j$
= $\gamma_1 \mathbf{c}_1 + \ldots + \gamma_n \mathbf{c}_n$.

Hence, for $j = 1, \ldots, n$:

$$\gamma_j = \alpha_{j,1}\beta_1 + \alpha_{j,2}\beta_2 + \ldots + \alpha_{j,n}\beta_n$$

Basis transition matrix

Definition

Let $B = b_1, \ldots, b_n$ and C be two bases of a vector space **V**. The matrix

$$[\mathsf{id}]_{B,C} = \begin{pmatrix} \alpha_{1,1} & \cdots & \alpha_{1,n} \\ \alpha_{2,1} & \cdots & \alpha_{2,n} \\ & \cdots & \\ \alpha_{n,1} & \cdots & \alpha_{n,n} \end{pmatrix},$$

where $[b_i]_C = (\alpha_{1,i}, \alpha_{2,i}, \dots, \alpha_{n,i})$ for $i = 1, \dots, n$, is the basis transition matrix from *B* to *C*.

The *i*-th column of $[id]_{B,C}$ gives the coordinates of b_i in C.

Lemma

For any vector v,

$$[v]_C^T = [\mathit{id}]_{B,C}[v]_B^T.$$

Properties of basis transitions

Lemma

Let $B = b_1, \ldots, b_n$, C, and D be bases of a vector space V.

 $[id]_{B,C} = [id]_{C,B}^{-1}$ $[id]_{B,D} = [id]_{C,D}[id]_{B,C}$

Proof.

The *i*-th column of $[id]_{C,B}[id]_{B,C}$ is

 $[id]_{C,B}[id]_{B,C}e_i^T = [id]_{C,B}[id]_{B,C}[b_i]_B^T = [id]_{C,B}[b_i]_C^T = [b_i]_B^T = e_i^T$, hence $[id]_{C,B}[id]_{B,C} = I$.

Properties of basis transitions

Lemma

Let $B = b_1, \ldots, b_n$, C, and D be bases of a vector space V.

 $[id]_{B,C} = [id]_{C,B}^{-1}$ $[id]_{B,D} = [id]_{C,D}[id]_{B,C}$

Proof.

The *i*-th column of $[id]_{C,D}[id]_{B,C}$ is

 $[\mathsf{id}]_{C,D}[\mathsf{id}]_{B,C}\boldsymbol{e}_i^T = [\mathsf{id}]_{C,D}[\mathsf{id}]_{B,C}[\boldsymbol{b}_i]_B^T = [\mathsf{id}]_{C,D}[\boldsymbol{b}_i]_C^T = [\boldsymbol{b}_i]_D^T,$

the same as the *i*-th column of $[id]_{B,D}$.

Computing a basis transition matrix

Problem

Let B = (1, 1), (-1, 1) and C = (1, 2), (3, 4). Compute the basis transition matrix $[id]_{B,C}$.

Let D = (1,0), (0,1) be the standard basis. Then $[id]_{B,D} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad [id]_{C,D} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$

- $[id]_{B,C} = [id]_{D,C} [id]_{B,D} = [id]_{C,D}^{-1} [id]_{B,D}.$
- Recall: if X is regular, then $RREF(X|Y) = (I|X^{-1}Y)$.

$$\mathsf{RREF} \left(\begin{array}{c|c} 1 & 3 & 1 & -1 \\ 2 & 4 & 1 & 1 \end{array} \right) = \left(\begin{array}{c|c} 1 & 0 & -1/2 & 7/2 \\ 0 & 1 & 1/2 & -3/2 \end{array} \right)$$
$$[\mathsf{id}]_{B,C} = \left(\begin{array}{c|c} -1/2 & 7/2 \\ 1/2 & -3/2 \end{array} \right)$$

Using a basis transition matrix

Problem

Let B = (1, 1), (-1, 1) and C = (1, 2), (3, 4). If $[v]_B = (5/2, -1/2)$, what are the coordinates of v with respect to C?

$$[\mathbf{v}]_C^T = [\mathrm{id}]_{B,C}[\mathbf{v}]_B^T = \begin{pmatrix} -1/2 & 7/2 \\ 1/2 & -3/2 \end{pmatrix} \begin{pmatrix} 5/2 \\ -1/2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix},$$

hence

 $[v]_{C} = (-3, 2).$

Using a basis transition matrix

Problem

Let B = (1, 1), (-1, 1) and C = (1, 2), (3, 4). If $[v]_B = (5/2, -1/2)$, what are the coordinates of v with respect to C?

$$[\mathbf{v}]_C^T = [\mathrm{id}]_{B,C}[\mathbf{v}]_B^T = \begin{pmatrix} -1/2 & 7/2 \\ 1/2 & -3/2 \end{pmatrix} \begin{pmatrix} 5/2 \\ -1/2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix},$$

hence

$$[v]_{C} = (-3, 2).$$

Note: only practical when transforming several vectors. Otherwise, compute $v = \frac{5}{2}(1,1) - \frac{1}{2}(-1,1) = (3,2)$ and determine $[v]_C$ by solving linear equations.

Let p, q be polynomials of degree at most n, let $\alpha_1, \ldots, \alpha_{2n+1}$ be distinct complex numbers.

- The straightforward algorithm to compute pq needs $\approx n^2$ operations.
- Given $p(\alpha_1), ..., p(\alpha_{2n+1}), q(\alpha_1), ..., q(\alpha_{2n+1})$:
 - The values

 $(pq)(\alpha_1) = p(\alpha_1)q(\alpha_1)$ $(pq)(\alpha_2) = p(\alpha_2)q(\alpha_2)$

$$(pq)(\alpha_{2n+1}) = p(\alpha_{2n+1})q(\alpha_{2n+1})$$

can be computed using $\approx n$ operations.

• These values uniquely determine $pq \in \mathcal{P}_{2n}$.

Let
$$B = 1, x, x^2, \dots, x^{2n}$$
, $C = \ell_1, \dots, \ell_{2n+1}$ be bases of \mathcal{P}_{2n} , where

•
$$\ell_i(\alpha_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

For a polynomial $p = \pi_0 + \pi_1 x + \ldots + \pi_{2n} x^{2n}$:

•
$$[p]_B = (\pi_0, \pi_1, \dots, \pi_{2n})$$

•
$$[p]_C = (p(\alpha_1), \dots, p(\alpha_{2n+1}))$$

To compute the coefficients $[pq]_B$ of pq:

Compute

$$[p]_C^T = [\mathsf{id}_{B,C}][p]_B^T \ [q]_C^T = [\mathsf{id}_{B,C}][q]_B^T$$

- Compute [*pq*]_{*C*} by multiplying [*p*]_{*C*} and [*q*]_{*C*} element-by-element.
- Compute $[pq]_B^T = [\mathrm{id}_{C,B}][pq]_C^T$.

To compute the coefficients $[pq]_B$ of pq:

Compute

$$[p]_C^T = [\mathsf{id}_{B,C}][p]_B^T \ [q]_C^T = [\mathsf{id}_{B,C}][q]_B^T$$

- Compute [*pq*]_{*C*} by multiplying [*p*]_{*C*} and [*q*]_{*C*} element-by-element.
- Compute $[pq]_B^T = [\mathrm{id}_{C,B}][pq]_C^T$.

To perform the multiplications by $[id_{B,C}]$ and $[id_{C,B}]$ efficiently:

- Choose $\alpha_1, \ldots, \alpha_{2n+1}$ cleverly
 - so that $[id_{B,C}]$ and $[id_{C,B}]$ have very special form
- FFT algorithm

Needs only $\approx n \log n$ operations.

Let **U** and **V** be vector spaces over the same field **F**.

Definition

A function $f : \mathbf{U} \to \mathbf{V}$ is linear if

• For every
$$u_1, u_2 \in \mathbf{U}$$
,

$$f(u_1 + u_2) = f(u_1) + f(u_2).$$

```
• For every u \in \mathbf{U} and \alpha \in \mathbf{F},
```

$$f(\alpha u) = \alpha f(u).$$

Also called linear maps, transformations, operators, ...

Examples of linear functions

- Mapping of v to [v]_B.
- $f: \mathbf{R}^2 \rightarrow \mathbf{R}, f(x, y) = 2x + 3y.$
- For any $m \times n$ matrix $A, f : \mathbb{R}^{n \times 1} \to \mathbb{R}^{m \times 1}$ defined by f(x) = Ax.
- Let **S** be the vector space of infinite sequences. "shift left" $D : \mathbf{S} \to \mathbf{S}, D(a_0, a_1, a_2, ...) = (a_1, a_2, a_3, ...)$
- Derivative is a linear function from \mathcal{P}^n to \mathcal{P}^{n-1} .
- $g: \mathbf{U} \to \mathbf{V}, g(u) = o.$
- id : $\mathbf{V} \to \mathbf{V}$, id $(\mathbf{v}) = \mathbf{v}$.

Rotation by 80 degrees.

Reflection across the *y* axis.

Projection to the *x* axis.

Enlarging by half in the y direction.

Translation by (-4, -1) is not linear.

Lemma

If $f: \mathbf{U} \to \mathbf{V}$ is linear, then

•
$$f(\alpha_1 u_1 + \ldots + \alpha_n u_n) = \alpha_1 f(u_1) + \ldots + \alpha_n f(u_n).$$

Linear functions and bases

Let **U** and **V** be vector spaces over the same field **F**, let $B = u_1, \ldots, u_n$ be a basis of **U**.

Lemma

For every $v_1, \ldots, v_n \in V$, there exists a unique linear function $f : U \to V$ such that

$$f(u_1)=v_1,\ldots,f(u_n)=v_n.$$

Proof.

For every $u = \alpha_1 u_1 + \ldots + \alpha_n u_n \in \mathbf{U}$, let

$$f(u) = \alpha_1 v_1 + \ldots + \alpha_n v_n.$$

• Linear by the linearity of coordinates.

•
$$f(u_i) = v_i$$
 for $i = 1, ..., n$.

Linear functions and bases

Let **U** and **V** be vector spaces over the same field **F**, let $B = u_1, \ldots, u_n$ be a basis of **U**.

Lemma

For every $v_1, \ldots, v_n \in V$, there exists a unique linear function $f : U \to V$ such that

$$f(u_1)=v_1,\ldots,f(u_n)=v_n.$$

Proof.

Uniqueness:

$$f(\alpha_1 u_1 + \ldots + \alpha_n u_n) = \alpha_1 f(u_1) + \ldots + \alpha_n f(u_n) = \alpha_1 v_1 + \ldots + \alpha_n v_n$$

by linearity.

Matrix of a linear function

Let **U** and **V** be vector spaces over the same field **F**,

- let $B = u_1, \ldots, u_n$ be a basis of **U**,
- let C be a basis of V.

Definition

For a linear function $f : \mathbf{U} \to \mathbf{V}$, the matrix of the function with respect to bases *B* and *C* is the (dim $\mathbf{V} \times \dim \mathbf{U}$)-matrix whose *i*-th column consists of the coordinates of $f(u_i)$:

$$[f]_{B,C} = ([f(u_1)]_C^T \mid [f(u_2)]_C^T \mid \dots \mid [f(u_n)]_C^T).$$

- $[f]_{B,C}$ uniquely determines f, and
- for any (dim V × dim U)-matrix A, there exists a linear function f : U → V such that [f]_{B,C} = A.

Example(1)

Let $f : \mathbf{R}^2 \to \mathbf{R}^2$ be the reflection across the *y* axis,

$$f(\mathbf{x},\mathbf{y})=(-\mathbf{x},\mathbf{y}).$$

Let B = C = (1, 0), (0, 1) be the standard basis. Then

$$f(1,0) = (-1,0)$$

$$f(0,1) = (0,1)$$

$$[f]_{B,C} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Example(2)

Let $d : \mathcal{P}^3 \to \mathcal{P}^2$ be the derivative. Let • $B = 1, x, x^2, x^3$ a basis of \mathcal{P}^3 , • $C_1 = 1, x, x^2$ a basis of \mathcal{P}^2 , • $C_2 = 1, 1 + x, 1 + x + x^2$ another basis of \mathcal{P}^2 .

$$d(1) = 0$$

$$d(x) = 1$$

$$d(x^{2}) = 2x = 2(1 + x) - 2$$

$$d(x^{3}) = 3x^{2} = 3(1 + x + x^{2}) - 3(1 + x)$$

$$[d]_{B,C_{1}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

$$[d]_{B,C_{2}} = \begin{pmatrix} 0 & 1 & -2 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Meaning of the matrix of a linear function

Let ${\bf U}$ and ${\bf V}$ be vector spaces over the same field ${\bf F},$

- let $B = u_1, \ldots, u_n$ be a basis of **U**,
- let *C* be a basis of **V**.

Lemma

If $f : \mathbf{U} \to \mathbf{V}$ is a linear function and $u \in \mathbf{U}$, then

 $[f(u)]_C^T = [f]_{B,C}[u]_B^T.$

Instead of computing the function directly, we can evaluate it on coordinates using matrix multiplication.

Meaning of the matrix of a linear function

Let **U** and **V** be vector spaces over the same field **F**,

- let $B = u_1, \ldots, u_n$ be a basis of **U**,
- let *C* be a basis of **V**.

Lemma

If $f : \mathbf{U} \to \mathbf{V}$ is a linear function and $u \in \mathbf{U}$, then

 $[f(u)]_{C}^{T} = [f]_{B,C}[u]_{B}^{T}.$

Proof.

 $[f]_{B,C}[u_i]_B^T = [f]_{B,C}e_i^T$ is the *i*-th column of $[f]_{B,C}$, equals $[f(u_i)]_C^T$. If $[u]_B = (\alpha_1, \dots, \alpha_n)$, then

$$[f]_{B,C}[u]_B^T = \sum_{i=1}^n \alpha_i [f]_{B,C}[u_i]_B^T = \sum_{i=1}^n \alpha_i [f(u_i)]_C^T = [f(u)]_C^T.$$

Composition

Let **U**, **V**, and **W** be vector spaces over the same field **F**, with bases $B = u_1, \ldots, u_n$, *C*, and *D*, respectively.

Lemma

For any linear $f : \mathbf{U} \to \mathbf{V}$ and $g : \mathbf{V} \to \mathbf{W}$,

$$[gf]_{B,D} = [g]_{C,D}[f]_{B,C}.$$

Proof.

The *i*-th column of $[g]_{C,D}[f]_{B,C}$ is

 $[g]_{C,D}[f]_{B,C}e_i^T = [g]_{C,D}[f]_{B,C}[u_i]_B^T = [g]_{C,D}[f(u_i)]_C^T = [g(f(u_i))]_D^T,$

which is the same as the *i*-th column of $[gf]_{B,D}$.

Basis transition matrix vs. linear functions

- Basis transition matrix [id]_{B,C} maps coordinates of v with respect to B to coordinates of v with respect to C.
- I.e., it is the matrix of the identity function id with respect to bases *B* and *C*.
- Hence the notation [id]_{B,C}.

Isomorphisms

Definition

A linear function $f : \mathbf{U} \to \mathbf{V}$ is an isomorphism if f is bijective (1-to-1 and onto).

- If there exists an isomorphism from U to V, then U and V are isomorphic.
- *f* "renames" the elements of **U** to elements of **V**, preserving their linear combinations.
 - In particular, $\dim(\mathbf{U}) = \dim(\mathbf{V})$.
- Since f is bijective, it has an inverse f^{-1} defined by

$$f^{-1}(v) = u$$
 if and only if $f(u) = v$.

Inverse

Let ${\bf U}$ and ${\bf V}$ be vector spaces over the same field ${\bf F},$

- let $B = u_1, \ldots, u_n$ be a basis of **U**,
- let *C* be a basis of **V**.

Lemma

If $f : \mathbf{U} \to \mathbf{V}$ is an isomorphism, then f^{-1} is linear and

 $[f^{-1}]_{C,B} = [f]^{-1}_{B,C}.$

Proof.

Linearity: let $v_1, v_2 \in V, \alpha \in F$.

$$f^{-1}(\mathbf{v}_{1} + \mathbf{v}_{2}) = f^{-1}(f(f^{-1}(\mathbf{v}_{1})) + f(f^{-1}(\mathbf{v}_{2})))$$

= $f^{-1}(f(f^{-1}(\mathbf{v}_{1}) + f^{-1}(\mathbf{v}_{2}))) = f^{-1}(\mathbf{v}_{1}) + f^{-1}(\mathbf{v}_{2})$
 $f^{-1}(\alpha \mathbf{v}_{1}) = f^{-1}(\alpha f(f^{-1}(\mathbf{v}_{1}))) = f^{-1}(f(\alpha f^{-1}(\mathbf{v}_{1}))) = \alpha f^{-1}(\mathbf{v}_{1})$

Inverse

Let ${\bf U}$ and ${\bf V}$ be vector spaces over the same field ${\bf F},$

- let $B = u_1, \ldots, u_n$ be a basis of **U**,
- let *C* be a basis of **V**.

Lemma

If $f: \mathbf{U} \to \mathbf{V}$ is an isomorphism, then f^{-1} is linear and

$$[f^{-1}]_{C,B} = [f]_{B,C}^{-1}.$$

Proof.

The *i*-th column of $[f^{-1}]_{C,B}[f]_{B,C}$ is

$$[f^{-1}]_{C,B}[f]_{B,C}\boldsymbol{e}_i^T = [f^{-1}]_{C,B}[f]_{B,C}[u_i]_B^T = [f^{-1}]_{C,B}[f(u_i)]_C^T = [f^{-1}(f(u_i))]_B^T = [u_i]_B^T = \boldsymbol{e}_i^T,$$

hence $[f^{-1}]_{C,B}[f]_{B,C} = I$.

Example: linear transformations of the plane

Problem

Let p be the line in \mathbf{R}^2 through the origin in 30 degrees angle. To which point is (x, y) mapped by reflection across the p axis?

The reflection across the p axis defines an isomorphism q: $\mathbf{R}^2 \rightarrow \mathbf{R}^2$

Let r be the rotation by 30 degrees and f the reflection across the x axis. Then,

$$g=rfr^{-1},$$

(and $[g] = [r][f][r]^{-1}$ with respect to the standard basis.

Example: linear transformations of the plane

Problem

Let p be the line in \mathbf{R}^2 through the origin in 30 degrees angle. To which point is (x, y) mapped by reflection across the p axis?

$$r(1,0) = (\sqrt{3}/2, 1/2) \qquad f(1,0) = (1,0)$$

$$r(0,1) = (-1/2, \sqrt{3}/2) \qquad f(0,1) = (0,-1)$$

$$[r] = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} \qquad [f] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$[g] = \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & -1/2 \end{pmatrix}$$
Hence, $g(x, y) = (x/2 + \sqrt{3}y/2, \sqrt{3}x/2 - y/2).$

Example: composition of rotations

Let $r_{\alpha} : \mathbf{R}^2 \to \mathbf{R}^2$ be the rotation by angle α .

$$r_{\alpha}(1,0) = (\cos \alpha, \sin \alpha)$$

$$r_{\alpha}(0,1) = (-\sin \alpha, \cos \alpha)$$

$$[r_{\alpha}] = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Note that $r_{\alpha+\beta} = r_{\alpha}r_{\beta}$, and $[r_{\alpha+\beta}] = [r_{\alpha}][r_{\beta}]$:

$$\begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix}$$
$$= \begin{pmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta & -\cos\alpha\sin\beta - \sin\alpha\cos\beta \\ \sin\alpha\cos\beta + \cos\alpha\sin\beta & -\sin\alpha\sin\beta + \cos\alpha\cos\beta \end{pmatrix}$$

Therefore,

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$