Let V be a vector space over afield F. Let B=v4,...,v, be a
basis of V.

The coordinates of a vector v € V with respect to the basis B
are given by the (unique) vector [v]g = (a4, ..., an) € F" such
that




Linearity of coordinates

LetV be a vector space over field F, and let B be a basis of V.
@ Foreveryu,v eV,

[u+vls = [ulg + [V]s.
@ ForeveryveVandacF,

[aV]B = a[V]B.

Instead of computing in (possibly complicated) V, compute in
Fdim(V)!



Consider the following bases of R?:
@ By =(1,0),(0,1)
°
@ B3 =(1,2),(3,4)
Let v = (8,2). Then
@ [v]g, =(3,2), since (3,2) =3(1,0) +2(0,1)
5
2

(
@ [v]g, =(5/2,—1/2), since (3,2) =
(-3

° [V]Bs =

,2), since (3,2) = —3(1,2) + 2(3,4)




Coordinate transformation

@ LetB=>by,....,bpand C=cy,...,cybe two bases of a
vector space V.

° Iet [V]B = (617”'75”) and [V]C = (71?' : '77/7)'
What is the relationship between [v]g and [v]s?

@ Fori= 1,...,[7, let [b,']c = (0417,',0427,',...,Ocn7,').
V= B1by + ...+ Bnbn

n n
=51 aG+ ...+ Bn ) ajnG
=1

j=1

Hence, forj=1,..., n:
v = b1+ aj2fz + ...+ ajnfn



Basis transition matrix

Let B=by,...,b, and C be two bases of a vector space V.
The matrix
a11 ... Qqp
[id]BC _ Q24 ... Q2p
O[n71 oo Oén7n
where [bj|c = (a1 j,a2,...,anj) fori=1,...,n,is the basis

transition matrix from B to C.

The i-th column of [id]g ¢ gives the coordinates of b; in C.

Lemma

For any vector v,

[VIE = lidls,c[V]5-



Properties of basis transitions

LetB=by,...,bn, C, and D be bases of a vector space V.

lidls,c = [id] G s
lid|g.p0 = [id]c,plid]s,c

The i-th column of [id]¢ g[id]g ¢ is

lid]c slid]s.ce/ = lid]c alidlaclblb = lidlcalbilé = [bils = €],

hence [id]C,B[id]B,C =1l
[



Properties of basis transitions

LetB=by,...,bn, C, and D be bases of a vector space V.

lidls,c = [id] G s
lid|g.p0 = [id]c,plid]s,c

The i-th column of [id]¢ p[id]g ¢ is

lid¢ olid]s.ce/ = [id]c olid]s clbilk = [id]c.olbilé = (b,

the same as the i-th column of [id]g p.
[



Computing a basis transition matrix

Problem

LetB=(1.,1), and C = (1,2),(3,4). Compute the basis
transition matrix [id]g c.

Let D= (1,0),(0,1) be the standard basis. Then

oo (1 ) o= (5 §)

o [id]s ¢ = lidlp,clid]s,p = lid]g plid]s,p-
@ Recall: if X is regular, then RREF(X|Y) = (/|X~1Y).

wer (oo ) (o7 e )

. —1/2 7/2
“dlﬂc:( 1/2 —3/2>



Using a basis transition matrix

Problem

LetB=(1,1),(—1,1)and C=(1,2),(3,4). If
[vle = (5/2,—1/2), what are the coordinates of v with respect
toC?

ME=tdecvit = ( 1% T ) (%% )-( 7))

hence

[Vie = (=3,2).




Using a basis transition matrix

Problem

LetB=(1,1),(—1,1)and C=(1,2),(3,4). If
[vle = (5/2,—1/2), what are the coordinates of v with respect
toC?

ME=tdecvit = ( 1% T ) (%% )-( 7))

hence

[Vle = (-3,2).
Note: only practical when transforming several vectors.
Otherwise, compute v = 3(1,1) — 5(—1,1) =(3,2) and
determine [v]¢ by solving linear equations.



Application: (idea of) fast polynomial multiplication

Let p, g be polynomials of degree at most n, let a4, ..., agnyiq
be distinct complex numbers.

@ The straightforward algorithm to compute pg needs ~ r?
operations.

@ Given p(a1),...,p(azni1),q(a1), .- -, qlazni1):
@ The values

(Pg)(1) = p(a1)q(ay)
(PQ)(a2) = p(az)q(az)

(Pg)(a2nt1) = P(azni1)q(azny1)

can be computed using = n operations.
e These values uniquely determine pg € Pa,.



Application: (idea of) fast polynomial multiplication

LetB=1,x,x2,...,x%", C = {4,
where

o f,’(aj) = {

For a polynomial p = w9 + w1 X +
° [p]B = (7T0,7T1 P 77T2n)
; P(a2n41))

1 ifi=j
0 otherwise

o [plc = (par). ...

..., lany1 be bases of Py,

oo+ X2




Application: (idea of) fast polynomial multiplication

To compute the coefficients [pq]s of pq:
@ Compute
p1¢ = [ids.cllPl
[41¢ = [ids.cllals

@ Compute [pq]¢ by multiplying [p]c and [q]c
element-by-element.

o Compute [pq]; = [idc sl[Pal¢-




Application: (idea of) fast polynomial multiplication

To compute the coefficients [pq]s of pq:

@ Compute

[p]L = [ids cllplh
[q1C = [ids cllq)5

@ Compute [pq]¢ by multiplying [p]c and [q]c
element-by-element.

o Compute [pq]; = [idc sl[Pal¢-

To perform the multiplications by [idg ¢] and [id¢ g] efficiently:
@ Choose oy, ..., azniq Cleverly
e so that [idg ¢] and [id¢ g] have very special form

@ FFT algorithm
Needs only ~ nlog n operations.



Linear functions

Let U and V be vector spaces over the same field F.

A function f : U — Vis linear if
@ Forevery uy,u» € U,

f(ur + u2) = f(uy) + f(u2).
@ Foreveryuec Uanda e F,

f(au) = af(u).

Also called linear maps, transformations, operators, . ..



Examples of linear functions

@ Mapping of v to [v]g.
e f:R? - R, f(x,y) = 2x + 3y.
@ For any m x nmatrix A, f : R™!" — R™*1 defined by
f(x) = Ax.
@ Let S be the vector space of infinite sequences.
“shift left” D : S — S, D(ay, ai, a,...) = (a1, a, as,...)
@ Derivative is a linear function from P" to P"~1.

g:U—=V, g(u)=o.
@id:V—V,id(v)=v.




Linear transformations of the plane

=
Rotation by 80 degrees.



Linear transformations of the plane

Reflection across the y axis.



Linear transformations of the plane

Projection to the x axis.



Linear transformations of the plane

Enlarging by half in the y direction.



Linear transformations of the plane

Translation by (—4, —1) is not linear.



Properties of linear functions

Lemma

Iff : U— Vs linear, then

@ f(lo)=o0




Linear functions and bases

Let U and V be vector spaces over the same field F, let
=Uuy,...,U, be abasis of U.

Lemma

Forevery vq,...,vy €V, there exists a unique linear function
f: U — V such that

f(u1):V1,~-7f(Un):Vn-

For every u = aquy + ...+ apup € U, let

f(u)y=aqvi + ...+ anvp.

@ Linear by the linearity of coordinates.
o f(u)=vifori=1,...,n.

O
e 4 4444



Linear functions and bases

Let U and V be vector spaces over the same field F, let
=Uuy,...,U, be abasis of U.

Lemma

Forevery vq,...,vy €V, there exists a unique linear function
f: U — V such that

f(u1):V1,~-7f(Un):Vn-

Uniqueness:

by linearity.

O
e 4 4444



Matrix of a linear function

Let U and V be vector spaces over the same field F,
@ let B=uy,...,u,be abasis of U,
@ let C be a basis of V.

Definition
For a linear function f : U — V, the matrix of the function with

respect to bases B and C is the (dimV x dim U)-matrix whose
i-th column consists of the coordinates of f(u;):

[fle.c = (IFUNIE | [Fw)E | - | [F(unld).

@ [f]g ¢ uniquely determines f, and

@ for any (dimV x dim U)-matrix A, there exists a linear
function 7 : U — V such that [f]g ¢ = A.



Example(1)

Let f : R?> — R? be the reflection across the y axis,

f(x,y) = (=x,¥).
LetB=C=(1,0), be the standard basis. Then
f(1,0) = (-1,0)
f = (




Example(2)

Let d : P2 — P? be the derivative. Let
@ B=1,x,x% x3abasis of P3,
@ Cy =1, x,x? abasis of P2,
@ C> =1,1+ x,1+ x + x? another basis of P?.

d(1)=0
d(x) =1
dx®)=2x=2(1+x)-2
d(x®) = 3x% = 3(1 + x + x%) — 3(1 + x)
0100
[dlge,=| 0 0 2 0
0 0 0 3
01 -2 O
[dlsc,=| 0 0 2 -3
00 0 3



Meaning of the matrix of a linear function

Let U and V be vector spaces over the same field F,
@ let B=uy,...,u,be abasis of U,
@ let C be a basis of V.

Lemma

Iff : U — Vs alinear function and u € U, then

[((WIE = [fls.clulb:

Instead of computing the function directly, we can evaluate it on
coordinates using matrix multiplication.




Meaning of the matrix of a linear function

Let U and V be vector spaces over the same field F,
@ let B=uy,...,u,be abasis of U,
@ let C be a basis of V.

Lemma

Iff : U — Vs alinear function and u € U, then

[((WIE = [fls.clulb:

[fle.clul} = [fls.ce] is the i-th column of [f]g ¢, equals [f(u;)] L.
If [u]g = (a1, ,an), then

n

flscluls = ailflgclull = ailf(u)l& = [f(W)IE.

i=1 i=1



Let U, V, and W be vector spaces over the same field F, with
bases B = uy,...,Un, C, and D, respectively.

Lemma

For any linearf:U —Vandg:V — W,

[9f]s.0 = [9]c.plf]B,c-

The i-th column of [g]¢ p[f]B,c is

[9lc.olfls.cel = [9lc,plfls.clulk = [9lc,plf(uIE = [9(f(ulb,

which is the same as the i-th column of [gf]g p. O



Basis transition matrix vs. linear functions

@ Basis transition matrix [id]g ¢ maps coordinates of v with
respect to B to coordinates of v with respect to C.

@ l.e., itis the matrix of the identity function id with respect to
bases B and C.

@ Hence the notation [id]g c.




Isomorphisms

A linear function f : U — V is an isomorphism if f is bijective
(1-to-1 and onto).

@ [f there exists an isomorphism from U to V, then U and V
are isomorphic.

@ f “renames” the elements of U to elements of V, preserving
their linear combinations.

e In particular, dim(U) = dim(V).
@ Since f is bijective, it has an inverse f~' defined by

f~1(v) = uif and only if f(u) = v.

o f(f~'(v))=vforeveryveV
o f~1(f(u))=uforeveryucU



Inverse

Let U and V be vector spaces over the same field F,
@ let B=uy,...,u,be abasis of U,
@ let C be a basis of V.

Lemma

Iff: U — V is an isomorphism, then f~1 is linear and

[Fce = flae:

Linearity: let vq,vo € V,a € F.




Inverse

Let U and V be vector spaces over the same field F,
@ let B=uy,...,u,be abasis of U,
@ let C be a basis of V.

Lemma

Iff: U — V is an isomorphism, then f~1 is linear and

[Fce = flae:

The i-th column of [f~1]¢ g[flg ¢ is

[F1clfls,cel = "lcslflsclulb = [f'cslf(u)]é
= [ (F(u)]g = luilh = €],

hence [f_1]C,B[f]B,C =1



Example: linear transformations of the plane

Problem

Let p be the line in R? through the origin in 30 degrees angle.
To which point is (x, y) mapped by reflection across the p axis?

The reflection across the p axis defines an isomorphism g :
R? — R2.
Let r be the rotation by 30 degrees and f the reflection across
the x axis. Then,

g=rfr 1,

and [g] = [r][f][r]~" with respect to the standard basis.




Example: linear transformations of the plane

Let p be the line in R? through the origin in 30 degrees angle.
To which point is (x, y) mapped by reflection across the p axis?

r(1,0) = (v/3/2,1/2) f(1,0) = (1,0)
r(0,1) = (—-1/2,v/3/2) £(0,1) = (0, 1)
(VB2 —1)2 (1 0
0-(52 42 (3 %)
(VB2 —1/2N\[1 0 V32 12\
o= (% vae )0 )W )
(12 V/3)2
(v 12 )

Hence, g(x, y) = (x/2 + vV3y/2,v/3x/2 — y/2).
e 4 4444



Example: composition of rotations

Let r, : R> — R? be the rotation by angle a.

ro(1,0) = (cos a, sina)
r4(0,1) = (—sina, cos a)

(] = < cosa —sina )

sina  cosa
Note that o, s = rars, and [Fo4] = [ra][ral:

( cos(a + B)  —sin(a + B) ):( cosa  —sina )( cosB —sinB )

sin(a + B) cos(a + B) sin v COoSs o sin B cos 3
_ cos acos B — sinasin 3 — cos asin 8 — sina cos B
- sin ac cos B + cos a sin B — sin acsin B + cos aecos B

Therefore,

cos(a + ) = cosacos f —sinasin
sin(a + 3) = sinacos 3 + cos asin 3



