Reminders

Let \mathbf{V} be a vector space.

Definition

A set $S \subseteq \mathbf{V}$ is a basis if

- S generates \mathbf{V}, i.e., $\operatorname{span}(S)=\mathbf{V}$, and
- S is linearly independent.

Assuming that \mathbf{V} has a finite basis:

- All bases of \mathbf{V} have the same size, the dimension $\operatorname{dim}(\mathbf{V})$.
- Every linearly independent set can be extended to a basis.
- If $\mathbf{U} \Subset \mathbf{V}$, then $\operatorname{dim}(\mathbf{U}) \leq \operatorname{dim}(\mathbf{V})$.

A square matrix is regular if it has a multiplicative inverse.

Uniqueness of basis linear combinations

Lemma
Let \mathbf{V} be a vector space over a field \mathbf{F}. If v_{1}, \ldots, v_{n} is a basis of \mathbf{V}, then for every $\boldsymbol{v} \in \mathbf{V}$, there exist unique $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Proof.

- $\alpha_{1}, \ldots, \alpha_{n}$ exist, since $\mathbf{V}=\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$.
- If $v=\alpha_{1}^{\prime} v_{1}+\ldots+\alpha_{n}^{\prime} v_{n}$, then

$$
\left(\alpha_{1}-\alpha_{1}^{\prime}\right) v_{1}+\ldots+\left(\alpha_{n}-\alpha_{n}^{\prime}\right) v_{n}=v-v=0, \text { and }
$$

- since v_{1}, \ldots, v_{n} are linearly independent, $\alpha_{i}^{\prime}=\alpha_{i}$ for $i=1, \ldots, n$.

Coordinates

Let \mathbf{V} be a vector space over a field \mathbf{F}. Let $B=v_{1}, \ldots, v_{n}$ be a basis of V .

Definition

The coordinates of a vector $v \in \mathbf{V}$ with respect to the basis B are the vector $[v]_{B}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{R}^{n}$ such that

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

Example

- the standard basis $(0,1),(1,0)$: coordinates $(3,2)$
- the basis $(1,3),(1,-1)$: coordinates $(5 / 4,7 / 4)$

Example

Problem

Let $B=1, x+1, x^{2}+x+1$ be a basis of \mathcal{P}_{2}. Determine the coordinates of $x^{2}+3 x+6$ with respect to B.

We need

$$
\alpha_{1} \cdot 1+\alpha_{2}(x+1)+\alpha_{3}\left(x^{2}+x+1\right)=x^{2}+3 x+6 .
$$

By comparing the coefficients

$$
\begin{array}{rlr}
\alpha_{3} & =1 & \text { at } x^{2} \\
\alpha_{2}+\alpha_{3} & =3 & \text { at } x
\end{array} \begin{aligned}
& \alpha_{3}=1 \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}
\end{aligned}=6 \begin{array}{ll}
\alpha_{2}=2 \\
& \text { constant term }
\end{array} \alpha_{1}=3
$$

Size of vector spaces over finite fields

Corollary

If \mathbf{V} is a vector space over a finite field \mathbf{F}_{n}, then

$$
|\mathbf{V}|=n^{\operatorname{dim}(\mathbf{V})}
$$

Proof.

Each element of \mathbf{V} bijectively corresponds to a dim($\mathbf{V})$-tuple of its coordinates.

Sum of subspaces

Let $\mathrm{V}_{1}, \mathrm{~V}_{2}$ be subspaces of the same space.

- Union of two subspaces typically is not a subspace.

Definition

$$
\mathbf{V}_{1}+\mathbf{V}_{2}=\left\{v_{1}+v_{2}: v_{1} \in \mathbf{V}_{1}, v_{2} \in \mathbf{V}_{2}\right\}
$$

Sum and union

Lemma

$\mathbf{V}_{1}+\mathbf{V}_{2}$ is the smallest subspace containing \mathbf{V}_{1} and \mathbf{V}_{2}, i.e.,

$$
\mathbf{V}_{1}+\mathbf{V}_{2}=\operatorname{span}\left(\mathbf{V}_{1} \cup \mathbf{V}_{2}\right) .
$$

Proof.
\subseteq If $v \in \mathbf{V}_{1}+\mathbf{V}_{2}$, then

- $v=v_{1}+v_{2}$ for some $v_{1} \in \mathbf{V}_{1}$ and $v_{2} \in \mathbf{V}_{2}$, and
- $v_{1}+v_{2} \in \operatorname{span}\left(\mathbf{V}_{1} \cup \mathbf{V}_{2}\right)$.

Sum and union

Lemma

$\mathbf{V}_{1}+\mathbf{V}_{2}$ is the smallest subspace containing \mathbf{V}_{1} and \mathbf{V}_{2}, i.e.,

$$
\mathbf{V}_{1}+\mathbf{V}_{2}=\operatorname{span}\left(\mathbf{V}_{1} \cup \mathbf{V}_{2}\right)
$$

Proof.

\supseteq If $v \in \operatorname{span}\left(\mathbf{V}_{1} \cup \mathbf{V}_{2}\right)$, then

- $\boldsymbol{v}=\alpha_{1} \boldsymbol{u}_{1}+\ldots+\alpha_{n} \boldsymbol{u}_{n}$, where $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k} \in \mathbf{V}_{1}$ and $u_{k+1}, \ldots, u_{n} \in \mathbf{V}_{2}$
- Let $v_{1}=\alpha_{1} u_{1}+\ldots+\alpha_{k} \boldsymbol{u}_{k} \in \operatorname{span}\left(\mathbf{V}_{1}\right)=\mathbf{V}_{1}$
- Let $\boldsymbol{v}_{2}=\alpha_{k+1} \boldsymbol{u}_{k+1}+\ldots+\alpha_{n} u_{n} \in \operatorname{span}\left(\mathbf{V}_{2}\right)=\mathbf{V}_{2}$
- $v=v_{1}+v_{2} \in \mathbf{V}_{1}+\mathbf{V}_{2}$.

Dimension of intersection and sum

Lemma

Let \mathbf{V} have a finite dimension, let $\mathbf{V}_{1}, \mathbf{V}_{2} \Subset \mathbf{V}$.

$$
\operatorname{dim}\left(\mathbf{V}_{1} \cap \mathbf{V}_{2}\right)+\operatorname{dim}\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)=\operatorname{dim}\left(\mathbf{V}_{1}\right)+\operatorname{dim}\left(\mathbf{V}_{2}\right)
$$

Proof.

- Let B be a basis of $\mathbf{V}_{1} \cap \mathbf{V}_{2}$.
- For $i=1,2, B$ extends to a basis $B_{i} \supseteq B$ of \mathbf{V}_{i}.
- $B_{1} \cup B_{2}$ is a basis of $\mathbf{V}_{1}+\mathbf{V}_{2}$

Dimension of intersection and sum

Lemma

Let \mathbf{V} have a finite dimension, let $\mathbf{V}_{1}, \mathbf{V}_{2} \Subset \mathbf{V}$.

$$
\operatorname{dim}\left(\mathbf{V}_{1} \cap \mathbf{V}_{2}\right)+\operatorname{dim}\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)=\operatorname{dim}\left(\mathbf{V}_{1}\right)+\operatorname{dim}\left(\mathbf{V}_{2}\right)
$$

Proof.

- $B_{1} \cup B_{2}$ is a basis of $\mathbf{V}_{1}+\mathbf{V}_{2}$
$B_{1} \cup B_{2}$ generates $\mathbf{V}_{1}+\mathbf{V}_{2}$:

$$
\mathbf{V}_{1}+\mathbf{V}_{2}=\operatorname{span}\left(\mathbf{V}_{1} \cup \mathbf{V}_{2}\right)=\operatorname{span}\left(B_{1} \cup B_{2}\right)
$$

Dimension of intersection and sum

Lemma

Let \mathbf{V} have a finite dimension, let $\mathbf{V}_{1}, \mathbf{V}_{2} \Subset \mathbf{V}$.

$$
\operatorname{dim}\left(\mathbf{V}_{1} \cap \mathbf{V}_{2}\right)+\operatorname{dim}\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)=\operatorname{dim}\left(\mathbf{V}_{1}\right)+\operatorname{dim}\left(\mathbf{V}_{2}\right)
$$

Proof.

- $B_{1} \cup B_{2}$ is a basis of $\mathbf{V}_{1}+\mathbf{V}_{2}$

Suppose $\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=o$ with $v_{1}, \ldots, v_{k} \in B, v_{k+1}, \ldots, v_{t} \in$ $B_{1} \backslash B$ and $v_{t+1}, \ldots, v_{n} \in B_{2} \backslash B$. Then $x=\alpha_{1} v_{1}+\ldots+\alpha_{t} v_{t}=-\alpha_{t+1} v_{t+1}-\ldots-\alpha_{n} v_{n} \in \mathbf{V}_{1} \cap \mathbf{V}_{2}=\operatorname{span}(B)$.
x is a unique linear combination of $B_{1} \supseteq B \Rightarrow \alpha_{i}=0$ for $i=$ $k+1, \ldots, t$. Symmetrically for $i=t+1, \ldots, n$.
Thus, $\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=o$ and $\alpha_{i}=0$ for $i=1, \ldots, k$ by linear independence of B.

Dimension of intersection and sum

Lemma

Let \mathbf{V} have a finite dimension, let $\mathbf{V}_{1}, \mathbf{V}_{2} \Subset \mathbf{V}$.

$$
\operatorname{dim}\left(\mathbf{V}_{1} \cap \mathbf{V}_{2}\right)+\operatorname{dim}\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)=\operatorname{dim}\left(\mathbf{V}_{1}\right)+\operatorname{dim}\left(\mathbf{V}_{2}\right)
$$

Proof.

- Let B be a basis of $\mathbf{V}_{1} \cap \mathbf{V}_{2}$.
- For $i=1,2, B$ extends to a basis $B_{i} \supseteq B$ of \mathbf{V}_{i}.
- $B_{1} \cup B_{2}$ is a basis of $\mathbf{V}_{1}+\mathbf{V}_{2}$

$$
\begin{aligned}
\operatorname{dim}\left(\mathbf{V}_{1} \cap \mathbf{V}_{2}\right)+\operatorname{dim}\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right) & =|B|+\left|B_{1} \cup B_{2}\right| \\
& =\left|B_{1} \cap B_{2}\right|+\left|B_{1} \cup B_{2}\right| \\
& =\left|B_{1}\right|+\left|B_{2}\right| \\
& =\operatorname{dim}\left(\mathbf{V}_{1}\right)+\operatorname{dim}\left(\mathbf{V}_{2}\right)
\end{aligned}
$$

Example

Let $\mathbf{V}_{1}, \mathbf{V}_{2}$ be 2-dimensional planes in \mathbf{R}^{4}. One of the following holds:

- $\mathbf{V}_{1}=\mathbf{V}_{2}, \operatorname{dim}\left(\mathbf{V}_{1} \cap \mathbf{V}_{2}\right)=\operatorname{dim}\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)=2$, or
- $\mathbf{V}_{1} \cap \mathbf{V}_{1}$ is a line (dimension 1), $\operatorname{dim}\left(\mathbf{V}_{1}+\mathbf{V}_{2}\right)=3$, or
- $\mathbf{V}_{1} \cap \mathbf{V}_{1}$ is $\{0\}$ (dimension 0), $\mathbf{V}_{1}+\mathbf{V}_{2}=\mathbf{R}^{4}$.

Minimum intersection size

Corollary

If \mathbf{V}_{1} and \mathbf{V}_{2} are subspaces of a space of dimension n, then

$$
\operatorname{dim}\left(\mathbf{V}_{1} \cap \mathbf{V}_{2}\right) \geq \operatorname{dim}\left(\mathbf{V}_{1}\right)+\operatorname{dim}\left(\mathbf{V}_{2}\right)-n
$$

Example: two planes in \mathbf{R}^{3} cannot intersect in exactly one point

- w.l.o.g. the point would be $(0,0,0)$, hence
- the planes are subspaces
- their intersection has dimension at least $2+2-3=1$

Matrix spaces

Let A be an $n \times m$ matrix with entries from field \mathbf{F}.

Definition

The row space of A is the linear span of its rows.

$$
\operatorname{Row}(A)=\operatorname{span}\left(A_{1, \star}, A_{2, \star}, \ldots, A_{n, \star}\right) \Subset \mathbf{F}^{1 \times m}
$$

Definition

The column space of A is the linear span of its columns.

$$
\operatorname{Col}(A)=\operatorname{span}\left(A_{\star, 1}, A_{\star, 2}, \ldots, A_{\star, m}\right) \Subset \mathbf{F}^{n \times 1}
$$

Equivalently:

$$
\begin{aligned}
\operatorname{Row}(A) & =\left\{x A: x \in \mathbf{F}^{1 \times n}\right\} \\
\operatorname{Col}(A) & =\left\{A x: x \in \mathbf{F}^{m \times 1}\right\}
\end{aligned}
$$

Example

Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right)
$$

$\operatorname{Row}(A)=\operatorname{span}((1,1,1),(1,2,3),(2,3,4))=\operatorname{span}((1,1,1),(1,2,3))$

$$
\begin{aligned}
\operatorname{Col}(A) & =\operatorname{span}\left(\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right)\right) \\
& =\operatorname{span}\left(\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\right)
\end{aligned}
$$

Matrix spaces and multiplication

Lemma

Let A be an $m \times n$ matrix, B an $n \times p$ matrix, C an $q \times m$ matrix.

$$
\begin{gathered}
\operatorname{Row}(C A) \Subset \operatorname{Row}(A) \\
\operatorname{Col}(A B) \in \operatorname{Col}(A)
\end{gathered}
$$

Proof.

$$
\begin{aligned}
\operatorname{Row}(C A) & =\left\{x(C A): x \in \mathbf{F}^{1 \times q}\right\} \\
& =\left\{(x C) A: x \in \mathbf{F}^{1 \times q}\right\} \subseteq\left\{y A: y \in \mathbf{F}^{1 \times n}\right\}=\operatorname{Row}(A) \\
\operatorname{Col}(A B) & =\left\{(A B) x: x \in \mathbf{F}^{p \times 1}\right\} \\
& =\left\{A(B x): x \in \mathbf{F}^{p \times 1}\right\} \subseteq\left\{A y: y \in \mathbf{F}^{m \times 1}\right\}=\operatorname{Col}(A)
\end{aligned}
$$

Multiplication by regular matrices

Let A be an $m \times n$ matrix, B an $n \times n$ matrix, C an $m \times m$ matrix.

Corollary

If C is regular, then $\operatorname{Row}(C A)=\operatorname{Row}(A)$. If B is regular, then $\operatorname{Col}(A B)=\operatorname{Col}(A)$.

Proof.

$$
\begin{aligned}
\operatorname{Row}(C A) & \Subset \operatorname{Row}(A) \\
\operatorname{Row}(A) & =\operatorname{Row}\left(C^{-1}(C A)\right) \Subset \operatorname{Row}(C A) \\
\operatorname{Col}(A B) & \Subset \operatorname{Col}(A) \\
\operatorname{Col}(A B) & =\operatorname{Col}\left((A B) B^{-1}\right) \Subset \operatorname{Col}(A B)
\end{aligned}
$$

Multiplication from the other side

... may change the space. But preserves linear dependences.

Lemma

If $\alpha_{1} A_{1, \star}+\ldots+\alpha_{n} A_{n, \star}=0$, then

$$
\alpha_{1}(A B)_{1, \star}+\ldots+\alpha_{n}(A B)_{n, \star}=0
$$

If $\alpha_{1}^{\prime} \boldsymbol{A}_{\star, 1}+\ldots+\alpha_{m}^{\prime} \boldsymbol{A}_{\star, m}=0$, then

$$
\alpha_{1}^{\prime}(C A)_{\star, 1}+\ldots+\alpha_{m}^{\prime}(C A)_{\star, m}=0
$$

Proof.

$$
\begin{aligned}
\alpha_{1}(A B)_{1, \star}+\ldots+\alpha_{n}(A B)_{n, \star} & =\left(\alpha_{1} A_{1, \star}+\ldots+\alpha_{n} A_{n, \star}\right) B \\
& =o B=0 \\
\alpha_{1}^{\prime}(C A)_{\star, 1}+\ldots+\alpha_{m}^{\prime}(C A)_{\star, m} & =C\left(\alpha_{1}^{\prime} A_{\star, 1}+\ldots+\alpha_{m}^{\prime} A_{\star, m}\right) \\
& =\mathbf{C o}=0
\end{aligned}
$$

Multiplication by regular matrix

Let A be an $m \times n$ matrix, B an $n \times n$ matrix, C an $m \times m$ matrix.
Corollary
If B is regular, then

$$
\alpha_{1} A_{1, \star}+\ldots+\alpha_{n} A_{n, \star}=0
$$

if and only if

$$
\alpha_{1}(A B)_{1, \star}+\ldots+\alpha_{n}(A B)_{n, \star}=0 .
$$

If C is regular, then

$$
\alpha_{1}^{\prime} \boldsymbol{A}_{\star, 1}+\ldots+\alpha_{m}^{\prime} \boldsymbol{A}_{\star, m}=0
$$

if and only if

$$
\alpha_{1}^{\prime}(C A)_{\star, 1}+\ldots+\alpha_{m}^{\prime}(C A)_{\star, m}=0 .
$$

Multiplication by regular matrix and bases

Corollary

If B is regular and

$$
A_{i_{1}, \star}, \ldots, A_{i_{k}, \star}
$$

is a basis of $\operatorname{Row}(A)$, then

$$
(A B)_{i_{1}, \star}, \ldots,(A B)_{i_{k}, \star}
$$

is a basis of $\operatorname{Row}(A B)$. Hence, $\operatorname{dim}(\operatorname{Row}(A))=\operatorname{dim}(\operatorname{Row}(A B))$. If C is regular and

$$
A_{\star, j_{1}}, \ldots, A_{\star, j_{t}}
$$

is a basis of $\operatorname{Col}(A)$, then

$$
(C A)_{\star, j_{1}}, \ldots,(C A)_{\star, j_{t}}
$$

is a basis of $\operatorname{Col}(C A)$. Hence, $\operatorname{dim}(\operatorname{Col}(A))=\operatorname{dim}(\operatorname{Col}(C A))$.

RREF and matrix spaces

Recall: for every A, there exists a reqular matrix C such that

$$
\operatorname{RREF}(A)=Q A .
$$

Corollary

Let A be an $n \times m$ matrix.

$$
\operatorname{Row}(A)=\operatorname{Row}(\operatorname{RREF}(A)),
$$

and

$$
\alpha_{1} A_{\star, 1}+\ldots+\alpha_{m} A_{\star, m}=0
$$

if and only if

$$
\alpha_{1}(\operatorname{RREF}(A))_{\star, 1}+\ldots+\alpha_{m}(\operatorname{RREF}(A))_{\star, m} .
$$

Dimensions of matrix spaces

- Non-zero rows of $\operatorname{RREF}(A)$ form a basis of $\operatorname{Row}(A)$.
- If p_{1}, \ldots, p_{k} are the basis colum indices of $\operatorname{RREF}(A)$, then $A_{\star, p_{1}}, \ldots, A_{\star, p_{k}}$ is a basis of $\operatorname{Col}(A)$.

Corollary

$$
\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))=\operatorname{dim}(\operatorname{Row}(A))=\operatorname{rank}\left(A^{T}\right)
$$

- The "proper" definition of rank:

Definition

Rank of a matrix A is the maximum number of its linearly independent rows.

- A square matrix is regular if and only if its rows (and columns) are linearly independent.

Description of RREF

Lemma

Let A be an $n \times m$ matrix and let $A^{\prime} \sim A$ be in RREF.

- For $p=1, \ldots, m$, the column p is a basis column of A^{\prime} if and only if $A_{\star, p} \notin \operatorname{span}\left(A_{\star, 1}, \ldots, A_{\star, p-1}\right)$.
Let $p_{1}<p_{2}<\ldots<p_{k}$ be the basis column indices of A^{\prime}.
- For every $i=1, \ldots, m, A_{1, i}^{\prime}, \ldots, A_{k, i}^{\prime}$ are the unique coefficients such that

$$
\begin{aligned}
& \quad A_{1, i}^{\prime} A_{\star, p_{1}}+A_{2, i}^{\prime} A_{\star, p_{2}}+\ldots+A_{k, i}^{\prime} A_{\star, p_{k}}=A_{\star, i}, \\
& \text { and } A_{j, i}^{\prime}= \\
& 0 \text { for } j=k+1, \ldots, n .
\end{aligned}
$$

Corollary (as promissed in the 2nd lecture)
There exists exactly one matrix A^{\prime} in RREF such that $A \sim A^{\prime}$.

Example

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 3 \\
1 & 2 & 3 & 3 & 6 \\
1 & 3 & 5 & 2 & 6
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 1 \\
0 & 1 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

$\operatorname{Row}(A)=\operatorname{span}((1,0,-1,0,1),(0,1,2,0,1),(0,0,0,1,1))$

$$
=\{(x, y, 2 y-x, z, x+y+z): x, y, z \in \mathbf{R}\}
$$

$\operatorname{Col}(A)=\operatorname{span}\left((1,1,1)^{T},(1,2,3)^{T},(1,3,2)^{T}\right)=\mathbf{R}^{3 \times 1}$
$(1,3,5)^{T}=-(1,1,1)^{T}+2(1,2,3)^{T}$
$(3,6,6)^{T}=(1,1,1)^{T}+(1,2,3)^{T}+(1,3,2)^{T}$

