Reminders

Let \mathbf{V} be a vector space over \mathbf{F}, let $v_{1}, \ldots, v_{n} \in \mathbf{V}$ be vectors.

Definition

For any $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}$, the vector

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}
$$

is a linear combination of v_{1}, \ldots, v_{n}.
Let $S \subseteq \mathbf{V}$ be a set of vectors.

Definition

The linear span of S (denoted by span (S)) is the set of all linear combinations of elements of S.

We say that S generates a subspace \mathbf{U} if $\mathbf{U}=\operatorname{span}(S)$.

Lemma

Let S be a subset of a vector space \mathbf{V}. If $v \in \operatorname{span}(S)$, then

$$
\operatorname{span}(S \cup\{v\})=\operatorname{span}(S)
$$

Proof.

If $v \in \operatorname{span}(S)$, then

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

for some $v_{1}, \ldots, v_{n} \in S$.
Clearly, $\operatorname{span}(S) \subseteq \operatorname{span}(S \cup\{v\})$. If $x \in \operatorname{span}(S \cup\{v\})$, then w.l.o.g.

$$
x=\beta v+\beta_{1} v_{1}+\ldots+\beta_{n} v_{n}
$$

Hence,

$$
x=\left(\beta_{1}+\beta \alpha_{1}\right) v_{1}+\cdots+\left(\beta_{n}+\beta \alpha_{n}\right) v_{n} \in \operatorname{span}(S)
$$

Spans generating a subspace

$$
\begin{aligned}
\{(x, y, z): 3 x-3 y+z=0\} & =\operatorname{span}(\{(x, y, z): 3 x-3 y+z=0\}) \\
& =\operatorname{span}((1,1,0),(1,2,3),(3,4,3)) \\
& =\operatorname{span}((1,1,0),(1,2,3))
\end{aligned}
$$

Non-minimality

In

$$
\operatorname{span}((1,1,0),(1,2,3),(3,4,3))
$$

the vector $(3,4,3)$ is redundant-a linear combination of other vectors.

$$
(3,4,3)=2(1,1,0)+(1,2,3)
$$

Equivalently,

$$
(3,4,3)-2(1,1,0)-(1,2,3)=0
$$

A linear combination

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n} \text { is }
$$

- trivial if $\alpha_{1}=\ldots=\alpha_{n}=0$,
- non-trivial otherwise.

Let \mathbf{V} be a vector space.

Definition

A set $S \subseteq \mathbf{V}$ is linearly independent if no non-trivial linear combination of elements of S is equal to o.

Examples

- The set $\{(1,1,0),(1,2,3),(3,4,3)\}$ in \mathbf{R}^{3} is not linearly independent, since

$$
(3,4,3)-2(1,1,0)-(1,2,3)=0
$$

- The set $\left\{x^{2}+x+1, x^{2}+2 x+3, x^{2}+2.5 x+4, x+2\right\}$ in \mathcal{P} is not linearly independent, since

$$
-\left(x^{2}+x+1\right)+3\left(x^{2}+2 x+3\right)-2\left(x^{2}+2.5 x+4\right)=0
$$

- The set $\{(1,1,0),(1,2,3)\}$ in \mathbf{R}^{3} is linearly independent.
- If $o \in S$, then S is not linearly independent, since

$$
10=0
$$

- The empty set is linearly independent.

Testing linear independence

Problem

Is $\{(0,1,0,1),(1,0,1,0),(1,2,3,4)\}$ linearly independent?

Decide whether there exist $\alpha_{1}, \alpha_{2}, \alpha_{3} \neq 0,0,0$ such that

$$
\alpha_{1}(0,1,0,1)+\alpha_{2}(1,0,1,0)+\alpha_{3}(1,2,3,4)=(0,0,0,0) .
$$

Equivalently

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3 \\
1 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \operatorname{RREF}\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 2 \\
0 & 1 & 3 \\
1 & 0 & 4
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

the only solution is $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(0,0,0)$. The vectors are linearly independent.

Linear independence and RREF

Lemma

Vectors $a_{1}, \ldots, a_{k} \in \mathbf{F}^{n \times 1}$ are linearly independent if and only if all columns of

$$
\operatorname{RREF}\left(a_{1}\left|a_{2}\right| \ldots \mid a_{k}\right)
$$

are basis columns.

Linear independence and minimality of span

Lemma

A set $S \subseteq \mathbf{V}$ is linearly independent if and only if for every $T \subsetneq S$,

$$
\operatorname{span}(T) \neq \operatorname{span}(S)
$$

Proof.

\Rightarrow If $\operatorname{span}(T)=\operatorname{span}(S)$ for some $T \subsetneq S$, then consider $v \in S \backslash T$. Since $v \in S \subseteq \operatorname{span}(S)=\operatorname{span}(T)$, we have

$$
v=\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}
$$

for some $v_{1}, \ldots, v_{n} \in T$. But

$$
\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}-v=0
$$

contradicts the independence of S.

Linear independence and minimality of span

Lemma

A set $S \subseteq \mathbf{V}$ is linearly independent if and only if for every $T \subsetneq S$,

$$
\operatorname{span}(T) \neq \operatorname{span}(S)
$$

Proof.

\Leftarrow Suppose for a contradiction that

$$
\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=0
$$

for some $v_{1}, \ldots, v_{n} \in S$, with $\alpha_{1} \neq 0$. Then

$$
v_{1}=-\alpha_{1}^{-1}\left(\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}\right) \in \operatorname{span}\left(S \backslash\left\{v_{1}\right\}\right),
$$

and thus

$$
\operatorname{span}\left(S \backslash\left\{v_{1}\right\}\right)=\operatorname{span}(S)
$$

Basis

Let \mathbf{V} be a vector space.

Definition

A set $S \subseteq \mathbf{V}$ is a basis if

- S generates \mathbf{V}, i.e., $\operatorname{span}(S)=\mathbf{V}$, and
- S is linearly independent.

Example

Each of the following sets

- $\{(1,1,0),(1,2,3)\}$
- $\{(1,1,0),(3,4,3))\}$
- $\{(1,2,3),(3,4,3))\}$
is a basis of the plane $\{(x, y, z): 3 x-3 y+z=0\}$.

Standard basis

The vectors

$$
(1,0,0),(0,1,0),(0,0,1)
$$

form a basis of \mathbf{R}^{3}.
More generally, the vectors

$$
\begin{aligned}
&(1,0,0, \ldots)=\left(e_{1}^{(n)}\right)^{\top} \\
&(0,1,0, \ldots)=\left(e_{2}^{(n)}\right)^{T} \\
& \ldots \\
&(0,0, \ldots, 0,1)=\left(e_{n}^{(n)}\right)^{T}
\end{aligned}
$$

form the standard basis of \mathbf{R}^{n}.

Does every vector space have a basis?

- "It depends."
- Equivalent to the Axiom of Choice.
- E.g., no constructive way to obtain basis for the space of functions $\mathbf{R} \rightarrow \mathbf{R}$.

Basis in a "nice" space

Definition

A vector space \mathbf{V} is countably generated if there exists a (finite or infinite) sequence $v_{1}, v_{2}, \ldots \in \mathbf{V}$ such that

$$
\mathbf{V}=\operatorname{span}\left(v_{1}, v_{2}, \ldots\right)
$$

All spaces we considered are countably generated, except for

- the space of functions/continuous functions $\mathbf{R} \rightarrow \mathbf{R}$
- the space of infinite sequences
- \mathbf{R} as a vector space over \mathbf{Q}

Basis in a "nice" space

Lemma

Every countably generated space has a basis.

Proof.

If $\mathbf{V}=\operatorname{span}\left(v_{1}, v_{2}, \ldots\right)$, let

$$
B=\left\{v_{i}: v_{i} \notin \operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)\right\}
$$

We have $\operatorname{span}(B)=\operatorname{span}\left(v_{1}, v_{2}, \ldots\right)=\mathbf{V}$.
If $\alpha_{1} v_{i_{1}}+\ldots+\alpha_{k} v_{i_{k}}=o$ for some $v_{i_{1}}, \ldots, v_{i_{k}} \in B$, where $\alpha_{k} \neq 0$ and $i_{1}<i_{2}<\ldots<i_{k}$, then

$$
v_{i_{k}}=-\alpha_{k}^{-1}\left(\alpha_{1} v_{i_{1}}+\ldots+\alpha_{k-1} v_{i_{k-1}}\right) \in \operatorname{span}\left(v_{1}, \ldots, v_{i_{k}-1}\right)
$$

which contradicts the construction of B.

Transfer lemma

Lemma (Transfer lemma)
Suppose that $S \subset \operatorname{span}(T)$ is a linearly independent set. If $\operatorname{span}(S) \neq \operatorname{span}(T)$, then there exists $v \in T \backslash S$ such that $S \cup\{v\}$ is linearly independent.

Proof.

Since $\operatorname{span}(S) \neq \operatorname{span}(T)$, there exists $v \in T \backslash \operatorname{span}(S)$. Suppose that

$$
\alpha v+\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}=0
$$

for some $v_{1}, \ldots, v_{n} \in S$. If $\alpha \neq 0$, then

$$
v=-\alpha^{-1}\left(\alpha_{1} v_{1}+\ldots+\alpha_{n} v_{n}\right) \in \operatorname{span}(S), \text { a contradiction. }
$$

Hence $\alpha=0$, and since S is linearly independent, $\alpha_{1}=\ldots=\alpha_{n}=0$. Therefore, $S \cup\{v\}$ is linearly independent.

Extension to basis

Corollary (Extension lemma)

If a vector space \mathbf{V} has a finite basis B, then every independent set is a subset of some basis.

Proof.

Let S be an independent set. Keep adding elements of B to S by the Transfer lemma until S becomes generating.

Exchange lemma

Corollary (Exchange lemma)

Let $S \subset \operatorname{span}(T)$ be a linearly independent set. For every $s \in S \backslash T$ there exists $t \in T \backslash S$ such that

$$
(S \backslash\{s\}) \cup\{t\}
$$

is linearly independent.

Proof.

Since S is linearly independent,

$$
\operatorname{span}(S \backslash\{s\}) \subsetneq \operatorname{span}(S) \subseteq \operatorname{span}(T)
$$

By the Transfer Lemma, there exists $t \in T \backslash S$ such that $(S \backslash\{s\}) \cup\{t\}$ is linearly independent.

Generating and independent sets

Lemma (Generating-independent inequality)

Suppose that S and T are sets of vectors, where T is finite. If $S \subseteq \operatorname{span}(T)$ is linearly independent, then S is finite and $|S| \leq|T|$.

Proof.

- Using the Exchange lemma, replace elements of $S \backslash T$ by elements of $T \backslash S$ in S as long as possible (at most $|T| \times$).
- In the end, $S \subseteq T$, and thus $|S| \leq|T|$.

Sizes of bases

Lemma

If a vector space V has a finite basis, then all its bases are finite and have the same size.

Proof.

Let B_{1} and B_{2} be two bases of \mathbf{V}, where B_{1} is finite.

- $\operatorname{span}\left(B_{1}\right)=\mathbf{V}$ and $B_{2} \subseteq \mathbf{V}$ is linearly independent.
- By the Generating-independent inequality, $\left|B_{2}\right| \leq\left|B_{1}\right|$.
- Symmetrically, $\left|B_{1}\right| \leq\left|B_{2}\right|$.

Definition

The dimension $\operatorname{dim}(\mathbf{V})$ of a vector space is the size of its basis.

Examples

- \mathbf{R}^{n} has dimension n.
- $\mathbf{R}^{n \times m}$ has dimension $n m$.
- Complex numbers as a vector space over \mathbf{R} have dimension 2.
- The space of polynomials has infinite dimension.
- The space of polynomials of degree at most n has dimension $n+1$.
- The trivial space $\{0\}$ has dimension 0 .

Dimension, independent and generating sets

Lemma

Let \mathbf{V} be a vector space of a finite dimension n.

- Every independent set in V has size at most n, and all independent sets of size n are bases.
- Every set that generates V has size at least n, and all generating sets of size n are bases.

Proof.

Let S be independent, G generating.

- $|S| \leq n \leq|G|$ by the Generating-independent inequality.
- If $|S|=n$, then no proper superset of S is independent.
- By the Transfer lemma, $\operatorname{span}(S)=\mathbf{V}$.

Dimension, independent and generating sets

Lemma

Let \mathbf{V} be a vector space of a finite dimension n.

- Every independent set in \mathbf{V} has size at most n, and all independent sets of size n are bases.
- Every set that generates V has size at least n, and all generating sets of size n are bases.

Proof.

Let S be independent, G generating.

- $|S| \leq n \leq|G|$ by the Generating-independent inequality.
- If $|G|=n$, then no proper subset of G is generating.
- Hence, $\operatorname{span}(A) \neq \operatorname{span}(G)$ for every $A \subsetneq G$.
- Implies that G is linearly independent.

Dimension and subspaces

Lemma

Suppose that \mathbf{V} has finite dimension, and $\mathbf{U} \Subset \mathbf{V}$.

- $\operatorname{dim}(\mathbf{U}) \leq \operatorname{dim}(\mathbf{V})$
- If $\operatorname{dim}(\mathbf{U})=\operatorname{dim}(\mathbf{V})$, then $\mathbf{U}=\mathbf{V}$.

Proof.

- Let B_{U} be a basis of \mathbf{U}.
- By the Extension lemma, we have a basis $B_{V} \supseteq B_{U}$ of \mathbf{V}.
- $\operatorname{dim}(\mathbf{U})=\left|B_{U}\right| \leq\left|B_{V}\right|=\operatorname{dim}(\mathbf{V})$
- If $\operatorname{dim}(\mathbf{U})=\operatorname{dim}(\mathbf{V})$, then $B_{U}=B_{V}$ and

$$
\mathbf{U}=\operatorname{span}\left(B_{U}\right)=\operatorname{span}\left(B_{V}\right)=\mathbf{V}
$$

Example: Dimension and subspaces

Subspaces of \mathbf{R}^{3} :

- Dimension 3: \mathbf{R}^{3}
- Dimension 2: spans of 2 independent vectors = planes containing ($0,0,0$).
- Dimension 1: spans of vectors = lines containing ($0,0,0$).
- Dimension 0: $\{(0,0,0)\}$

Example: bases of polynomials

\mathcal{P}_{n} has dimension $n+1$

- Basis $1, x, x^{2}, \ldots, x^{n}$.

Lagrange polynomials

Let $a_{0}, \ldots, a_{n} \in \mathbf{R}$ be pairwise distinct.

- For $k=0, \ldots, n$, let

$$
p_{k}(x)=\frac{\left(x-a_{0}\right) \cdots\left(x-a_{k-1}\right)\left(x-a_{k+1}\right) \cdots\left(x-a_{n}\right)}{\left(a_{k}-a_{0}\right) \cdots\left(a_{k}-a_{k-1}\right)\left(a_{k}-a_{k+1}\right) \cdots\left(a_{k}-a_{n}\right)} .
$$

- We have $p_{k}\left(a_{i}\right)= \begin{cases}1 & \text { if } i=k \\ 0 & \text { if } i \neq k\end{cases}$
- The set $B=\left\{p_{0}, \ldots, p_{n}\right\}$ is another basis of \mathcal{P}_{n}.
- $|B|=\operatorname{dim}\left(\mathcal{P}_{n}\right)$
- B is linearly independent:

$$
\left(\alpha_{0} p_{0}+\ldots+\alpha_{n} p_{n}\right)\left(a_{i}\right)=\alpha_{0} p_{0}\left(a_{i}\right)+\ldots+\alpha_{n} p_{n}\left(a_{i}\right)=\alpha_{i}
$$

hence if $\alpha_{0} p_{0}+\ldots+\alpha_{n} p_{n}=o$, then $\alpha_{i}=o\left(a_{i}\right)=0$ for $i=0, \ldots, n$.

Polynomial interpolation

Corollary (Polynomial interpolation lemma)
A polynomial p of degree at most n is uniquely determined by its values in $n+1$ distinct points.

Proof.

- Since B generates \mathcal{P}_{n}, there exist $\alpha_{0}, \ldots, \alpha_{n} \in \mathbf{R}$ such that

$$
p=\alpha_{0} p_{0}+\ldots+\alpha_{n} p_{n}
$$

- For $i=0, \ldots, n$,

$$
p\left(a_{i}\right)=\alpha_{0} p_{0}\left(a_{i}\right)+\ldots+\alpha_{n} p_{n}\left(a_{i}\right)=\alpha_{i}
$$

- Therefore,

$$
p=p\left(a_{0}\right) p_{0}+\ldots+p\left(a_{n}\right) p_{n}
$$

is uniquely determined by the values of p in a_{0}, \ldots, a_{n}.

Example

Problem

Find the equation of a quadratic function through points

$$
(-2,9),(-1,2), \text { and }(1,6)
$$

$$
\begin{gathered}
9 \frac{(x+1)(x-1)}{(-2+1)(-2-1)}+2 \frac{(x+2)(x-1)}{(-1+2)(-1-1)}+6 \frac{(x+2)(x+1)}{(1+2)(1+1)} \\
=3 x^{2}+2 x+1
\end{gathered}
$$

Vandermonde matrix

Definition

For distinct real numbers a_{0}, \ldots, a_{n},

$$
V^{\left(a_{0}, \ldots, a_{n}\right)}=\left(\begin{array}{ccccc}
1 & a_{0} & a_{0}^{2} & \ldots & a_{0}^{n} \\
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n} \\
& & \ldots & & \\
1 & a_{n} & a_{n}^{2} & \ldots & a_{n}^{n}
\end{array}\right),
$$

is a Vandermonde matrix.
For any polynomial $p(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots+\beta_{n} x^{n}$,

$$
V^{\left(a_{0}, \ldots, a_{n}\right)}\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\ldots \\
\beta_{n}
\end{array}\right)=\left(\begin{array}{c}
p\left(a_{0}\right) \\
p\left(a_{1}\right) \\
\ldots \\
p\left(a_{n}\right)
\end{array}\right)
$$

Vandermonde matrix and polynomial interpolation

For b_{0}, \ldots, b_{n}, if a polynomial

$$
p(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots+\beta_{n} x^{n}
$$

satisfies $p\left(a_{0}\right)=b_{0}, p\left(a_{1}\right)=b_{1}, \ldots, p\left(a_{n}\right)=b_{n}$, then

$$
V^{\left(a_{0}, \ldots, a_{n}\right)}\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\ldots \\
\beta_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\ldots \\
b_{n}
\end{array}\right)
$$

By the Polynomial interpolation lemma, this system always has a solution,
$\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots+\beta_{n} x^{n}=b_{0} p_{0}(x)+b_{1} p_{1}(x)+\ldots+b_{n} p_{n}(x)$.

Corollary
Every Vandermonde matrix is regular.

Linear recurrences

Problem

Describe all infinite sequences a_{0}, a_{1}, \ldots that satisfy

$$
\begin{equation*}
a_{n+2}=5 a_{n+1}-6 a_{n} \text { for every } n \geq 0 \tag{1}
\end{equation*}
$$

Let \mathcal{S} be the vector space of infinite sequences, and let $U \subseteq \mathcal{S}$ consist of those satisfying (1). Then U is a subspace:

- $(0,0, \ldots) \in U$
- If $\boldsymbol{A}=\left(\alpha_{0}, \alpha_{1}, \ldots\right) \in U$ and $B=\left(\beta_{0}, \beta_{1}, \ldots\right) \in U$, and $\gamma \in \mathbf{R}$, then

$$
\begin{aligned}
\alpha_{n+2}+\beta_{n+2} & =5\left(\alpha_{n+1}+\beta_{n+1}\right)-6\left(\alpha_{n}+\beta_{n}\right) \\
\gamma \alpha_{n+2} & =5 \gamma \alpha_{n+1}-6 \gamma \alpha_{n}
\end{aligned}
$$

and thus $A+B, \gamma A \in U$.

Linear recurrences

Problem

Describe all infinite sequences a_{0}, a_{1}, \ldots that satisfy

$$
\begin{equation*}
a_{n+2}=5 a_{n+1}-6 a_{n} \text { for every } n \geq 0 \tag{1}
\end{equation*}
$$

The choice of a_{0} and a_{1} uniquely determines the rest of the sequence. Hence, $\operatorname{dim}(U)=2$. "Standard" basis:

- $a_{0}=0, a_{1}=1 \rightarrow(0,1,5,19,65, \ldots)$
- $a_{0}=1, a_{1}=0 \rightarrow(1,0,-6,-30,-114, \ldots)$

Linear recurrences

Problem

Describe all infinite sequences a_{0}, a_{1}, \ldots that satisfy

$$
\begin{equation*}
a_{n+2}=5 a_{n+1}-6 a_{n} \text { for every } n \geq 0 \tag{1}
\end{equation*}
$$

Nicer basis:

- $a_{n}=2^{n} \rightarrow(1,2,4,8,16, \ldots)$
- $a_{n}=3^{n} \rightarrow(1,3,9,27,81, \ldots)$

$$
\begin{aligned}
& 2^{n+2}=4 \cdot 2^{n}=10 \cdot 2^{n}-6 \cdot 2^{n}=5 \cdot 2^{n+1}-6 \cdot 2^{n} \\
& 3^{n+2}=9 \cdot 3^{n}=15 \cdot 3^{n}-6 \cdot 3^{n}=5 \cdot 3^{n+1}-6 \cdot 3^{n}
\end{aligned}
$$

Therefore, for $\alpha, \beta \in \mathbf{R}, a_{n}=\alpha 2^{n}+\beta 3^{n}$ is a solution, and no other solutions exist.

