
Reminders

Let V be a vector space over F, let v1, . . . , vn ∈ V be vectors.

Definition

For any α1, . . . , αn ∈ F, the vector

α1v1 + α2v2 + . . .+ αnvn

is a linear combination of v1, . . . , vn.

Let S ⊆ V be a set of vectors.

Definition

The linear span of S (denoted by span(S)) is the set of all linear
combinations of elements of S.

We say that S generates a subspace U if U = span(S).



Lemma

Let S be a subset of a vector space V. If v ∈ span(S), then

span(S ∪ {v}) = span(S).

Proof.

If v ∈ span(S), then

v = α1v1 + . . .+ αnvn

for some v1, . . . , vn ∈ S.
Clearly, span(S) ⊆ span(S ∪ {v}). If x ∈ span(S ∪ {v}), then
w.l.o.g.

x = βv + β1v1 + . . .+ βnvn.

Hence,

x = (β1 + βα1)v1 + · · ·+ (βn + βαn)vn ∈ span(S).



Spans generating a subspace

{(x , y , z) : 3x − 3y + z = 0} = span({(x , y , z) : 3x − 3y + z = 0})
= span((1,1,0), (1,2,3), (3,4,3))
= span((1,1,0), (1,2,3))




Non-minimality

In
span((1,1,0), (1,2,3), (3,4,3)),

the vector (3,4,3) is redundant—a linear combination of other
vectors.

(3,4,3) = 2(1,1,0) + (1,2,3).

Equivalently,

(3,4,3)− 2(1,1,0)− (1,2,3) = o.



A linear combination

α1v1 + α2v2 + . . .+ αnvn is

trivial if α1 = . . . = αn = 0,
non-trivial otherwise.

Let V be a vector space.

Definition

A set S ⊆ V is linearly independent if no non-trivial linear
combination of elements of S is equal to o.



Examples

The set {(1,1,0), (1,2,3), (3,4,3)} in R3 is not linearly
independent, since

(3,4,3)− 2(1,1,0)− (1,2,3) = o.

The set {x2 + x + 1, x2 + 2x + 3, x2 + 2.5x + 4, x + 2} in
P is not linearly independent, since

−(x2 + x + 1) + 3(x2 + 2x + 3)− 2(x2 + 2.5x + 4) = o.

The set {(1,1,0), (1,2,3)} in R3 is linearly independent.
If o ∈ S, then S is not linearly independent, since

1o = o.

The empty set is linearly independent.



Testing linear independence

Problem

Is {(0,1,0,1), (1,0,1,0), (1,2,3,4)} linearly independent?

Decide whether there exist α1, α2, α3 6= 0,0,0 such that

α1(0,1,0,1) + α2(1,0,1,0) + α3(1,2,3,4) = (0,0,0,0).

Equivalently 
0 1 1
1 0 2
0 1 3
1 0 4


 α1

α2
α3

 =

 0
0
0



RREF


0 1 1
1 0 2
0 1 3
1 0 4

 =


1 0 0
0 1 0
0 0 1
0 0 0

 ,

the only solution is (α1, α2, α3) = (0,0,0). The vectors are
linearly independent.



Linear independence and RREF

Lemma

Vectors a1, . . . ,ak ∈ Fn×1 are linearly independent if and only if
all columns of

RREF(a1|a2| . . . |ak )

are basis columns.



Linear independence and minimality of span

Lemma

A set S ⊆ V is linearly independent if and only if for every
T ( S,

span(T ) 6= span(S).

Proof.

⇒ If span(T ) = span(S) for some T ( S, then consider
v ∈ S \ T . Since v ∈ S ⊆ span(S) = span(T ), we have

v = α1v1 + . . .+ αnvn

for some v1, . . . , vn ∈ T . But

α1v1 + . . .+ αnvn − v = o

contradicts the independence of S.



Linear independence and minimality of span

Lemma

A set S ⊆ V is linearly independent if and only if for every
T ( S,

span(T ) 6= span(S).

Proof.

⇐ Suppose for a contradiction that

α1v1 + . . .+ αnvn = o

for some v1, . . . , vn ∈ S, with α1 6= 0. Then

v1 = −α−1
1 (α2v2 + . . .+ αnvn) ∈ span(S \ {v1}),

and thus
span(S \ {v1}) = span(S).



Basis

Let V be a vector space.

Definition

A set S ⊆ V is a basis if
S generates V, i.e., span(S) = V, and
S is linearly independent.



Example

Each of the following sets
{(1,1,0), (1,2,3)}
{(1,1,0), (3,4,3))}
{(1,2,3), (3,4,3))}

is a basis of the plane {(x , y , z) : 3x − 3y + z = 0}.



Standard basis

The vectors
(1,0,0), (0,1,0), (0,0,1)

form a basis of R3.

More generally, the vectors

(1,0,0, . . .) =
(

e(n)
1

)T

(0,1,0, . . .) =
(

e(n)
2

)T

. . .

(0,0, . . . ,0,1) =
(

e(n)
n

)T

form the standard basis of Rn.



Does every vector space have a basis?

“It depends.”
Equivalent to the Axiom of Choice.
E.g., no constructive way to obtain basis for the space of
functions R→ R.



Basis in a “nice” space

Definition

A vector space V is countably generated if there exists a (finite
or infinite) sequence v1, v2, . . . ∈ V such that

V = span(v1, v2, . . .).

All spaces we considered are countably generated, except for
the space of functions/continuous functions R→ R
the space of infinite sequences
R as a vector space over Q



Basis in a “nice” space

Lemma

Every countably generated space has a basis.

Proof.

If V = span(v1, v2, . . .), let

B = {vi : vi 6∈ span(v1, v2, . . . , vi−1)}.

We have span(B) = span(v1, v2, . . .) = V.

If α1vi1 + . . .+ αkvik = o for some vi1 , . . . , vik ∈ B, where αk 6= 0
and i1 < i2 < . . . < ik , then

vik = −α−1
k (α1vi1 + . . .+ αk−1vik−1) ∈ span(v1, . . . , vik−1),

which contradicts the construction of B.



Transfer lemma

Lemma (Transfer lemma)

Suppose that S ⊂ span(T ) is a linearly independent set. If
span(S) 6= span(T ), then there exists v ∈ T \ S such that
S ∪ {v} is linearly independent.

Proof.

Since span(S) 6= span(T ), there exists v ∈ T \ span(S).
Suppose that

αv + α1v1 + . . .+ αnvn = o

for some v1, . . . , vn ∈ S. If α 6= 0, then

v = −α−1(α1v1 + . . .+ αnvn) ∈ span(S), a contradiction.

Hence α = 0, and since S is linearly independent,
α1 = . . . = αn = 0. Therefore, S ∪ {v} is linearly
independent.



Extension to basis

Corollary (Extension lemma)

If a vector space V has a finite basis B, then every independent
set is a subset of some basis.

Proof.

Let S be an independent set. Keep adding elements of B to S
by the Transfer lemma until S becomes generating.



Exchange lemma

Corollary (Exchange lemma)

Let S ⊂ span(T ) be a linearly independent set. For every
s ∈ S \ T there exists t ∈ T \ S such that

(S \ {s}) ∪ {t}

is linearly independent.

Proof.

Since S is linearly independent,

span(S \ {s}) ( span(S) ⊆ span(T ).

By the Transfer Lemma, there exists t ∈ T \ S such that
(S \ {s}) ∪ {t} is linearly independent.



Generating and independent sets

Lemma (Generating-independent inequality)

Suppose that S and T are sets of vectors, where T is finite. If
S ⊆ span(T ) is linearly independent, then S is finite and
|S| ≤ |T |.

Proof.

Using the Exchange lemma, replace elements of S \ T by
elements of T \ S in S as long as possible (at most |T |×).
In the end, S ⊆ T , and thus |S| ≤ |T |.



Sizes of bases

Lemma

If a vector space V has a finite basis, then all its bases are finite
and have the same size.

Proof.

Let B1 and B2 be two bases of V, where B1 is finite.
span(B1) = V and B2 ⊆ V is linearly independent.
By the Generating-independent inequality, |B2| ≤ |B1|.
Symmetrically, |B1| ≤ |B2|.

Definition

The dimension dim(V) of a vector space is the size of its basis.



Examples

Rn has dimension n.
Rn×m has dimension nm.
Complex numbers as a vector space over R have
dimension 2.
The space of polynomials has infinite dimension.
The space of polynomials of degree at most n has
dimension n + 1.
The trivial space {o} has dimension 0.



Dimension, independent and generating sets

Lemma

Let V be a vector space of a finite dimension n.
Every independent set in V has size at most n, and all
independent sets of size n are bases.
Every set that generates V has size at least n, and all
generating sets of size n are bases.

Proof.

Let S be independent, G generating.
|S| ≤ n ≤ |G| by the Generating-independent inequality.
If |S| = n, then no proper superset of S is independent.
By the Transfer lemma, span(S) = V.



Dimension, independent and generating sets

Lemma

Let V be a vector space of a finite dimension n.
Every independent set in V has size at most n, and all
independent sets of size n are bases.
Every set that generates V has size at least n, and all
generating sets of size n are bases.

Proof.

Let S be independent, G generating.
|S| ≤ n ≤ |G| by the Generating-independent inequality.
If |G| = n, then no proper subset of G is generating.
Hence, span(A) 6= span(G) for every A ( G.
Implies that G is linearly independent.



Dimension and subspaces

Lemma

Suppose that V has finite dimension, and U b V.
dim(U) ≤ dim(V)
If dim(U) = dim(V), then U = V.

Proof.

Let BU be a basis of U.
By the Extension lemma, we have a basis BV ⊇ BU of V.
dim(U) = |BU | ≤ |BV | = dim(V)
If dim(U) = dim(V), then BU = BV and

U = span(BU) = span(BV ) = V.



Example: Dimension and subspaces

Subspaces of R3:
Dimension 3: R3

Dimension 2: spans of 2 independent vectors = planes
containing (0,0,0).
Dimension 1: spans of vectors = lines containing (0,0,0).
Dimension 0: {(0,0,0)}




Example: bases of polynomials

Pn has dimension n + 1
Basis 1, x , x2, . . . , xn.



Lagrange polynomials

Let a0, . . . ,an ∈ R be pairwise distinct.

For k = 0, . . . ,n, let

pk (x) =
(x − a0) · · · (x − ak−1)(x − ak+1) · · · (x − an)

(ak − a0) · · · (ak − ak−1)(ak − ak+1) · · · (ak − an)
.

We have pk (ai) =

{
1 if i = k
0 if i 6= k

The set B = {p0, . . . ,pn} is another basis of Pn.
|B| = dim(Pn)
B is linearly independent:

(α0p0 + . . .+ αnpn)(ai) = α0p0(ai) + . . .+ αnpn(ai) = αi ,

hence if α0p0 + . . .+ αnpn = o, then αi = o(ai) = 0 for
i = 0, . . . ,n.



Polynomial interpolation

Corollary (Polynomial interpolation lemma)

A polynomial p of degree at most n is uniquely determined by
its values in n + 1 distinct points.

Proof.

Since B generates Pn, there exist α0, . . . , αn ∈ R such that

p = α0p0 + . . .+ αnpn.

For i = 0, . . . ,n,

p(ai) = α0p0(ai) + . . .+ αnpn(ai) = αi .

Therefore,
p = p(a0)p0 + . . .+ p(an)pn

is uniquely determined by the values of p in a0, . . . , an.



Example

Problem

Find the equation of a quadratic function through points

(−2,9), (−1,2), and (1,6)

1

2

3

4

5

6

7

8

9

y

−2 −1 1

x

9
(x + 1)(x − 1)

(−2 + 1)(−2− 1)
+ 2

(x + 2)(x − 1)
(−1 + 2)(−1− 1)

+ 6
(x + 2)(x + 1)
(1 + 2)(1 + 1)

= 3x2 + 2x + 1



Vandermonde matrix

Definition

For distinct real numbers a0, . . . ,an,

V (a0,...,an) =


1 a0 a2

0 . . . an
0

1 a1 a2
1 . . . an

1

. . .

1 an a2
n . . . an

n

 ,

is a Vandermonde matrix.

For any polynomial p(x) = β0 + β1x + β2x2 + . . .+ βnxn,

V (a0,...,an)


β0
β1
. . .
βn

 =


p(a0)
p(a1)
. . .

p(an)





Vandermonde matrix and polynomial interpolation

For b0, . . . ,bn, if a polynomial

p(x) = β0 + β1x + β2x2 + . . .+ βnxn

satisfies p(a0) = b0, p(a1) = b1, . . . , p(an) = bn, then

V (a0,...,an)


β0
β1
. . .
βn

 =


b0
b1
. . .
bn


By the Polynomial interpolation lemma, this system always has
a solution,

β0+β1x +β2x2+ . . .+βnxn = b0p0(x)+b1p1(x)+ . . .+bnpn(x).

Corollary

Every Vandermonde matrix is regular.



Linear recurrences

Problem

Describe all infinite sequences a0,a1, . . . that satisfy

an+2 = 5an+1 − 6an for every n ≥ 0. (1)

Let S be the vector space of infinite sequences, and let U ⊆ S
consist of those satisfying (1). Then U is a subspace:

(0,0, . . .) ∈ U
If A = (α0, α1, . . .) ∈ U and B = (β0, β1, . . .) ∈ U, and
γ ∈ R, then

αn+2 + βn+2 = 5(αn+1 + βn+1)− 6(αn + βn)

γαn+2 = 5γαn+1 − 6γαn,

and thus A + B, γA ∈ U.



Linear recurrences

Problem

Describe all infinite sequences a0,a1, . . . that satisfy

an+2 = 5an+1 − 6an for every n ≥ 0. (1)

The choice of a0 and a1 uniquely determines the rest of the se-
quence. Hence, dim(U) = 2. “Standard” basis:

a0 = 0,a1 = 1→ (0,1,5,19,65, . . .)
a0 = 1,a1 = 0→ (1,0,−6,−30,−114, . . .)



Linear recurrences

Problem

Describe all infinite sequences a0,a1, . . . that satisfy

an+2 = 5an+1 − 6an for every n ≥ 0. (1)

Nicer basis:
an = 2n → (1,2,4,8,16, . . .)
an = 3n → (1,3,9,27,81, . . .)

2n+2 = 4 · 2n = 10 · 2n − 6 · 2n = 5 · 2n+1 − 6 · 2n

3n+2 = 9 · 3n = 15 · 3n − 6 · 3n = 5 · 3n+1 − 6 · 3n

Therefore, for α, β ∈ R, an = α2n + β3n is a solution, and no
other solutions exist.


