Reminders

Let V be a vector space over F, let vy, ..., v, € V be vectors.
For any a4, ..., an € F, the vector

aqVqy +aoVo + ... + apVp
is a linear combination of v4, ..., vp.

Let S C V be a set of vectors.

The linear span of S (denoted by span(S)) is the set of all linear
combinations of elements of S.

We say that S generates a subspace U if U = span(S).



Lemma

Let S be a subset of a vector space V. If v € span(S), then

span(S U {v}) = span(S).

Proof.
If v € span(S), then

for some vy,...,v, € S.
Clearly, span(S) C span(SU {v}). If x € span(SU {v}), then
w.l.0.g.

X=pBV+LB1Vi+...+ BnVvn.

Hence,

X = (B1+ Bag)vi + -+ (Bn + Ban)Vvs € span(S).



Spans generating a subspace

{(x,y,2) :3x =3y +z =0} =span({(x,y,z) : 3x — 3y + z=0})
= span( ,(1,2,3),(3,4,3))
= span( ,(1,2,3))




Non-minimality

In
span( ,(1,2,3),(3.4.3)),
the vector (3.4, 3) is redundant—a linear combination of other
vectors.
(3,4,3)=2 +(1,2,3).
Equivalently,

(3,4,3) -2 ~(1,2,3)=o.




A linear combination
a1y + aoVo + ...+ apVy is

@ trivialifay = ... = ap, =0,
@ non-trivial otherwise.
Let V be a vector space.

Definition

A set S C Vis linearly independent if no non-trivial linear
combination of elements of S is equal to o.




@ The set { ,(1,2,3),(3,4,3)} in R® is not linearly
independent, since

(3,4,3) — 2 ~(1,2,3)=o.

@ The set {x® + x +1, X2 +25x +4, x+2}in
‘P is not linearly independent, since

—(X%+x+1)+3( ) —2(x* +2.5x +4)=o.

@ The set { ,(1,2,3)} in R3 is linearly independent.
@ If o € S, then Sis not linearly independent, since

1o0=o.

@ The empty set is linearly independent.



Testing linear independence

Is {(0,1,0,1), ,(1,2,8,4)} linearly independent?

Decide whether there exist a4, as, a3 # 0,0, 0 such that
a1(0,1,0,1) + ap + a3(1,2,3,4) =(0,0,0,0).

Equivalently 0 1
0
1 2 |0
1 4
0 1 100
1 2 010
RREF 0 3 00 1|’
1 4 0 0O
the only solution is (a1, ag, a3) = (0,0,0). The vectors are

linearly independent.



Linear independence and RREF

Lemma

Vectors ay, . .., ax € F™' are linearly independent if and only if
all columns of

RREF(a1 ‘32’ 500 ’ak)

are basis columns.




Linear independence and minimality of span

Lemma

A set S C V is linearly independent if and only if for every
TCS,

span(T) # span(S).

= If span(T) = span(S) for some T C S, then consider
ve S\ T.SinceveSCspan(S) =span(T), we have

for some vy4,..., v, € T. But
aiVi+...+tapVp—V =0

contradicts the independence of S.



Linear independence and minimality of span

Lemma

A set S C V is linearly independent if and only if for every
TCS,

span(T) # span(S).

< Suppose for a contradiction that

for some vy,..., v, € S, with ay # 0. Then
Vi = —a; (aaVa + ...+ apvp) € span(S\ {v}),

and thus
span(S\ {v1}) = span(S).
e 4 4444



Basis

Let V be a vector space.

Definition
Aset S C Vis abasis if
@ Sgenerates V, i.e., span(S) =V, and

@ Sis linearly independent.




Each of the following sets
o { ,(1,2,3)}
°{ ,(3,4,3)}
e {(1,2,3),(3,4.3))}
is a basis of the plane {(x,y,z):3x — 3y +z =0}.
e 4 4444



Standard basis

The vectors
(1,0,0),(0,1,0),(0,0,1)

form a basis of RS.
More generally, the vectors
(1,0,0,...)

(0,1,0,...) = (eg">)T
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(0,0,...,0,1):<e§,n)>T

form the standard basis of R".



Does every vector space have a basis?

@ “lt depends””
@ Equivalent to the Axiom of Choice.

@ E.g., no constructive way to obtain basis for the space of
functions R — R.




Basis in a “nice” space

Definition
A vector space V is countably generated if there exists a (finite
or infinite) sequence vy, vo, ... € V such that

V = span(vy, v, .. .).

All spaces we considered are countably generated, except for
@ the space of functions/continuous functions R — R
@ the space of infinite sequences
@ R as a vector space over Q




Basis in a “nice” space

Lemma
Every countably generated space has a basis.

Proof.

If V=span(vy, vo,...), let
B={vj:v;¢span(vy,va,...,Vi_1)}.

We have span(B) = span(vq, v2,...) = V.

If qvj, +... + akv; = oforsomev,,...,v, € B,where ay # 0
and ij < b < ... < g, then
—1
Vip = —ay (qVi, + ...+ ak_1V;_,) € span(vy,...,Vj _1),
which contradicts the construction of B. O



Transfer lemma
Lemma (Transfer lemma)

Suppose that S C span(T) is a linearly independent set. If
span(S) # span(T), then there exists v € T \ S such that
S U {v} is linearly independent.

Since span(S) # span(T), there exists v € T \ span(S).
Suppose that

aV+oqVy+...+apVh =0

for some vy,...,v, € S. If a # 0, then
v=—a"(a1vy +... +apvy) € span(S), a contradiction.

Hence a = 0, and since S is linearly independent,
a1 =...=ap=_0. Therefore, SU {v} is linearly
independent. O



Extension to basis

Corollary (Extension lemma)

If a vector space V has a finite basis B, then every independent
set is a subset of some basis.

Let S be an independent set. Keep adding elements of Bto S
by the Transfer lemma until S becomes generating. O




Exchange lemma
Corollary (Exchange lemma)

Let S C span(T) be a linearly independent set. For every
se€ S\ T there existst € T \ S such that

(S\{spu{ty

is linearly independent.

Since S is linearly independent,

span(S\ {s}) < span(S) C span(T).

By the Transfer Lemma, there exists t € T \ S such that
(S\ {s}) u{t} is linearly independent. O



Generating and independent sets
Lemma (Generating-independent inequality)

Suppose that S and T are sets of vectors, where T is finite. If
S C span(T) is linearly independent, then S is finite and
1S <|T.

@ Using the Exchange lemma, replace elements of S\ T by
elements of T\ Siin S as long as possible (at most | T|x).

@ Intheend, S C T, and thus |S| < |T]|.

Ol




Sizes of bases

Lemma

If a vector space V has a finite basis, then all its bases are finite
and have the same size.

Proof.

Let By and B, be two bases of V, where B; is finite.
@ span(B;) =V and B, C V is linearly independent.
@ By the Generating-independent inequality, |Bz| < |Bj].
@ Symmetrically, |By| < |Ba|.

|D

Definition
The dimension dim(V) of a vector space is the size of its basis.



@ R” has dimension n.
@ R"M has dimension nm.

@ Complex numbers as a vector space over R have
dimension 2.

@ The space of polynomials has infinite dimension.

@ The space of polynomials of degree at most n has
dimension n+ 1.

@ The trivial space {o} has dimension 0.




Dimension, independent and generating sets

Lemma

LetV be a vector space of a finite dimension n.

@ Every independent set inV has size at most n, and all
independent sets of size n are bases.

@ Every set that generates V has size at least n, and all
generating sets of size n are bases.

Let S be independent, G generating.
@ |S| < n < |G| by the Generating-independent inequality.
@ If |S| = n, then no proper superset of S is independent.
@ By the Transfer lemma, span(S) = V.

Ol



Dimension, independent and generating sets

LetV be a vector space of a finite dimension n.

@ Every independent set inV has size at most n, and all
independent sets of size n are bases.

@ Every set that generates V has size at least n, and all
generating sets of size n are bases.

Let S be independent, G generating.
@ |S| < n < |G| by the Generating-independent inequality.

@ If |G| = n, then no proper subset of G is generating.
@ Hence, span(A) # span(G) for every A C G.
@ Implies that G is linearly independent.
U



Dimension and subspaces

Suppose thatV has finite dimension, and U € V.
@ dim(U) < dim(V)
@ /fdim(U) =dim(V), thenU = V.

@ Let By be a basis of U.

@ By the Extension lemma, we have a basis By 2 By of V.
e dim(U) = |By| < |By| = dim(V)

@ If dim(U) = dim(V), then By = By and

U = span(By) = span(By) = V.



Example: Dimension and subspaces

Subspaces of R3:
@ Dimension 3: R®

@ Dimension 2: spans of 2 independent vectors = planes
containing (0,0, 0).
@ Dimension 1: spans of vectors = lines containing (0, 0, 0).

@ Dimension 0:





Example: bases of polynomials

Pn has dimension n + 1
@ Basis 1, x, x

2., X"




Lagrange polynomials

Let ap, ..., an € R be pairwise distinct.

@ Fork=0,...,n,let

(x —ao) - (X — ak—1)(X — ak41) - (X — an)

X) = i
Pr(X) (ak —ao) - (ak — ak—1)(ak — a+1) -+ (ak — an)
1 ifi=k
@ We have aj) =
ve pu(a) {o if i 4 k
@ The set B= {py,...,pn} is another basis of Pj.
o |B| = dim(Py)

e Bis linearly independent:

(oo + - .. + anpn)(@i) = aopo(@i) + - .. + anpn(ai) = i,

hence if appo + . .. + anpn = 0, then «; = o(a;) = 0 for
i=0,...,n.



Polynomial interpolation
Corollary (Polynomial interpolation lemma)

A polynomial p of degree at most n is uniquely determined by
its values in n + 1 distinct points.

@ Since B generates P, there exist ay, ..., an € R such that

P = apPo + ...+ anPn.

@ Fori=0,...,n,

p(ai) = aopo(ai) + - .. + anpn(aj) = a;.
@ Therefore,
p = p(a)po + ...+ p(an)pPn
is uniquely determined by the values of pin ap, ..., an.



Example

Find the equation of a quadratic function through points

(—2,9), ,and (1,6)

-2 -1 1

9 (x—=1) (x+2)(x—1)
(—2+1)(—2-1) (—1+2)(—1-1) (1+2)(1+1)

=3x% +2x + 1




Vandermonde matrix

For distinct real numbers ay, .. ., an,
1 a ag .oa
2 n
V(ao ..... an) 1 a a; ... & |
1 ap a?, ooan

is a Vandermonde matrix.

For any polynomial p(x) = By + B1X + Box® + ...+ Bpx",

Bo p(ao)
Viaonnan) | B | _ | Plar)
B p(an)



Vandermonde matrix and polynomial interpolation

For by, ..., by, if a polynomial
P(X) = Bo + B1X + Box® + ...+ Bnx"
satisfies p(ap) = by, p(ay) = b1, ..., p(an) = bn, then

Bo bo
V(ao ..... an) B _ b1
Bn bn
By the Polynomial interpolation lemma, this system always has

a solution,

Bo+ BiX+ Box®+ ...+ Bpx" = boPo(X) + b1p1(X) +. ..+ bnPn(X).

Corollary

Every Vandermonde matrix is regular.



Linear recurrences

Describe all infinite sequences ay, ay, . . . that satisfy

an.> = 5ap, 1 —6ay foreveryn > 0. (1)

Let S be the vector space of infinite sequences, and let U C S
consist of those satisfying (1). Then U is a subspace:

@ (0,0,..)€eU

o If A= (ag,,...) € Uand B = (5, 51,...) € U, and
~ € R, then

ant2 + Bnrz = 5(anty + Bnp1) — 6(an + Bn)
Yant2 = 5yapq — 6yap,
and thus A+ B,yA e U.
e 4 4444



Linear recurrences

Describe all infinite sequences ay, ay, . . . that satisfy

an.> = 5ap, 1 —6ay foreveryn > 0. (1)

The choice of ay and ay uniquely determines the rest of the se-
quence. Hence, dim(U) = 2. “Standard” basis:

o 30:0731 =1 —)(0,1,5,19,65,)
@ a=1,a=0-(1,0,-6,-30,-114,..))




Linear recurrences

Describe all infinite sequences ay, ay, . . . that satisfy

an.> = 5ap, 1 —6ay foreveryn > 0. (1)

Nicer basis:
@ a,=2"—-(1,2,4,8,16,...)
@ a,=3"—-(1,3,9,27,81,...)
2M2 =4.2"=10.2"-6-2"=5.2"" —6.2"
3M2-9.3"=15.3"-6.3"=5.3"" _6.3"

Therefore, for o, 5 € R, a, = 2" + 33" is a solution, and no
other solutions exist.



