
Reminder: Group

Definition

A group is a pair (X , ◦), where
X is a set and ◦ : X × X → X is a total function,

satisfying the following axioms:

associativity (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a,b, c ∈ X .
neutral element There exists e ∈ X s.t. a ◦ e = e ◦ a = a for

every a ∈ X .
inverse for every a ∈ X there exists a−1 ∈ X such

that a ◦ a−1 = a−1 ◦ a = e.

The group is abelian if additionally
commutativity a ◦ b = b ◦ a for all a,b ∈ X .



Reminder: Field

Definition

A field is a triple (F ,+, ·), where
(F ,+) is an abelian group,

let 0 denote its neutral element and −x the inverse to x ,
(F \ {0}, ·) is an abelian group,

let 1 denote its neutral element and x−1 the inverse to x ,

a · (b + c) = a · b + a · c for all a,b, c ∈ F (distributivity)

Examples:
rational numbers Q
real numbers R
complex numbers C
finite fields.



Vector space

Let F be a field.

Definition

A vector space over F is a triple (V ,+, ·), where
(V ,+) is an abelian group (neutral element o, inverse −v )
and
· : F× V → V is a total function (multiplication by a scalar),

satisfying the following axioms for all α, β ∈ F and u, v ∈ V :

associativity (αβ) · v = α · (β · v)
neutral element 1 · v = v
distributivity (1) (α+ β) · v = α · v + β · v
distributivity (2) α · (u + v) = α · u + α · v

Elements of a vector space are called vectors.



Examples of vector spaces

Euclidean plane:
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(R2,+, ·), where

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

α · (x , y) = (αx , αy)

Similarly: for any integer n ≥ 1, (Rn,+, ·), where

(α1, α2, . . . , αn) + (β1, β2, . . . , βn) = (α1 + β1, α2 + β2, . . . , αn + βn)

α · (β1, β2, . . . , βn) = (αβ1, αβ2, . . . , αβn)



Examples of vector spaces

For any field F and integers n,m ≥ 1, the set Fn×m of all n ×m
matrices with coefficients in F.
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Examples of vector spaces

The set of all functions R→ R
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f + g is the function whose value at β is f (β) + g(β)
αf is the function whose value at β is αf (β)

Related vector spaces:
functions from [0,1] to R
continuous functions from R to R
functions from Q to Q



Examples of vector spaces

P: polynomials with real coefficients

(1 + x + x3) + 3(2− x + x2) = (1 + x + x3) + (6− 3x + 3x2)

= 7− 2x + 3x2 + x3

Related vector spaces:
For any n ≥ 0, Pn: polynomials of degree at most n.
Formal infinite series( ∞∑

i=0

αix i

)
+

( ∞∑
i=0

βix i

)
=
∞∑

i=0

(αi + βi)x i

α

( ∞∑
i=0

βix i

)
=
∞∑

i=0

(αβi)x i

Infinite sequences

(α0, α1, . . .) + (β0, β1, . . .) = (α0 + β0, α1 + β1, . . .)

α(β0, β1, . . .) = (αβ0, αβ1, . . .)



More confusing examples

Trivial space ({o},+, ·)
Every field forms a vector space over itself.
Complex numbers are a vector space over real numbers.
Real numbers are a vector space over rational numbers.



Basic properties

Lemma

If V is a vector space, then

αv = o if and only if α = 0 or v = o

and
(−1)v = −v for every v ∈ V.

Proof.
0v = 0v + o = 0v + 0v + (−(0v)) = (0 + 0)v + (−(0v))

= 0v + (−(0v)) = o
αo = αo + o = αo + αo + (−(αo)) = α(o + o) + (−(αo))

= αo + (−(αo)) = o

α 6= 0 ∧ αv = o ⇒ v = 1v = (α−1α)v = α−1(αv) = α−1o = o
v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = o
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Linear combinations

Let V be a vector space over F, let v1, . . . , vn ∈ V be vectors.

Definition

For any α1, . . . , αn ∈ F, the vector

α1v1 + α2v2 + . . .+ αnvn

is a linear combination of v1, . . . , vn.

Remark: the number of terms in a linear combination must be
finite.



Example

(1,2,3) is a linear combination of

(−1,2,−3), (3,−2,0), and (0,0,1/2),

since

(1,2,3) = 2(−1,2,−3) + (3,−2,0) + 18(0,0,1/2).



Example

Problem

Is 3x2 + 1 a linear combination of x2 + x and x2 + 2x + 1?

Suppose that

3x2 + 1 = α(x2 + x) + β(x2 + 2x + 1).

Then
α+ β = 3 . . . coefficient at x2

α+ 2β = 0 . . . coefficient at x

β = 1 . . . constant term

The system has no solution, so 3x2 + 1 is not a linear
combination of x2 + x and x2 + 2x + 1.



Span

Let V be a vector space, let S ⊆ V be a set of vectors.

Definition

The linear span of S (denoted by span(S)) is the set of all linear
combinations of elements of S.

For S finite, instead of span({v1, . . . , vn}), we sometimes
write span(v1, . . . , vn).
S ⊆ span(S), since 1v is a linear combination belonging to
span(S) for v ∈ S.
o ∈ span(S), since empty linear combination is equal to o.



Examples

span(1, x , x2, x3) = {α0+α1x+α2x2+α3x3 : α0, α1, α2, α3 ∈ R}
is the space P3 of polynomials of degree at most 3.

span((1,1,0), (1,2,3)) = {(x , y , z) : 3x − 3y + z = 0}
is a plane in 3-dimensional Euclidean space.




Spans and matrices

Let a1, . . . ,am ∈ Rn, let A = (a1|a2| . . . |am). Then

span(a1, . . . ,am) = {Ax : x ∈ Rm}.

Hence,
b ∈ span(a1, . . . ,am)

if and only if the system

Ax = b

has a solution. Equivalently,
the last column of RREF(A|b) = (A′|b′) is not a basis
column, and
the coefficients of the linear combination can be chosen as

0 for non-basis columns
the entries of b′ for the corresponding basis columns



Example

Problem

Does (1,1) belong to span((1,2), (2,4), (1,3), (2,1))?

Equivalently, does(
1 2 1 2
2 4 3 1

)
x =

(
1
1

)
have a solution?(

1 2 1 2 1
2 4 3 1 1

)
∼
(

1 2 1 2 1
0 0 1 −3 −1

)
∼

(
1 2 0 5 2
0 0 1 −3 −1

)

Hence,
(1,1) = 2(1,2)−1 · (1,3).
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Span is a vector space

Theorem

Let V = (V ,+, ·) be a vector space over F, let S ⊆ V be any set
of vectors. Then

(span(S),+, ·)
is a vector space, satisfying span(S) ⊆ V.



Span is a vector space

Proof.

It suffices to prove that + and · are total on span(S), and
o ∈ span(S).

inverses −v = (−1)v are in span(S) by the totality of ·
If u, v ∈ span(S), then there exist v1, . . . , vn ∈ S and
α1, . . . , αn, β1, . . . , βn ∈ F such that

u = α1v1 + . . .+ αnvn

v = β1v1 + . . .+ βnvn

Then,

u + v = (α1 + β1)v1 + . . .+ (αn + βn)vn

αv = (αβ1)v1 + . . .+ (αβn)vn

and thus u + v , αv ∈ span(S).



Subspaces

Definition

Let V = (V ,+, ·) be a vector space. If U ⊆ V and U = (U,+, ·)
is a vector space, we say that U is a subspace of V.
We write U b V.

Examples:

the plane {(x , y , z) : 3x − 3y + z = 0} b R3

More generally, any line or plane in R3 containing the origin
(0,0,0) is a subspace of R3.

Pn (polynomials of degree at most n) form a subspace of
the space P of all polynomials
P, and the space of continuous functions R→ R, form
subspaces of the space of all functions R→ R
trivial subspaces: ({o},+, ·) and V itself.



All subspaces are spans

Lemma

Let V = (V ,+, ·) be a vector space, and let U be a subset of V .
Then (U,+, ·) is a vector space if and only if span(U) = U.

Proof.

If span(U) = U: As we observed before, span(U) is a vector
space; hence, U is a vector space.

If span(U) 6= U: Then + or · is not total on U, and thus U is not
a vector space.

We say that S generates U if U = span(S).



Intersection of subspaces

Lemma

Let V = (V ,+, ·) be a vector space over F, let I be an arbitrary
set, and for i ∈ I, let Ui be a subspace of V. Then

UI =
⋂
i∈I

Ui

is a subspace of V.

Proof.

Note that o ∈ UI . It suffices to show that + and · are total on UI .
If u, v ∈ UI and α ∈ F, then

u, v ∈ Ui for every i ∈ I, hence
u + v , α · v ∈ Ui for every i ∈ I, hence
u + v , α · v ∈ UI

Remark: union of subspaces usually is not a subspace.



Example

Problem

Describe the intersection of spaces

U1 = span((1,1,0), (1,2,3)) and
U2 = span((1,0,−1), (1,−1,0)).

If (x , y , z) ∈ U1 ∩ U2, then there exist α, β, γ, δ ∈ R such that

(x , y , z) = α(1,1,0) + β(1,2,3) . . . v is in U1

(x , y , z) = γ(1,0,−1) + δ(1,−1,0) . . . v is in U2

Comparing the coefficients, we get

α+ β − γ − δ = 0 at x

α+ 2β + δ = 0 at y

3β + γ = 0 at z



Example
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Example

Problem

Describe the intersection of spaces
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Span as an intersection

Lemma

Let V = (V ,+, ·) be a vector space and let S be a subset of V .
Then span(S) is the smallest subspace of V containing S, that
is,

span(S) =
⋂

UbV,S⊆U

U.

Proof.

Let
W =

⋂
UbV,S⊆U

U.

Since S ⊆W, we have span(S) b span(W) = W.
Since S ⊆ span(S), the subspace span(S) is one of the
spaces in the intersection, hence W b span(S).


