Reminder: Group

Definition

A group is a pair (X, \circ) , where

• X is a set and $\circ : X \times X \to X$ is a total function,

satisfying the following axioms:

associativity $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a, b, c \in X$. neutral element There exists $e \in X$ s.t. $a \circ e = e \circ a = a$ for every $a \in X$. for every $a \in X$ there exists $a^{-1} \in X$ such that $a \circ a^{-1} = a^{-1} \circ a = e$.

The group is abelian if additionally commutativity $a \circ b = b \circ a$ for all $a, b \in X$.

Reminder: Field

Definition

A field is a triple $(F, +, \cdot)$, where

- (*F*, +) is an abelian group,
 - let 0 denote its neutral element and -x the inverse to x,
- $(F \setminus \{0\}, \cdot)$ is an abelian group,
 - let 1 denote its neutral element and x^{-1} the inverse to x,

•
$$a \cdot (b + c) = a \cdot b + a \cdot c$$
 for all $a, b, c \in F$ (distributivity)

Examples:

- rational numbers Q
- real numbers R
- o complex numbers C
- finite fields.

Vector space

Let **F** be a field.

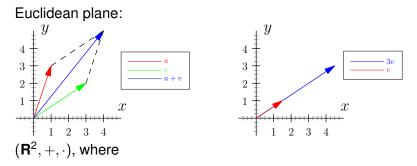
Definition

A vector space over **F** is a triple (V, +, ·), where

- (V, +) is an abelian group (neutral element *o*, inverse v) and
- \cdot : **F** × *V* \rightarrow *V* is a total function (multiplication by a <u>scalar</u>), satisfying the following axioms for all $\alpha, \beta \in$ **F** and $u, v \in V$:
- associativity $(\alpha\beta) \cdot \mathbf{v} = \alpha \cdot (\beta \cdot \mathbf{v})$ neutral element $1 \cdot \mathbf{v} = \mathbf{v}$ distributivity (1) $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$ distributivity (2) $\alpha \cdot (\mathbf{u} + \mathbf{v}) = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{v}$

Elements of a vector space are called vectors.

Examples of vector spaces



$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $\alpha \cdot (x, y) = (\alpha x, \alpha y)$

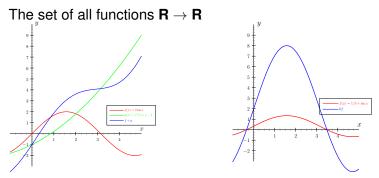
Similarly: for any integer $n \ge 1$, (**R**^{*n*}, +, ·), where

$$(\alpha_1, \alpha_2, \dots, \alpha_n) + (\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_n + \beta_n)$$
$$\alpha \cdot (\beta_1, \beta_2, \dots, \beta_n) = (\alpha\beta_1, \alpha\beta_2, \dots, \alpha\beta_n)$$

For any field **F** and integers $n, m \ge 1$, the set $\mathbf{F}^{n \times m}$ of all $n \times m$ matrices with coefficients in **F**.

$$\left(\begin{array}{cc}0&1\\2&3\end{array}\right)+2\left(\begin{array}{cc}1&1\\2&2\end{array}\right)=\left(\begin{array}{cc}0&1\\2&3\end{array}\right)+\left(\begin{array}{cc}2&2\\4&4\end{array}\right)=\left(\begin{array}{cc}2&3\\6&7\end{array}\right)$$

Examples of vector spaces



- f + g is the function whose value at β is $f(\beta) + g(\beta)$
- αf is the function whose value at β is αf(β)

Related vector spaces:

- functions from [0, 1] to R
- continuous functions from R to R
- functions from Q to Q

Examples of vector spaces

 $\mathcal{P}:$ polynomials with real coefficients

$$(1 + x + x^3) + 3(2 - x + x^2) = (1 + x + x^3) + (6 - 3x + 3x^2)$$
$$= 7 - 2x + 3x^2 + x^3$$

Related vector spaces:

- For any $n \ge 0$, \mathcal{P}_n : polynomials of degree at most n.
- Formal infinite series

$$\left(\sum_{i=0}^{\infty} \alpha_i \mathbf{x}^i\right) + \left(\sum_{i=0}^{\infty} \beta_i \mathbf{x}^i\right) = \sum_{i=0}^{\infty} (\alpha_i + \beta_i) \mathbf{x}^i$$
$$\alpha \left(\sum_{i=0}^{\infty} \beta_i \mathbf{x}^i\right) = \sum_{i=0}^{\infty} (\alpha\beta_i) \mathbf{x}^i$$

Infinite sequences

$$(\alpha_0, \alpha_1, \ldots) + (\beta_0, \beta_1, \ldots) = (\alpha_0 + \beta_0, \alpha_1 + \beta_1, \ldots)$$
$$\alpha(\beta_0, \beta_1, \ldots) = (\alpha\beta_0, \alpha\beta_1, \ldots)$$

- Trivial space $(\{o\}, +, \cdot)$
- Every field forms a vector space over itself.
- Complex numbers are a vector space over real numbers.
- Real numbers are a vector space over rational numbers.

Lemma

If V is a vector space, then

$$\alpha v = o$$
 if and only if $\alpha = 0$ or $v = o$

and

$$(-1)v = -v$$
 for every $v \in \mathbf{V}$.

$$0v = 0v + o = 0v + 0v + (-(0v)) = (0 + 0)v + (-(0v))$$

= 0v + (-(0v)) = o
$$\alpha o = \alpha o + o = \alpha o + \alpha o + (-(\alpha o)) = \alpha (o + o) + (-(\alpha o))$$

= \alpha o + (-(\alpha o)) = o
$$\alpha \neq 0 \land \alpha v = o \Rightarrow v = 1v = (\alpha^{-1}\alpha)v = \alpha^{-1}(\alpha v) = \alpha^{-1}o = o$$

v + (-1)v = 1v + (-1)v = (1 + (-1))v = 0v = o

Lemma

If V is a vector space, then

$$\alpha v = o$$
 if and only if $\alpha = 0$ or $v = o$

and

$$(-1)v = -v$$
 for every $v \in \mathbf{V}$.

$$0v = 0v + o = 0v + 0v + (-(0v)) = (0+0)v + (-(0v))$$

= 0v + (-(0v)) = o
$$\alpha o = \alpha o + o = \alpha o + \alpha o + (-(\alpha o)) = \alpha (o + o) + (-(\alpha o))$$

= $\alpha o + (-(\alpha o)) = o$
$$\alpha \neq 0 \land \alpha v = o \Rightarrow v = 1v = (\alpha^{-1}\alpha)v = \alpha^{-1}(\alpha v) = \alpha^{-1}o = o$$

$$v + (-1)v = 1v + (-1)v = (1 + (-1))v = 0v = o$$

Lemma

If V is a vector space, then

$$\alpha v = o$$
 if and only if $\alpha = 0$ or $v = o$

and

$$(-1)v = -v$$
 for every $v \in \mathbf{V}$.

$$0v = 0v + o = 0v + 0v + (-(0v)) = (0 + 0)v + (-(0v))$$

= 0v + (-(0v)) = o
$$\alpha o = \alpha o + o = \alpha o + \alpha o + (-(\alpha o)) = \alpha (o + o) + (-(\alpha o))$$

= $\alpha o + (-(\alpha o)) = o$
$$\alpha \neq 0 \land \alpha v = o \Rightarrow v = 1v = (\alpha^{-1}\alpha)v = \alpha^{-1}(\alpha v) = \alpha^{-1}o = o$$

$$v + (-1)v = 1v + (-1)v = (1 + (-1))v = 0v = o$$

Lemma

If V is a vector space, then

$$\alpha v = o$$
 if and only if $\alpha = 0$ or $v = o$

and

$$(-1)v = -v$$
 for every $v \in \mathbf{V}$.

$$0v = 0v + o = 0v + 0v + (-(0v)) = (0 + 0)v + (-(0v))$$

= 0v + (-(0v)) = o
$$\alpha o = \alpha o + o = \alpha o + \alpha o + (-(\alpha o)) = \alpha (o + o) + (-(\alpha o))$$

= $\alpha o + (-(\alpha o)) = o$
$$\alpha \neq 0 \land \alpha v = o \Rightarrow v = 1v = (\alpha^{-1}\alpha)v = \alpha^{-1}(\alpha v) = \alpha^{-1}o = o$$

$$v + (-1)v = 1v + (-1)v = (1 + (-1))v = 0v = o$$

Let **V** be a vector space over **F**, let $v_1, \ldots, v_n \in \mathbf{V}$ be vectors.

Definition

For any $\alpha_1, \ldots, \alpha_n \in \mathbf{F}$, the vector

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$$

is a linear combination of v_1, \ldots, v_n .

Remark: the number of terms in a linear combination must be finite.

(1, 2, 3) is a linear combination of

(-1, 2, -3), (3, -2, 0), and (0, 0, 1/2),

since

(1,2,3) = 2(-1,2,-3) + (3,-2,0) + 18(0,0,1/2).

Problem

Is $3x^2 + 1$ a linear combination of $x^2 + x$ and $x^2 + 2x + 1$?

Suppose that

$$3x^2 + 1 = \alpha(x^2 + x) + \beta(x^2 + 2x + 1).$$

Then

$\alpha + \beta = 3$	\dots coefficient at x^2
$\alpha + 2\beta = 0$	coefficient at x
$\beta = 1$	constant term

The system has no solution, so $3x^2 + 1$ is not a linear combination of $x^2 + x$ and $x^2 + 2x + 1$.

Span

Let **V** be a vector space, let $S \subseteq \mathbf{V}$ be a set of vectors.

Definition

The linear span of S (denoted by span(S)) is the set of all linear combinations of elements of S.

- For *S* finite, instead of span({*v*₁,...,*v*_n}), we sometimes write span(*v*₁,...,*v*_n).
- S ⊆ span(S), since 1v is a linear combination belonging to span(S) for v ∈ S.
- $o \in \text{span}(S)$, since empty linear combination is equal to o.

span(1, x, x^2 , x^3) = { $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 : \alpha_0, \alpha_1, \alpha_2, \alpha_3 \in \mathbf{R}$ } is the space \mathcal{P}_3 of polynomials of degree at most 3.

span((1, 1, 0), (1, 2, 3)) = {(x, y, z) : 3x - 3y + z = 0} is a plane in 3-dimensional Euclidean space.

Spans and matrices

Let
$$a_1,\ldots,a_m\in R^n$$
, let $A=(a_1|a_2|\ldots|a_m)$. Then

$$\operatorname{span}(a_1,\ldots,a_m) = \{Ax : x \in R^m\}.$$

Hence,

$$b \in \operatorname{span}(a_1, \ldots, a_m)$$

if and only if the system

$$Ax = b$$

has a solution. Equivalently,

- the last column of RREF(A|b) = (A'|b') is not a basis column, and
- the coefficients of the linear combination can be chosen as
 - 0 for non-basis columns
 - the entries of b' for the corresponding basis columns

Problem

Does (1, 1) belong to span((1, 2), (2, 4), (1, 3), (2, 1))?

Equivalently, does

$$\left(\begin{array}{c|c|c}1&2&1&2\\2&4&3&1\end{array}\right)x=\left(\begin{array}{c|c}1\\1\end{array}\right)$$

have a solution?

$$\begin{pmatrix} 1 & 2 & 1 & 2 & | & 1 \\ 2 & 4 & 3 & 1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 2 & | & 1 \\ 0 & 0 & 1 & -3 & | & -1 \end{pmatrix} \sim \\ \begin{pmatrix} 1 & 2 & 0 & 5 & | & 2 \\ 0 & 0 & 1 & -3 & | & -1 \end{pmatrix}$$

Problem

Does (1, 1) belong to span((1, 2), (2, 4), (1, 3), (2, 1))?

Equivalently, does

$$\left(\begin{array}{c|c|c}1 & 2 & 1 & 2\\2 & 4 & 3 & 1\end{array}\right) X = \left(\begin{array}{c|c}1\\1\end{array}\right)$$

have a solution?

$$\begin{pmatrix} 1 & 2 & 1 & 2 & | & 1 \\ 2 & 4 & 3 & 1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 2 & | & 1 \\ 0 & 0 & 1 & -3 & | & -1 \end{pmatrix} \sim \\ \begin{pmatrix} 1 & 2 & 0 & 5 & | & 2 \\ 0 & 0 & 1 & -3 & | & -1 \end{pmatrix}$$

Problem

Does (1, 1) belong to span((1, 2), (2, 4), (1, 3), (2, 1))?

Equivalently, does

$$\left(\begin{array}{c|c|c}1&2&1&2\\2&4&3&1\end{array}\right)X=\left(\begin{array}{c|c}1\\1\end{array}\right)$$

have a solution?

$$\begin{pmatrix} 1 & 2 & 1 & 2 & | & 1 \\ 2 & 4 & 3 & 1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 2 & | & 1 \\ 0 & 0 & 1 & -3 & | & -1 \end{pmatrix} \sim \\ \begin{pmatrix} 1 & 2 & 0 & 5 & | & 2 \\ 0 & 0 & 1 & -3 & | & -1 \end{pmatrix}$$

Hence,

 $(1, 1) = 2(1, 2) - 1 \cdot (1, 3).$

Theorem

Let $\mathbf{V} = (V, +, \cdot)$ be a vector space over \mathbf{F} , let $S \subseteq V$ be any set of vectors. Then

 $(span(S), +, \cdot)$

is a vector space, satisfying $span(S) \subseteq V$.

Span is a vector space

Proof.

It suffices to prove that + and \cdot are total on span(S), and $o \in \text{span}(S)$.

• inverses -v = (-1)v are in span(*S*) by the totality of \cdot

If $u, v \in \text{span}(S)$, then there exist $v_1, \ldots, v_n \in S$ and $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \in \mathbf{F}$ such that

 $u = \alpha_1 v_1 + \ldots + \alpha_n v_n$ $v = \beta_1 v_1 + \ldots + \beta_n v_n$

Then,

$$u + v = (\alpha_1 + \beta_1)v_1 + \ldots + (\alpha_n + \beta_n)v_n$$
$$\alpha v = (\alpha\beta_1)v_1 + \ldots + (\alpha\beta_n)v_n$$

and thus u + v, $\alpha v \in \text{span}(S)$.

Definition

Let $\mathbf{V} = (V, +, \cdot)$ be a vector space. If $U \subseteq V$ and $\mathbf{U} = (U, +, \cdot)$ is a vector space, we say that \mathbf{U} is a subspace of \mathbf{V} . We write $\mathbf{U} \Subset \mathbf{V}$.

Examples:

- the plane $\{(x, y, z) : 3x 3y + z = 0\} \Subset \mathbb{R}^3$
 - More generally, any line or plane in R³ containing the origin (0,0,0) is a subspace of R³.
- \mathcal{P}_n (polynomials of degree at most *n*) form a subspace of the space \mathcal{P} of all polynomials
- \mathcal{P} , and the space of continuous functions $\mathbf{R} \to \mathbf{R}$, form subspaces of the space of all functions $\mathbf{R} \to \mathbf{R}$
- trivial subspaces: $({o}, +, \cdot)$ and **V** itself.

Lemma

Let $\mathbf{V} = (V, +, \cdot)$ be a vector space, and let U be a subset of V. Then $(U, +, \cdot)$ is a vector space if and only if span(U) = U.

Proof.

If span(U) = U: As we observed before, span(U) is a vector space; hence, U is a vector space. If $\text{span}(U) \neq U$: Then + or \cdot is not total on U, and thus U is not a vector space.

We say that *S* generates **U** if $\mathbf{U} = \operatorname{span}(S)$.

Intersection of subspaces

Lemma

Let $V = (V, +, \cdot)$ be a vector space over F, let I be an arbitrary set, and for $i \in I$, let U_i be a subspace of V. Then

 $\mathbf{U}_I = \bigcap_{i \in I} \mathbf{U}_i$

is a subspace of V.

Proof.

Note that $o \in U_l$. It suffices to show that + and \cdot are total on U_l . If $u, v \in U_l$ and $\alpha \in F$, then

- $u, v \in \mathbf{U}_i$ for every $i \in I$, hence
- $u + v, \alpha \cdot v \in \mathbf{U}_i$ for every $i \in I$, hence
- $u + v, \alpha \cdot v \in \mathbf{U}_I$

Problem

Describe the intersection of spaces

$$U_1 = span((1, 1, 0), (1, 2, 3))$$
 and
 $U_2 = span((1, 0, -1), (1, -1, 0)).$

If $(x, y, z) \in U_1 \cap U_2$, then there exist $\alpha, \beta, \gamma, \delta \in \mathbf{R}$ such that

$$(x, y, z) = \alpha(1, 1, 0) + \beta(1, 2, 3) \qquad \dots v \text{ is in } \mathbf{U}_1 (x, y, z) = \gamma(1, 0, -1) + \delta(1, -1, 0) \qquad \dots v \text{ is in } \mathbf{U}_2$$

Comparing the coefficients, we get

$$\begin{aligned} \alpha + & \beta - \gamma - \delta = \mathbf{0} & \text{at } x \\ \alpha + \mathbf{2}\beta & + \delta = \mathbf{0} & \text{at } y \\ \mathbf{3}\beta + \gamma &= \mathbf{0} & \text{at } z \end{aligned}$$

Problem

Describe the intersection of spaces

$$U_1 = span((1, 1, 0), (1, 2, 3))$$
 and
 $U_2 = span((1, 0, -1), (1, -1, 0)).$

If $(x, y, z) \in U_1 \cap U_2$, then there exist $\alpha, \beta, \gamma, \delta \in \mathbf{R}$ such that

$$(x, y, z) = \alpha(1, 1, 0) + \beta(1, 2, 3) \qquad \dots v \text{ is in } \mathbf{U}_1 (x, y, z) = \gamma(1, 0, -1) + \delta(1, -1, 0) \qquad \dots v \text{ is in } \mathbf{U}_2$$

The set of solutions is $(\alpha, \beta, \gamma, \delta) \in \{(-3t, t, -3t, t) : t \in \mathbf{R}\}.$

$$U_1 \cap U_2 = \{\alpha(1, 1, 0) + \beta(1, 2, 3)\} \\= \{-3t(1, 1, 0) + t(1, 2, 3) : t \in \mathbf{R}\} \\= \{t(-2, -1, 3) : t \in \mathbf{R}\} = \operatorname{span}((-2, -1, 3)).$$

Problem

Describe the intersection of spaces

$$U_1 = span((1, 1, 0), (1, 2, 3))$$
 and
 $U_2 = span((1, 0, -1), (1, -1, 0)).$

 $\mathbf{U}_1 \cap \mathbf{U}_2 = \text{span}((-2, -1, 3))$

Span as an intersection

Lemma

Let $\mathbf{V} = (V, +, \cdot)$ be a vector space and let S be a subset of V. Then span(S) is the smallest subspace of V containing S, that is,

$$span(S) = \bigcap_{\mathbf{U} \in \mathbf{V}, S \subseteq \mathbf{U}} \mathbf{U}.$$

Proof.

Let

$$\mathbf{W} = \bigcap_{\mathbf{U} \Subset \mathbf{V}, \mathcal{S} \subseteq \mathbf{U}} \mathbf{U}.$$

- Since $S \subseteq W$, we have span $(S) \Subset$ span(W) = W.
- Since S ⊆ span(S), the subspace span(S) is one of the spaces in the intersection, hence W ∈ span(S).