Reminder: Group

Definition

A group is a pair (X, \circ) , where

• X is a set and $\circ : X \times X \to X$ is a total function,

satisfying the following axioms:

associativity $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a, b, c \in X$. neutral element There exists $e \in X$ s.t. $a \circ e = e \circ a = a$ for every $a \in X$. for every $a \in X$ there exists $a^{-1} \in X$ such that $a \circ a^{-1} = a^{-1} \circ a = e$.

The group is abelian if additionally commutativity $a \circ b = b \circ a$ for all $a, b \in X$.

Field

Definition

A field is a triple $(X, +, \cdot)$, where

- (X, +) is an abelian group,
 - let 0 denote its neutral element and -x the inverse to x,
- $(X \setminus \{0\}, \cdot)$ is an abelian group,
 - let 1 denote its neutral element and x^{-1} the inverse to x,
- $a \cdot (b + c) = a \cdot b + a \cdot c$ for all $a, b, c \in X$ (distributivity)

Remark: sometimes, the commutativity of . is not required.

- $\bullet\,$ rational numbers $({\bf Q},+,\cdot)$ form a field
- real numbers $(\mathbf{R},+,\cdot)$ form a field
- complex numbers $(\mathbf{C}, +, \cdot)$ form a field
- integers (Z, +, ·) do not form a field, since (Z \ {0}, ·) is not a group.
- regular n × n matrices do not form a field, since sum of two regular matrices does not have to be regular.

If $(X, +, \cdot)$ is a field, then

for every $x \in X$.

Proof.

We have

$$0 = 0x + (-(0x)) = (0+0)x + (-(0x)) = 0x + 0x + (-(0x)) = 0x.$$

If $(X, +, \cdot)$ is a field, then

$$-x = (-1)x$$

for every $x \in X$.

Proof.

We have

$$x + (-1)x = 1x + (-1)x = (1 + (-1))x = 0x = 0,$$

hence (-1)x is equal to the additive inverse to x.

If $(X, +, \cdot)$ is a field, then

ab = 0 if and only if a = 0 or b = 0

for every $a, b \in X$.

Proof.

If $a \neq 0$ and ab = 0, then

$$b = 1b = a^{-1}ab = a^{-1}0 = 0.$$

Everything we did in the first three lectures only depends on the field properties. Hence, everything works with coefficients from arbitrary field:

- systems of linear equations,
- elementary row operations preserve the set of solutions,
- Gauss and Gauss-Jordan elimination to solve the equations,
- matrices and operations with them,
- regularity and inverse.

- A field $(X, +, \cdot)$ is finite if X is a finite set.
 - None of the examples we have is a finite field.
 - Uses of finite fields
 - exact computations (no rounding errors, fixed size representation)
 - fast multiplication through Fourier transformation
 - cryptography
 - error-correcting codes
 - ...

Reed-Solomon codes

Let $(X, +, \cdot)$ be a field with $|X| \ge n + 2$.

Encoding:

- Let a₀, a₁,..., a_{n-1} ∈ X be the message we want to encode.
- Let $p(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}$.
- Let $s_1, s_2, \ldots, s_{n+2}$ be fixed distinct elements of X.
- Encode the message as $p(s_1), p(s_2), \ldots, p(s_{n+2})$.
- Instead of sending *n* elements, we send n + 2.

Reed-Solomon codes

Let $(X, +, \cdot)$ be a field with $|X| \ge n + 2$.

Theorem (for now without proof)

If $x_1, \ldots, x_n \in X$ are pairwise distinct, and $y_1, \ldots, y_n \in X$ are arbitrary, then there exists exactly one polynomial q of degree at most n - 1 with coefficients in X such that

$$q(x_i) = y_i \text{ for } i = 1, ..., n.$$

The coefficients of *q* can be determined by solving linear equations. Let $q = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-1} x^{n-1}$.

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ & & \dots & & \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} b_0 \\ b_1 \\ \dots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

Reed-Solomon codes

Let $(X, +, \cdot)$ be a field with $|X| \ge n + 2$.

Decoding:

- Let t_1, \ldots, t_{n+2} be the received message.
- For $1 \le k \le n+2$, find a polynomial p_k of degree at most n-1 such that

$$p_k(s_i) = t_i$$
 for $i \in \{1, \ldots, n+2\} \setminus \{k\}$,

or determine that no such polynomial exists.

- If there was no error, then all the polynomials exist and are equal to *p*.
- If there was exactly one error, say $t_k \neq p(s_k)$, then only the polynomial p_k exists and is equal to p.
- To decode the message, read the coefficients of *p_k*.

Modulo operation

Definition

For an integer
$$p > 0$$
, let $\mathbf{Z}_{p} = \{0, 1, ..., p - 1\}$.

Definition

For integers a and p > 0, let

a mod p

denote the remainder of division of *a* by *p*, that is, $a \mod p \in \mathbf{Z}_p$ is the unique number such that $a - (a \mod p)$ is divisible by *p*.

 $a \mod p = b \mod p$ if and only if $(a - b) \mod p = 0$,

i.e., a - b is divisible by p.

- $25 \mod 7 = 4$
- $25 \ mod \ 5=0$
- $-25 \ \text{mod} \ 7 = 3$

Let us define

$$a+_p b = (a+b) \mod p$$

and

$$a \cdot_p b = (ab) \mod p.$$

$$\begin{array}{l} 10+_{13}11=21 \mbox{ mod } 13=8 \\ 10\cdot_{13}4=40 \mbox{ mod } 13=1 \end{array}$$

\mathbf{Z}_{p} and addition

Lemma

For any integer $p \ge 1$, $(\mathbf{Z}_p, +_p)$ is an abelian group (called the cyclic group of order p).

Proof.

 $+_{\rho}$ is commutative:

$$a+_p b = (a+b) \mod p = (b+a) \mod p = b+_p a$$

0 is a neutral element:

$$a +_{p} 0 = (a + 0) \mod p = a \mod p = a$$

0 is inverse to itself, and p - a is inverse to a for $1 \le a \le p - 1$:

$$a+_p(p-a)=(a+p-a) \mod p=p \mod p=0$$

\mathbf{Z}_{ρ} and addition

Lemma

For any integer $p \ge 1$, $(\mathbf{Z}_{p}, +_{p})$ is an abelian group (called the cyclic group of order p).

Proof.

 $+_{p}$ is associative:

- Let $r = a +_p b$, so a + b = mp + r for some $m \in \mathbb{Z}$.
- Let $s = r +_p c$, so $s \in \mathbb{Z}_p$ and r + c = np + s with $n \in \mathbb{Z}$.
- Then, $(a +_p b) +_p c = r +_p c = s$, and a + b + c = mp + r + c = mp + np + s = (m + n)p + s, and thus $(a +_p b) +_p c = s = (a + b + c) \mod p$.

• Similarly, $a +_{\rho} (b +_{\rho} c) = (a + b + c) \mod \rho$.

\mathbf{Z}_{ρ} and multiplication

Lemma

For any integer $p \ge 1$, $(\mathbf{Z}_{p}, \cdot_{p})$ is an abelian monoid.

Proof.

```
\cdot_{\rho} is commutative:
```

$$a \cdot_p b = (ab) \mod p = (ba) \mod p = b \cdot_p a$$

1 is a neutral element:

$$a \cdot_p 1 = (a1) \mod p = a \mod p = a$$

for every $a \in \mathbf{Z}_{\rho}$.

\mathbf{Z}_{ρ} and multiplication

Lemma

For any integer $p \ge 1$, $(\mathbf{Z}_{p}, \cdot_{p})$ is an abelian monoid.

Proof.

 \cdot_p is associative:

- Let $r = a \cdot_p b$, so ab = mp + r for some $m \in \mathbf{Z}$.
- Let $s = r \cdot_p c$, so that $s \in \mathbb{Z}_p$ and rc = np + s with $n \in \mathbb{Z}$.

Then,

$$(a \cdot_p b) \cdot_p c = r \cdot_p c = s$$
, and
 $abc = (mp + r)c = mcp + rc = mcp + np + s$
 $= (mc + n)p + s$, and thus
 $(a \cdot_p b) \cdot_p c = s = (abc) \mod p.$

• Similarly,
$$a \cdot_p (b \cdot_p c) = (abc) \mod p$$
.

Inverse in $Z_p \setminus \{0\}$: necessary condition

Lemma

If $\textbf{Z}_p \setminus \{0\}$ is a group, then p is prime.

Proof.

If p is not a prime, then p = ab for some integers $a, b \in \mathbf{Z}_p \setminus \{0\}$. Then

$$a \cdot_p b = (ab) \mod p = p \mod p = 0.$$

We claim that *b* does not have inverse. Indeed, if $b \cdot_{p} c = 1$ for some $c \in \mathbf{Z}_{p}$, then

$$0 = 0 \cdot_{\rho} c = (a \cdot_{\rho} b) \cdot_{\rho} c = a \cdot_{\rho} (b \cdot_{\rho} c) = a \cdot_{\rho} 1 = a,$$

which is a contradiction.

Cancellation law

Lemma

If p is prime, $a, b, c \in \mathbf{Z}_p$, $a \neq 0$ and

$$a \cdot_{p} b = a \cdot_{p} c$$
,

then b = c.

Proof.

We have

$$a \cdot_p b = a \cdot_p c$$

if and only if

$$p$$
 divides $ab - ac = a(b - c)$.

Since *p* is prime, this happens only if *p* divides either *a* or *b* – *c*. Since $a \neq 0$ and $|b - c| \leq p - 1$, this implies b - c = 0.

Fermat's little theorem

Theorem (Fermat)

If p is a prime and
$$a \in \mathbf{Z}_p \setminus \{0\}$$
, then $a^{p-1} \mod p = 1$.

Proof.

By the cancellation law, the numbers $a \cdot_p 1, a \cdot_p 2, \dots, a \cdot_p (p-1)$ are pairwise different. They are non-zero, and thus $\{a \cdot_p 1, a \cdot_p 2, \dots, a \cdot_p (p-1)\} = \mathbf{Z}_p \setminus \{0\}$. Therefore, $1 \cdot_p 2 \cdots p (p-1) = (a \cdot_p 1) \cdot_p (a \cdot_p 2) \cdots p (a \cdot_p (p-1))$ $= (a^{p-1} \mod p) \cdot_p (1 \cdot_p 2 \cdots p (p-1))$

By the cancellation law, we have

$$a^{p-1} \mod p = 1.$$

If p is prime, then $(\mathbf{Z}_p \setminus \{0\}, \cdot_p)$ is a group. The inverse to a is equal to $a^{p-2} \mod p$.

Proof.

$$a \cdot_p (a^{p-2} \mod p) = a^{p-1} \mod p = 1.$$

Problem

Determine inverse to 10 in $Z_{13} \setminus \{0\}$.

We have

 $10^2 \mod 13 = 9$ $10^4 \mod 13 = 9^2 \mod 13 = 3$ $10^8 \mod 13 = 3^2 \mod 13 = 9$

Hence, the inverse is

 $10^{11} \text{ mod } 13 = 10^8 \cdot_{13} 10^2 \cdot_{13} 10^1 = (9 \cdot_{13} 9) \cdot_{13} 10 = 3 \cdot_{13} 10 = 4.$ Indeed,

$$10 \cdot_{13} 4 = 1$$

Computing a^{p-2} needs only $O(\log_2 p)$ arithmetic operations.

- Let *r* := 1, *A* := *a*, and *m* := *p* − 2
- While $m \neq 0$:
 - If $m \mod 2 = 1$, then let $r := (Ar) \mod p$.
 - Let $A := A^2 \mod p$ and $m := \lfloor m/2 \rfloor$.

Fermat's little theorem and testing primality

To test whether p is a prime,

- Choose an integer $a \in \{1, \dots, p-1\}$ at random, and
- check whether $a^{p-1} \mod p = 1$.
 - If no, then *p* is not prime.
 - if yes, then *p* may or may not be prime.

Repeat k times.

- If *p* is composite and not one of exceptional Carmichael numbers, then the test proves that *p* is not a prime with probability at least $1 \frac{1}{2^k}$.
- More involved tests avoid the flaw with Carmichael numbers.
- Requires $O(k \log p)$ arithmetic operations.
 - Brute force algorithm to find a divisor of *p* requires $O(\sqrt{p})$ arithmetic operations.

To determine the greatest common divisor of integers $a > b \ge 0$:

- If b = 0, then gcd(a, b) = a.
- If b > 0, then $gcd(a, b) = gcd(b, a \mod b)$.

Example:

$$gcd(13, 10) = gcd(10, 3) = gcd(3, 1) = gcd(1, 0) = 1.$$

Expressing gcd as a combination of arguments

Lemma

For all integers $a, b \ge 0$, there exist integers m and n such that

 $am + bn = \gcd(a, b).$

Proof.

We proceed by induction on max(a, b). If a = b, then gcd(a, b) = a = a1 + b0. Hence, assume $a > b \ge 0$.

- If b = 0, then gcd(a, b) = a = a1 + b0.
- If b > 0, then let r = a mod b, so a = bt + r for t ∈ Z. By induction hypothesis,

$$gcd(b, r) = bm_1 + rn_1$$
. Hence,
 $gcd(a, b) = gcd(b, r) = bm_1 + rn_1 = bm_1 + (a - bt)n_1$
 $= an_1 + b(m_1 - n_1t)$.

gcd(13, 10) = gcd(10, 3)

13 mod 10 = 3

gcd(10, 3) = gcd(3, 1)

10 mod 3 = 1

$$gcd(\textbf{3},\textbf{1})=\textbf{1}\Rightarrow\textbf{1}=\textbf{3}\cdot\textbf{0}+\textbf{1}\cdot\textbf{1}$$

$$gcd(13, 10) = gcd(10, 3) = 1$$

• 13 mod 10 = 3

$$gcd(10,3) = gcd(3,1) = 1$$

• 10 mod 3 = 1

$$gcd(\textbf{3},\textbf{1})=\textbf{1}\Rightarrow\textbf{1}=\textbf{3}\cdot\textbf{0}+\textbf{1}\cdot\textbf{1}$$

$$gcd(13, 10) = gcd(10, 3) = 1$$

13 mod 10 = 3

$$gcd(10, 3) = gcd(3, 1) = 1$$

- 10 mod 3 = 1, and thus $1 = 10 3 \cdot 3$.
- $3 \cdot 0 + 1 \cdot 1 = 3 \cdot 0 + (10 3 \cdot 3) \cdot 1 = 10 \cdot 1 + 3 \cdot (-3)$

$$gcd(\textbf{3},\textbf{1})=\textbf{1}\Rightarrow\textbf{1}=\textbf{3}\cdot\textbf{0}+\textbf{1}\cdot\textbf{1}$$

$$gcd(13, 10) = gcd(10, 3) = 1$$

13 mod 10 = 3

$$gcd(10,3) = gcd(3,1) = 1 \Rightarrow 1 = 10 \cdot 1 + 3 \cdot (-3)$$

- 10 mod 3 = 1, and thus $1 = 10 3 \cdot 3$.
- $3 \cdot 0 + 1 \cdot 1 = 3 \cdot 0 + (10 3 \cdot 3) \cdot 1 = 10 \cdot 1 + 3 \cdot (-3)$

$$gcd(\textbf{3},\textbf{1})=\textbf{1}\Rightarrow\textbf{1}=\textbf{3}\cdot\textbf{0}+\textbf{1}\cdot\textbf{1}$$

$$gcd(13, 10) = gcd(10, 3) = 1$$

- 13 mod 10 = 3, and thus $3 = 13 10 \cdot 1$.
- $10 \cdot 1 + 3 \cdot (-3) = 10 \cdot 1 + (13 10 \cdot 1) \cdot (-3) = 13 \cdot (-3) + 10 \cdot 4$

$$gcd(10, 3) = gcd(3, 1) = 1 \Rightarrow 1 = 10 \cdot 1 + 3 \cdot (-3)$$

- 10 mod 3 = 1, and thus $1 = 10 3 \cdot 3$.
- $3 \cdot 0 + 1 \cdot 1 = 3 \cdot 0 + (10 3 \cdot 3) \cdot 1 = 10 \cdot 1 + 3 \cdot (-3)$

$$gcd(\textbf{3},\textbf{1})=\textbf{1}\Rightarrow\textbf{1}=\textbf{3}\cdot\textbf{0}+\textbf{1}\cdot\textbf{1}$$

$$gcd(13,10) = gcd(10,3) = 1 \Rightarrow 1 = 13 \cdot (-3) + 10 \cdot 4$$

- 13 mod 10 = 3, and thus $3 = 13 10 \cdot 1$.
- $10 \cdot 1 + 3 \cdot (-3) = 10 \cdot 1 + (13 10 \cdot 1) \cdot (-3) = 13 \cdot (-3) + 10 \cdot 4$

$$gcd(10,3) = gcd(3,1) = 1 \Rightarrow 1 = 10 \cdot 1 + 3 \cdot (-3)$$

- 10 mod 3 = 1, and thus $1 = 10 3 \cdot 3$.
- $3 \cdot 0 + 1 \cdot 1 = 3 \cdot 0 + (10 3 \cdot 3) \cdot 1 = 10 \cdot 1 + 3 \cdot (-3)$

$$gcd(\textbf{3},\textbf{1})=\textbf{1}\Rightarrow\textbf{1}=\textbf{3}\cdot\textbf{0}+\textbf{1}\cdot\textbf{1}$$

Euclid's algorithm and inverse

If p is prime and $a \in \mathbf{Z}_p \setminus \{0\}$, then

gcd(a, p) = 1 = an + pm

for some integers *m*, *n*. Hence,

```
(an) mod p = (1 - pm) \mod p = 1.
```

Therefore, *n* mod *p* is the inverse to *a*.

Example:

$$gcd(10, 13) = 1 = 10 \cdot 4 + 13 \cdot (-3),$$

and thus 4 is the inverse to 10 in $\textbf{Z}_{13} \setminus \{0\}.$

Theorem

 $(\mathbf{Z}_{p}, +_{p}, \cdot_{p})$ is a field if and only if p is a prime.

Proof.

- $(\mathbf{Z}_{\rho},+_{\rho})$ is an abelian group
- (Z_p \ {0}, ·_p) is an abelian group if and only if p is a prime
 distributivity:

$$a \cdot_p (b +_p c) = (a(b + c)) \mod p = (ab + ac) \mod p$$

= $a \cdot_p b +_p a \cdot_p c$

similarly to associativity.

Problem

Lights A, B, C, D are controlled by switches 1, 2, 3, 4:

switch	controlled lights
1	А, <u>В</u>
2	<mark>В</mark> , С , D
3	A , C
4	A , D

Flipping a switch turns on the controlled lights that were off, and vice versa. If lights are now all off, can you turn them on?

Solve

Solve over \mathbf{Z}_{2} .

Solve over \mathbf{Z}_{2} . *x*₄ = 1 $\left(\begin{array}{cccccccc} 1 & 0 & 1 & 1 & | & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & | & 1 \end{array}\right)$

$$\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$$

$$x_3 = 1$$

$$x_2 = 0 - x_3 - x_4 = 0$$

$$x_1 = 1 - x_3 - x_4 = 1$$

Problem

Lights A, B, C, D are controlled by switches 1, 2, 3, 4:

switch	controlled lights
1	А, <u>В</u>
2	<mark>В</mark> , С , D
3	A , C
4	A , D

Flipping a switch turns on the controlled lights that were off, and vice versa. If lights are now all off, can you turn them on?

$$x_4 = 1$$

 $x_3 = 1$ Flip switches 1, 3 and 4.
 $x_2 = 0$
 $x_1 = 1$

Field characteristic

For integer $n \ge 1$, let

$$n \times x = \underbrace{x + x + \ldots + x}_{n \text{ times}}.$$

Definition

Let $(X, +, \cdot)$ be a field with multiplicative neutral element 1 and additive neutral element 0. The characteristic of the field is the smallest integer $n \ge 1$ such that

$$n \times 1 = 0.$$

- **R** has infinite characteristic
 - sometimes called "characteristic 0"
- \mathbf{Z}_p has characteristic p.
- There exist infinite fields with finite characteristic.

Every finite field $(X, +, \cdot)$ has characteristic at most |X|.

Proof.

 $1 \times 1, 2 \times 1, ..., |X| \times 1, (|X|+1) \times 1$ are elements of *X*. By pigeonhole principle, there exist $1 \le n_1 < n_2 \le |X|+1$ such that

$$n_1 \times 1 = n_2 \times 1.$$

Hence,

$$(n_2 - n_1) \times 1 = n_2 \times 1 - n_1 \times 1 = 0.$$

If p is the characteristic of a field $(X, +, \cdot)$ and p is finite, then p is prime.

Proof.

Suppose that p = ab for a, b < p. Then

$$a \times (b \times 1) = (ab) \times 1 = p \times 1 = 0.$$

By the minimality of the characteristic, $b \times 1 \neq 0$, and thus there exists $(b \times 1)^{-1}$. Therefore,

$$a \times 1 = a \times (b \times 1) \cdot (b \times 1)^{-1} = 0,$$

which contradicts the minimality of the characteristic.

Theorem (for now without proof)

If F is a finite field of characteristic p, then

$$|\mathbf{F}| = p^n$$

for some integer $n \ge 1$.

Corollary

If F is a finite field, then

$$|\mathbf{F}| = p^n$$

for some prime p and integer $n \ge 1$.

Theorem (we will not prove)

For every prime p and integer $n \ge 1$, there exists exactly one field (up to isomorphism) of size p^n . The field is denoted by \mathbf{F}_{p^n} . The characteristic of \mathbf{F}_{p^n} is p.

For n = 1, we have $\mathbf{F}_{\rho} = (\mathbf{Z}_{\rho}, +_{\rho}, \cdot_{\rho})$.

Elements: 0, 1, *x*, 1 + *x*.

Operations:

+	0	1	х	1 + <i>x</i>		0	1	x	1 + <i>x</i>
0	0	1	Х	1 + x	0	0	0	0	0
1	1	0	1 + <i>x</i>	х	1	0	1	x	1 + <i>x</i>
x	x	1 + x	0	1	x	0	х	1 + <i>x</i>	1
1 + <i>x</i>	1 + <i>x</i>	х	1	0	1 + <i>x</i>	0	1 + <i>x</i>	1	х

Remark: F_4 is not isomorphic to $(Z_4, +_4, \cdot_4)$; the latter is not a field.