
Reminder: Group

Definition

A group is a pair (X , ◦), where
X is a set and ◦ : X × X → X is a total function,

satisfying the following axioms:

associativity (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a,b, c ∈ X .
neutral element There exists e ∈ X s.t. a ◦ e = e ◦ a = a for

every a ∈ X .
inverse for every a ∈ X there exists a−1 ∈ X such

that a ◦ a−1 = a−1 ◦ a = e.

The group is abelian if additionally
commutativity a ◦ b = b ◦ a for all a,b ∈ X .



Field

Definition

A field is a triple (X ,+, ·), where
(X ,+) is an abelian group,

let 0 denote its neutral element and −x the inverse to x ,
(X \ {0}, ·) is an abelian group,

let 1 denote its neutral element and x−1 the inverse to x ,

a · (b + c) = a · b + a · c for all a,b, c ∈ X (distributivity)

Remark: sometimes, the commutativity of · is not required.



Examples

rational numbers (Q,+, ·) form a field
real numbers (R,+, ·) form a field
complex numbers (C,+, ·) form a field
integers (Z,+, ·) do not form a field, since (Z \ {0}, ·) is not
a group.
regular n× n matrices do not form a field, since sum of two
regular matrices does not have to be regular.



Basic properties

Lemma

If (X ,+, ·) is a field, then

0x = 0

for every x ∈ X.

Proof.

We have

0 = 0x+(−(0x)) = (0+0)x+(−(0x)) = 0x+0x+(−(0x)) = 0x .



Basic properties

Lemma

If (X ,+, ·) is a field, then

−x = (−1)x

for every x ∈ X.

Proof.

We have

x + (−1)x = 1x + (−1)x = (1 + (−1))x = 0x = 0,

hence (−1)x is equal to the additive inverse to x .



Basic properties

Lemma

If (X ,+, ·) is a field, then

ab = 0 if and only if a = 0 or b = 0

for every a,b ∈ X.

Proof.

If a 6= 0 and ab = 0, then

b = 1b = a−1ab = a−10 = 0.



Linear equations over fields

Everything we did in the first three lectures only depends on the
field properties. Hence, everything works with coefficients from
arbitrary field:

systems of linear equations,
elementary row operations preserve the set of solutions,
Gauss and Gauss-Jordan elimination to solve the
equations,
matrices and operations with them,
regularity and inverse.



Finite fields

A field (X ,+, ·) is finite if X is a finite set.

None of the examples we have is a finite field.
Uses of finite fields

exact computations (no rounding errors, fixed size
representation)

fast multiplication through Fourier transformation

cryptography
error-correcting codes
. . .



Reed-Solomon codes

Let (X ,+, ·) be a field with |X | ≥ n + 2.

Encoding:

Let a0,a1, . . . ,an−1 ∈ X be the message we want to
encode.
Let p(x) = a0 + a1x + a2x2 + . . .+ an−1xn−1.
Let s1, s2, . . . , sn+2 be fixed distinct elements of X .
Encode the message as p(s1),p(s2), . . . ,p(sn+2).
Instead of sending n elements, we send n + 2.



Reed-Solomon codes

Let (X ,+, ·) be a field with |X | ≥ n + 2.

Theorem (for now without proof)

If x1, . . . , xn ∈ X are pairwise distinct, and y1, . . . , yn ∈ X are
arbitrary, then there exists exactly one polynomial q of degree
at most n − 1 with coefficients in X such that

q(xi) = yi for i = 1, . . . ,n.

The coefficients of q can be determined by solving linear equa-
tions. Let q = b0 + b1x + b2x2 + . . .+ bn−1xn−1.
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
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



Reed-Solomon codes

Let (X ,+, ·) be a field with |X | ≥ n + 2.

Decoding:

Let t1, . . . , tn+2 be the received message.
For 1 ≤ k ≤ n + 2, find a polynomial pk of degree at most
n − 1 such that

pk (si) = ti for i ∈ {1, . . . ,n + 2} \ {k},

or determine that no such polynomial exists.
If there was no error, then all the polynomials exist and are
equal to p.
If there was exactly one error, say tk 6= p(sk ), then only the
polynomial pk exists and is equal to p.
To decode the message, read the coefficients of pk .



Modulo operation

Definition

For an integer p > 0, let Zp = {0,1, . . . ,p − 1}.

Definition

For integers a and p > 0, let

a mod p

denote the remainder of division of a by p, that is, a mod p ∈ Zp
is the unique number such that a− (a mod p) is divisible by p.

a mod p = b mod p if and only if (a− b) mod p = 0,

i.e., a− b is divisible by p.



Example

25 mod 7 = 4
25 mod 5 = 0
−25 mod 7 = 3



Modulo arithmetics

Let us define

a +p b = (a + b) mod p

and

a ·p b = (ab) mod p.



Example

10 +13 11 = 21 mod 13 = 8
10 ·13 4 = 40 mod 13 = 1



Zp and addition

Lemma

For any integer p ≥ 1, (Zp,+p) is an abelian group (called the
cyclic group of order p).

Proof.

+p is commutative:

a +p b = (a + b) mod p = (b + a) mod p = b +p a

0 is a neutral element:

a +p 0 = (a + 0) mod p = a mod p = a

0 is inverse to itself, and p − a is inverse to a for 1 ≤ a ≤ p − 1:

a +p (p − a) = (a + p − a) mod p = p mod p = 0



Zp and addition

Lemma

For any integer p ≥ 1, (Zp,+p) is an abelian group (called the
cyclic group of order p).

Proof.

+p is associative:
Let r = a +p b, so a + b = mp + r for some m ∈ Z.
Let s = r +p c, so s ∈ Zp and r + c = np + s with n ∈ Z.
Then,

(a +p b) +p c = r +p c = s, and
a + b + c = mp + r + c = mp + np + s

= (m + n)p + s, and thus
(a +p b) +p c = s = (a + b + c) mod p.

Similarly, a +p (b +p c) = (a + b + c) mod p.



Zp and multiplication

Lemma

For any integer p ≥ 1, (Zp, ·p) is an abelian monoid.

Proof.

·p is commutative:

a ·p b = (ab) mod p = (ba) mod p = b ·p a

1 is a neutral element:

a ·p 1 = (a1) mod p = a mod p = a

for every a ∈ Zp.



Zp and multiplication

Lemma

For any integer p ≥ 1, (Zp, ·p) is an abelian monoid.

Proof.

·p is associative:
Let r = a ·p b, so ab = mp + r for some m ∈ Z.
Let s = r ·p c, so that s ∈ Zp and rc = np + s with n ∈ Z.
Then,

(a ·p b) ·p c = r ·p c = s, and
abc = (mp + r)c = mcp + rc = mcp + np + s

= (mc + n)p + s, and thus
(a ·p b) ·p c = s = (abc) mod p.

Similarly, a ·p (b ·p c) = (abc) mod p.



Inverse in Zp \ {0}: necessary condition

Lemma

If Zp \ {0} is a group, then p is prime.

Proof.

If p is not a prime, then p = ab for some integers
a,b ∈ Zp \ {0}. Then

a ·p b = (ab) mod p = p mod p = 0.

We claim that b does not have inverse. Indeed, if b ·p c = 1 for
some c ∈ Zp, then

0 = 0 ·p c = (a ·p b) ·p c = a ·p (b ·p c) = a ·p 1 = a,

which is a contradiction.



Cancellation law

Lemma

If p is prime, a,b, c ∈ Zp, a 6= 0 and

a ·p b = a ·p c,

then b = c.

Proof.

We have
a ·p b = a ·p c

if and only if
p divides ab − ac = a(b − c).

Since p is prime, this happens only if p divides either a or b− c.
Since a 6= 0 and |b − c| ≤ p − 1, this implies b − c = 0.



Fermat’s little theorem

Theorem (Fermat)

If p is a prime and a ∈ Zp \ {0}, then ap−1 mod p = 1.

Proof.

By the cancellation law, the numbers
a ·p 1,a ·p 2, . . . ,a ·p (p − 1) are pairwise different.
They are non-zero, and thus
{a ·p 1,a ·p 2, . . . ,a ·p (p − 1)} = Zp \ {0}. Therefore,

1 ·p 2 · · ·p (p − 1) = (a ·p 1) ·p (a ·p 2) · · ·p (a ·p (p − 1))

= (ap−1 mod p) ·p (1 ·p 2 · · ·p (p − 1))

By the cancellation law, we have

ap−1 mod p = 1.



Fermat’s little theorem and inverse

Lemma

If p is prime, then (Zp \ {0}, ·p) is a group. The inverse to a is
equal to ap−2 mod p.

Proof.

a ·p (ap−2 mod p) = ap−1 mod p = 1.



Computing inverse: example

Problem

Determine inverse to 10 in Z13 \ {0}.

We have

102 mod 13 = 9 104 mod 13 = 92 mod 13 = 3

108 mod 13 = 32 mod 13 = 9

Hence, the inverse is

1011 mod 13 = 108 ·13 102 ·13 101 = (9 ·13 9) ·13 10 = 3 ·13 10 = 4.

Indeed,
10 ·13 4 = 1



Fermat’s little theorem inverse – complexity

Computing ap−2 needs only O(log2 p) arithmetic operations.

Let r := 1, A := a, and m := p − 2
While m 6= 0:

If m mod 2 = 1, then let r := (Ar) mod p.
Let A := A2 mod p and m := bm/2c.



Fermat’s little theorem and testing primality

To test whether p is a prime,
Choose an integer a ∈ {1, . . . ,p − 1} at random, and
check whether ap−1 mod p = 1.

If no, then p is not prime.
if yes, then p may or may not be prime.

Repeat k times.

If p is composite and not one of exceptional Carmichael
numbers, then the test proves that p is not a prime with
probability at least 1− 1

2k .
More involved tests avoid the flaw with Carmichael
numbers.
Requires O(k log p) arithmetic operations.

Brute force algorithm to find a divisor of p requires O(
√

p)
arithmetic operations.



Euclid’s algorithm

To determine the greatest common divisor of integers
a > b ≥ 0:

If b = 0, then gcd(a,b) = a.
If b > 0, then gcd(a,b) = gcd(b,a mod b).

Example:

gcd(13,10) = gcd(10,3) = gcd(3,1) = gcd(1,0) = 1.



Expressing gcd as a combination of arguments

Lemma

For all integers a,b ≥ 0, there exist integers m and n such that

am + bn = gcd(a,b).

Proof.

We proceed by induction on max(a,b). If a = b, then
gcd(a,b) = a = a1 + b0. Hence, assume a > b ≥ 0.

If b = 0, then gcd(a,b) = a = a1 + b0.
If b > 0, then let r = a mod b, so a = bt + r for t ∈ Z. By
induction hypothesis,

gcd(b, r) = bm1 + rn1. Hence,
gcd(a,b) = gcd(b, r) = bm1 + rn1 = bm1 + (a− bt)n1

= an1 + b(m1 − n1t).



Example

gcd(13,10) = gcd(10,3)

= 1⇒ 1 = 13 · (−3) + 10 · 4

13 mod 10 = 3

, and thus 3 = 13− 10 · 1.
10·1+3·(−3) = 10·1+(13−10·1)·(−3) = 13·(−3)+10·4

gcd(10,3) = gcd(3,1)

= 1⇒ 1 = 10 · 1 + 3 · (−3)

10 mod 3 = 1

, and thus 1 = 10− 3 · 3.
3 · 0 + 1 · 1 = 3 · 0 + (10− 3 · 3) · 1 = 10 · 1 + 3 · (−3)

gcd(3,1) = 1⇒ 1 = 3 · 0 + 1 · 1
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Euclid’s algorithm and inverse

If p is prime and a ∈ Zp \ {0}, then

gcd(a,p) = 1 = an + pm

for some integers m,n. Hence,

(an) mod p = (1− pm) mod p = 1.

Therefore, n mod p is the inverse to a.

Example:

gcd(10,13) = 1 = 10 · 4 + 13 · (−3),

and thus 4 is the inverse to 10 in Z13 \ {0}.



Field Zp

Theorem

(Zp,+p, ·p) is a field if and only if p is a prime.

Proof.

(Zp,+p) is an abelian group
(Zp \ {0}, ·p) is an abelian group if and only if p is a prime
distributivity:

a ·p (b +p c) = (a(b + c)) mod p = (ab + ac) mod p
= a ·p b +p a ·p c

similarly to associativity.



Example: linear equations over a field

Problem

Lights A, B, C, D are controlled by switches 1, 2, 3, 4:

switch controlled lights
1 A, B
2 B, C, D
3 A, C
4 A, D

Flipping a switch turns on the controlled lights that were off, and
vice versa. If lights are now all off, can you turn them on?

Solve
x1 +x3 +x4 = 1
x1 +x2 = 1

x2 +x3 = 1
x2 +x4 = 1

over Z2.



Example: linear equations over a field

Solve
x1 +x3 +x4 = 1
x1 +x2 = 1

x2 +x3 = 1
x2 +x4 = 1

over Z2. 
1 0 1 1 1
1 1 0 0 1
0 1 1 0 1
0 1 0 1 1

 ∼


1 0 1 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1

 ∼


1 0 1 1 1
0 1 1 1 0
0 0 0 1 1
0 0 1 0 1

 ∼


1 0 1 1 1
0 1 1 1 0
0 0 1 0 1
0 0 0 1 1





Example: linear equations over a field

Solve
x1 +x3 +x4 = 1
x1 +x2 = 1

x2 +x3 = 1
x2 +x4 = 1

over Z2.


1 0 1 1 1
0 1 1 1 0
0 0 1 0 1
0 0 0 1 1


x4 = 1
x3 = 1
x2 = 0− x3 − x4 = 0
x1 = 1− x3 − x4 = 1



Example: linear equations over a field

Problem

Lights A, B, C, D are controlled by switches 1, 2, 3, 4:

switch controlled lights
1 A, B
2 B, C, D
3 A, C
4 A, D

Flipping a switch turns on the controlled lights that were off, and
vice versa. If lights are now all off, can you turn them on?

x4 = 1
x3 = 1
x2 = 0
x1 = 1

Flip switches 1, 3 and 4.



Field characteristic

For integer n ≥ 1, let

n × x = x + x + . . .+ x︸ ︷︷ ︸
n times

.

Definition

Let (X ,+, ·) be a field with multiplicative neutral element 1 and
additive neutral element 0. The characteristic of the field is the
smallest integer n ≥ 1 such that

n × 1 = 0.

R has infinite characteristic
sometimes called “characteristic 0”

Zp has characteristic p.
There exist infinite fields with finite characteristic.



Properties of characteristic

Lemma

Every finite field (X ,+, ·) has characteristic at most |X |.

Proof.

1× 1, 2× 1, . . . , |X | × 1, (|X |+ 1)× 1 are elements of X . By
pigeonhole principle, there exist 1 ≤ n1 < n2 ≤ |X |+1 such that

n1 × 1 = n2 × 1.

Hence,
(n2 − n1)× 1 = n2 × 1− n1 × 1 = 0.



Properties of characteristic

Lemma

If p is the characteristic of a field (X ,+, ·) and p is finite, then p
is prime.

Proof.

Suppose that p = ab for a,b < p. Then

a× (b × 1) = (ab)× 1 = p × 1 = 0.

By the minimality of the characteristic, b × 1 6= 0, and thus
there exists (b × 1)−1. Therefore,

a× 1 = a× (b × 1) · (b × 1)−1 = 0,

which contradicts the minimality of the characteristic.



Characteristic of a finite field

Theorem (for now without proof)

If F is a finite field of characteristic p, then

|F| = pn

for some integer n ≥ 1.

Corollary

If F is a finite field, then

|F| = pn

for some prime p and integer n ≥ 1.



Existence of fields

Theorem (we will not prove)

For every prime p and integer n ≥ 1, there exists exactly one
field (up to isomorphism) of size pn. The field is denoted by Fpn .
The characteristic of Fpn is p.

For n = 1, we have Fp = (Zp,+p, ·p).



Example: F4

Elements: 0, 1, x , 1 + x .

Operations:

+ 0 1 x 1 + x
0 0 1 x 1 + x
1 1 0 1 + x x
x x 1 + x 0 1

1 + x 1 + x x 1 0

· 0 1 x 1 + x
0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1

1 + x 0 1 + x 1 x

Remark: F4 is not isomorphic to (Z4,+4, ·4); the latter is not a
field.


