Reminder: Group

Definition
A group is a pair (X, o), where

@ Xisasetando: X x X — X is a total function,
satisfying the following axioms:

associativity (aob)oc=ao(boc)forall a,b,cec X.

neutral element There exists e € X s.t. ace=eoa= afor
every a € X.

inverse for every a € X there exists a~' € X such
thataca '=a 'oa=e.

The group is abelian if additionally
commutativity aob=boaforall abe X.



Field

A field is a triple (X, +, -), where
@ (X,+) is an abelian group,
o let 0 denote its neutral element and —x the inverse to x,
@ (X )\ {0},-) is an abelian group,
e let 1 denote its neutral element and x~' the inverse to x,
@ a-(b+c)=a-b+a-cforall a b,ce X (distributivity)

Remark: sometimes, the commutativity of - is not required.




rational numbers (Q, +, -) form a field
real numbers (R, +, -) form a field

complex numbers (C, +, -) form a field

integers (Z, +, -) do not form a field, since (Z\ {0}, -) is not
a group.

regular n x n matrices do not form a field, since sum of two
regular matrices does not have to be regular.




Basic properties

If (X, +,) is a field, then

0x=0

for every x € X.

We have

0 = 0x+(—(0x)) = (04+0)x+(—(0x)) = 0x+0x+(—(0x)) = Ox.

Ol



Basic properties

Lemma

If (X, +,) is a field, then

—x=(-1)x

for every x € X.

We have

X+(-)x=1x+(-1)x=(1+(-1))x=0x=0,

hence (—1)x is equal to the additive inverse to x. O



Basic properties

Lemma

If (X, +,) is a field, then

ab=0ifandonlyifa=0o0rb=0

for every a,b € X.

If a0 and ab = 0, then

b=1b=a'ab=a'0=0.




Linear equations over fields

Everything we did in the first three lectures only depends on the
field properties. Hence, everything works with coefficients from
arbitrary field:

@ systems of linear equations,
@ elementary row operations preserve the set of solutions,

@ Gauss and Gauss-Jordan elimination to solve the
equations,

@ matrices and operations with them,

@ regularity and inverse.




Finite fields

Afield (X, +, ) is finite if X is a finite set.

@ None of the examples we have is a finite field.

@ Uses of finite fields

e exact computations (no rounding errors, fixed size
representation)

@ fast multiplication through Fourier transformation
e cryptography
e error-correcting codes




Reed-Solomon codes

Let (X, +,-) be a field with | X| > n+ 2.

Encoding:
@ Let ag, ay,...,a5_1 € X be the message we want to
encode.
@ Letp(x)=ay+aix +ax®+...4+a,_1x" .
@ Let sy, sp, ..., Spu2 be fixed distinct elements of X.

@ Encode the message as p(s1), p(Sz2),--.,P(Sni2).
@ Instead of sending n elements, we send n + 2.




Reed-Solomon codes

Let (X, +,-) be a field with | X| > n+ 2.

Theorem (for now without proof)

Ifxq1,...,xn € X are pairwise distinct, and y;,...,y, € X are
arbitrary, then there exists exactly one polynomial q of degree
at most n — 1 with coefficients in X such that

qxj))=yifori=1,...,n.

The coefficients of g can be determined by solving linear equa-
tions. Let g = by + byx + box® + ... + bp_1x" 1.

2 n—1
1T X X5 ... X bo Y1
1 x x5 ... xi! bs | e
1 xp x2 ... x0! by Vi



Reed-Solomon codes

Let (X, +,-) be a field with | X| > n+ 2.
Decoding:

@ Lett, ..., t,.o be the received message.

@ For1 < k < n+ 2, find a polynomial px of degree at most
n — 1 such that

pk(s,-):t,-forie{1,...,n+2}\{k},

or determine that no such polynomial exists.

@ If there was no error, then all the polynomials exist and are
equal to p.

@ If there was exactly one error, say t # p(sk), then only the
polynomial py exists and is equal to p.

@ To decode the message, read the coefficients of py.



Modulo operation

For aninteger p > 0, letZ, = {0,1,...,p—1}.

For integers aand p > 0, let

amod p

denote the remainder of division of a by p, that is, amod p € Z,
is the unique number such that a — (a mod p) is divisible by p.

amod p = bmod pif and only if (a— b) mod p = 0,
i.e., a— bis divisible by p.



25mod7 =4
25mod5=0
-25mod7 =3




Modulo arithmetics

Let us define

a+pb=(a+b)modp

and

a-p b = (ab) mod p.




10 +1311 =21 mod 13 =8
10 134 = 40 mod 13 = 1




Z, and addition

For any integer p > 1, (Zp, +p) is an abelian group (called the
cyclic group of order p).

+p is commutative:

a+pb=(a+b)modp=(b+amodp=>b+,a
0 is a neutral element:
a+p0=(a+0)modp=amodp=a
0 is inverse to itself, and p — ais inverse to afor1 <a<p-—1:

atp(p—a=(a@+p—amodp=pmodp=0

0
e 4 4444



Z, and addition

Lemma

For any integer p > 1, (Zp, +p) is an abelian group (called the
cyclic group of order p).

+p is associative:

@ letr=a+pb,s0a+ b= mp+rforsomemeZ.

@ lets=r+pc,so0scZpandr+c=np+swithneZ
@ Then,
(a+pb)+pc=r+pc=s,and

at+b+c=mp+r+c=mp+np+s
= (m+ n)p+ s, and thus
(a+pb)+pc=s=(a+b+c)modp.

@ Similarly, a+p, (b+pc) = (a+ b+ c) mod p.

0
e 4 4444



Z, and multiplication

For any integer p > 1, (Zp, -p) is an abelian monoid.

-p IS commutative:

a-pb=(ab)modp=(baymodp=>b-pa
1 is a neutral element:
apl=(al)modp=amodp=a

for every a € Z,.

L



Z, and multiplication

For any integer p > 1, (Zp, -p) is an abelian monoid.

-p is associative:

@ letr=a-,b,soab= mp+ rforsome me Z.
@ lets=r-pc,sothat s € Z, and rc = np + s with n € Z.
@ Then,

(apb)pc=r-pc=s,and
abc=(mp+r)c=mcp+rc=mcp+np+s
= (mc + n)p + s, and thus
(a-pb)-pc=s=(abc) mod p.

@ Similarly, a-p (b-p ¢) = (abc) mod p.

L



Inverse in Z,, \ {0}: necessary condition

Lemma

IfZ, \ {0} is a group, then p is prime.

Proof.

If p is not a prime, then p = ab for some integers
a,beZ,\{0}. Then

a-pb=(ab) mod p=pmodp=0.

We claim that b does not have inverse. Indeed, if b-, ¢ = 1 for
some ¢ € Zp, then

0=0pc=(apb)pc=ap(bpc)=apl=a,

which is a contradiction. ]



Cancellation law

If p is prime, a, b, c € Zp, a # 0 and

apb=aypc,

then b = c.
We have

apb=apc
if and only if

p divides ab — ac = a(b — ¢).

Since p is prime, this happens only if p divides either aor b — c.
Since a# 0and |b— c| < p— 1, this implies b — ¢ = 0. O



Fermat’s little theorem
Theorem (Fermat)

If pis a prime and a € Z, \ {0}, then a*~' mod p = 1.

By the cancellation law, the numbers
apl,ap2,...,ap(p—1)are pairwise different.
They are non-zero, and thus
{apl,ap2,...,ap(p—1)} =25\ {0}. Therefore,

Tp2--p(p—1)=(apl)pl(@ap2) pl@aplp-1)
= (@ "modp)p(1p2 p(p—1))

By the cancellation law, we have

a8 "mod p=1.

e 4



Fermat’s little theorem and inverse

Lemma

If p is prime, then (Z, \ {0}, -p) is a group. The inverse to a is
equal to a*~2 mod p.

ap(@2modp)=a""modp=1.




Computing inverse: example

Determine inverse to 10 in Z43 \ {0}.

We have

10° mod 13 =9 10* mod 13 = 92 mod 13 = 3
108 mod 13 =32 mod 13 =9

Hence, the inverse is
10" mod 13 = 108 .1310% .4310" = (9139)-1310 = 31310 = 4.

Indeed,
1034 =1



Fermat’s little theorem inverse — complexity

Computing a°—2 needs only O(log, p) arithmetic operations.

@ letr:=1,A:=ag andm:=p-2
@ While m # 0:

e If mmod 2 = 1, then let r := (Ar) mod p.
o Let A:= A2 mod pand m:= |[m/2].




Fermat’s little theorem and testing primality

To test whether p is a prime,
@ Choose anintegerac {1,...,p— 1} at random, and
@ check whether a°~" mod p = 1.
e If no, then pis not prime.
e if yes, then p may or may not be prime.
Repeat k times.

@ If pis composite and not one of exceptional Carmichael
numbers, then the test proves that p is not a prime with
probability at least 1 — 5.

@ More involved tests avoid the flaw with Carmichael
numbers.

@ Requires O(k log p) arithmetic operations.

e Brute force algorithm to find a divisor of p requires O(,/p)
arithmetic operations.



Euclid’s algorithm

To determine the greatest common divisor of integers
a>b>0:

e If b= 0, then gcd(a, b) = a.
e If b> 0, then gcd(a, b) = gcd(b,a mod b).

Example:

gcd(13,10) = ged(10,3) = ged(3,1) = ged(1,0) = 1.




Expressing gcd as a combination of arguments

For all integers a, b > 0, there exist integers m and n such that

am + bn = gcd(a, b).

We proceed by induction on max(a, b). If a= b, then
gcd(a, b) = a = al + b0. Hence, assume a > b > 0.

@ If b= 0, then gcd(a, b) = a= al + bO0.
@ If b>0,thenletr=amod b, so a= bt+ rforteZ. By
induction hypothesis,
gcd(b, r) = bmy + rny. Hence,
gcd(a, b) = ged(b, r) = bmy + rny = bmy + (a — bt)ny
= any + b(my — mt).




gcd(13,10) = ged(10,3)

@ 13mod10=3

gcd(10,3) = gcd(3,1)

@ 10 mod 3 =1

gcd(3,1)=1=1=3-0+1-1



gcd(13,10) = ged(10,3) =1

@ 13mod10=3

gcd(10,3) = gcd(3,1) =1

@ 10 mod 3 =1

gcd(3,1)=1=1=3-0+1-1



gcd(13,10) = ged(10,3) =1

@ 13mod10=3

gcd(10,3) = ged(3,1) =1

@ 10mod 3 =1,andthus1 =10-3-3.
©3:0+1-1=383:-0+(10-3-3):1=10-1+4+3-(-3)

gcd(3,1)=1=1=3-0+1-1



gcd(13,10) = ged(10,3) =1

@ 13mod10=3

gcd(10,3) =gcd(3,1)=1=1=10-1+3-(-3)

@ 10mod 3 =1,andthus1 =10-3-3.
©3:0+1-1=383:-0+(10-3-3):1=10-1+4+3-(-3)

gcd(3,1)=1=1=3-0+1-1



gcd(13,10) = ged(10,3) =1

@ 13 mod 10 = 3,andthus 3 =13 —-10- 1.
@ 10-1+3:(-3)=10-1+(13-10-1)-(-3) =13-(-3)+10-4

gcd(10,3) =gcd(3,1)=1=1=10-1+3-(-3)

@ 10mod 3 =1,andthus1 =10-3-3.
©3:0+1-1=383:-0+(10-3-3):1=10-1+4+3-(-3)

gcd(3,1)=1=1=3-0+1-1



gcd(13,10) = gcd(10,3) =1=1=13-(-3)+10-4

@ 13 mod 10 = 3,andthus 3 =13 —-10- 1.
@ 10-1+3:(-3)=10-1+(13-10-1)-(-3) =13-(-3)+10-4

gcd(10,3) =gcd(3,1)=1=1=10-1+3-(-3)

@ 10mod 3 =1,andthus1 =10-3-3.
©3:0+1-1=383:-0+(10-3-3):1=10-1+4+3-(-3)

gcd(3,1)=1=1=3-0+1-1



Euclid’s algorithm and inverse

If pis prime and a € Z,, \ {0}, then
gcd(a,p) =1=an+ pm
for some integers m, n. Hence,
(an)ymod p= (1 —pm) mod p = 1.
Therefore, n mod p is the inverse to a.
Example:
gcd(10,13) =1=10-4+ 13- (-3),

and thus 4 is the inverse to 10 in Z43 \ {0}.



Field Z,

(Zp, +p, p) Is a field if and only if p is a prime.

@ (Zp,+p) is an abelian group
@ (Z,\ {0}, -p) is an abelian group if and only if p is a prime
@ distributivity:

a-p(b+pc)=(a(b+c)) modp = (ab+ ac) mod p

similarly to associativity.
L]



Example: linear equations over a field

Lights A, B, C, D are controlled by switches 1, 2, 3, 4:

switch | controlled lights

1 A,

2 ,C, D
3 A C

4 A D

Flipping a switch turns on the controlled lights that were off, and
vice versa. If lights are now all off, can you turn them on?

Solve
Xq +X3 +Xx4 =1
Xo +X3 =1
Xo +x4 =1
over Zo.
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Example: linear equations over a field

Solve
Xq +X3 +Xq4 = 1
Xo +X3
Xo +x4 =1
over Zo.
X4 =
X3 = 1

Xo=0—XxX3—x4=0

OO o=
oo -—=+0
O = =
G R G
—_ a0 =

X1:1—X3—X4:1




Example: linear equations over a field

Lights A, B, C, D are controlled by switches 1, 2, 3, 4:

switch | controlled lights

1 A,

2 ,C, D
3 A C

4 A, D

Flipping a switch turns on the controlled lights that were off, and
vice versa. If lights are now all off, can you turn them on?

X3 =1 Flip switches 1, 3 and 4.




Field characteristic

For integer n > 1, let

NXX=X+X+...+X.
—_————

ntimes

Definition

Let (X, +, ) be a field with multiplicative neutral element 1 and
additive neutral element 0. The characteristic of the field is the
smallest integer n > 1 such that

nx1=0.

@ R has infinite characteristic
@ sometimes called “characteristic 0”

@ Z, has characteristic p.
@ There exist infinite fields with finite characteristic.



Properties of characteristic

Every finite field (X, +,-) has characteristic at most | X|.

1x1,2x1,...,]X| x1,(]X]+1) x 1 are elements of X. By
pigeonhole principle, there exist 1 < ny < n, < |X|+ 1 such that

nx1=n x1.

Hence,
(n2—n1)><1:n2><1—n1><1:0.




Properties of characteristic

If p is the characteristic of a field (X, +, -) and p is finite, then p
is prime.

Suppose that p = ab for a, b < p. Then

ax(bx1)=(ab)x1=px1=0.

By the minimality of the characteristic, b x 1 # 0, and thus
there exists (b x 1)~'. Therefore,

axl=ax(bx1)-(bx1)"'=0,

which contradicts the minimality of the characteristic. Ol



Characteristic of a finite field
Theorem (for now without proof)

IfF is a finite field of characteristic p, then

IF| = p"

for some integern > 1.

Corollary

If F is a finite field, then

IF| =p"

for some prime p and integer n > 1.



Existence of fields

Theorem (we will not prove)

For every prime p and integer n > 1, there exists exactly one

field (up to isomorphism) of size p". The field is denoted by Fpn.
The characteristic of Fyn is p.

For n=1, we have Fp = (Zp, +p, p)-




Example: F4

Elements: 0, 1, x, 1 + x.

Operations:
+ | 0 1 X 14 x . | 0 1 X 1+x
0 0 1 X 1T+ x 0 0 0 0 0
1 1 0 1+x X 1 0 1 X 1+ x
X X 14+ x 0 1 X 0 X 1+ x 1
1+ x 1+ x X 1 0 1+ x 0 1+ x 1 X

Remark: F4 is not isomorphic to (Z4, +4, -4); the latter is not a
field.




