A function $f : X \to Y$ is bijective if f maps exactly one element of X to every element of Y. That is, for every $y \in Y$ there exists exactly one $x \in X$ such that f(x) = y.

Examples:

- *f* : **R** → **R** defined by *f*(*x*) = 2*x* is bijective, since only *y*/2 is mapped to *y*.
- *f* : **R** → **R** defined by *f*(*x*) = 2^{*x*} is not bijective, since nothing maps to −1.
- $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^3 x$ is not bijective, since f(-1) = f(0) = f(1) = 0.

Let $f : X \to Y$ be a bijective function. The inverse function $f^{-1} : Y \to X$ is defined by $f^{-1}(y) = x$ if and only if f(x) = y.

For every
$$x \in X$$
, $f^{-1}(f(x)) = x$.

• For every $y \in Y$,

 $f(f^{-1}(y)) = y.$

For a finite set *X*, a bijective function $\pi : X \to X$ is a permutation on *X*.

Example: A function defined by

$$\pi(1) = 1$$
 $\pi(2) = 3$ $\pi(3) = 2$ $\pi(4) = 6$ $\pi(5) = 4$ $\pi(6) = 5$

is a permutation on $\{1, 2, 3, 4, 5, 6\}$.

Representation of permutations

$$\pi(1) = 1$$
 $\pi(2) = 3$ $\pi(3) = 2$
 $\pi(4) = 6$ $\pi(5) = 4$ $\pi(6) = 5$

By a table of values:

x	1	2	3	4	5	6
$\pi(\mathbf{X})$	1	3	2	6	4	5

• By an ordering of the elements (lower line of the table):

1, 3, 2, 6, 4, 5

Representation of permutations

$$\pi(1) = 1$$
 $\pi(2) = 3$ $\pi(3) = 2$
 $\pi(4) = 6$ $\pi(5) = 4$ $\pi(6) = 5$

By its graph:

• By a list of cycles of the permutation:

(1)(23)(465)

• By a reduced list of cycles (excluding cycles of length 1):

(23)(465)

Permutation ρ on a set X is the composition of permutations π and σ if $\rho(x) = \pi(\sigma(x))$ for every $x \in X$. We write

 $\rho=\pi\circ\sigma.$

Remark: sometimes the opposite notation ($\sigma \circ \pi$) is used.

X	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	1	2	3	4	5	6
$\pi(\mathbf{X})$	1	3	2	6	4	5
$\frac{\pi(\mathbf{x})}{\mathbf{x}}$	1	3 2	2 3	6 4	4 5	5 6

 $\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$

Not commutative:

 $\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$

x	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
$\pi(\mathbf{x})$	3	1 2	6 3	2 4	5	4 6

 $\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$

Not commutative:

 $\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$

x	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
X	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

 $\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$

Not commutative:

 $\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$

x	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

X	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

x	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

x	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

X	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

x	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
X	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

x	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

X	1	2	3	4	5	6
$\sigma(\mathbf{x})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
X	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

X	1	2	3	4	5	6
$\sigma(\mathbf{x})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
X	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)(5)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

X	1	2	3	4	5	6
$\sigma(\mathbf{x})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
X	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

x	1	2	3	4	5	6
$\sigma(\mathbf{X})$	2	1	4	3	6	5
X	2	1	4	3	6	5
$\pi(\mathbf{X})$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(\mathbf{X})$	3	1	6	2	5	4

$$\pi \circ \sigma = (23)(465) \circ (12)(34)(56) = (13642)$$

$$\sigma \circ \pi = (12)(34)(56) \circ (23)(465) = (12453)$$

Associative:

$$\{\sigma \circ \pi\} \circ \rho = \sigma \circ \{\pi \circ \rho\}$$

$$\sigma(\pi(\rho(\mathbf{x}))) = \{\sigma \circ \pi\}(\rho(\mathbf{x})) = [\{\sigma \circ \pi\} \circ \rho](\mathbf{x})$$
$$= \sigma(\{\pi \circ \rho\}(\mathbf{x})) = [\sigma \circ \{\pi \circ \rho\}](\mathbf{x})$$

• Identity permutation:

$$id(x) = x$$
 for all x
 $id \circ \pi = \pi \circ id = \pi$

Application: Puzzles

Initial state:

Requested final state:

Application: Puzzles

Permutation representing the state: $n \mapsto$ number at position n.

Rotation of the middle piece: $\pi \mapsto \pi \circ (1,4)(2,3)$ Shifting the numbers: $\pi \mapsto \pi \circ (1,2,3,4,\ldots,18,19)$

Lemma

A position is solvable if and only if its permutation can be expressed as a composition $\sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_m$, where each of σ_1 , \ldots , σ_m is either (1,4)(2,3) or (1,2,3,4,...,18,19).

For a permutation $\pi : X \to X$, we call π^{-1} the inverse permutation.

$$\pi^{-1}(y) = x$$
 if and only if $\pi(x) = y$

$$\pi^{-1} \circ \pi = \pi \circ \pi^{-1} = \operatorname{id}_{(\pi \circ \sigma)^{-1}} = \sigma^{-1} \circ \pi^{-1}$$

$$\pi^{-1} = [(23)(465)]^{-1} = (32)(564) = (23)(456)$$

$$\pi^{-1} = [(23)(465)]^{-1} = (32)(564) = (23)(456)$$

 $\pi^{-1} = [(23)(465)]^{-1} = (32)(564) = (23)(456)$

 $\pi^{-1} = [(23)(465)]^{-1} = (32)(564) = (23)(456)$

$$\pi^{-1} = [(23)(465)]^{-1} = (32)(564) = (23)(456)$$

$$\pi^{-1} = [(23)(465)]^{-1} = (32)(564) = (23)(456)$$

$$\pi^{-1} = [(23)(465)]^{-1} = (32)(564) = (23)(456)$$

Permutation matrices

Definition

For a permutation $\pi : \{1, ..., n\} \rightarrow \{1, ..., n\}$, the permutation matrix P_{π} is the $n \times n$ matrix satisfying

$$P_{\pi}\begin{pmatrix}x_{1}\\x_{2}\\\ldots\\x_{n}\end{pmatrix}=\begin{pmatrix}x_{\pi(1)}\\x_{\pi(2)}\\\ldots\\x_{\pi(n)}\end{pmatrix}$$
 i.e. $P_{\pi}e_{k}=e_{\pi^{-1}(k)}$.

• $P_{\pi} = (e_{\pi(1)}|e_{\pi(2)}|\dots|e_{\pi(n)})^T = (e_{\pi^{-1}(1)}|e_{\pi^{-1}(2)}|\dots|e_{\pi^{-1}(n)})$

Product and composition (note the reversed order!)

$$P_{\pi\circ\sigma} = P_{\sigma}P_{\pi}$$

•
$$P_{\pi^{-1}} = P_{\pi}^{-1} = P_{\pi}^{T}$$

Sign of a permutation

Definition

For a permutation $\pi: X \to X$,

$$\operatorname{sgn}(\pi) = (-1)^{|X| - \operatorname{number of cycles of } \pi}$$

The permutation π is even if $sgn(\pi) = 1$ and odd if $sgn(\pi) = -1$.

Example:

 $sgn((23)(465)) = sgn((1)(23)(465)) = (-1)^{6-3} = -1$

Transposition

Definition

For distinct $a, b \in X$, let $\tau_{a,b} : X \to X$ be defined by

$$\tau_{a,b}(x) = \begin{cases} a & \text{if } x = b \\ b & \text{if } x = a \\ x & \text{otherwise} \end{cases}$$

We call such a permutation a transposition.

$$au_{a,b} = (ab)$$

has one cycle of length 2 and |X| - 2 cycles of length 1, and thus

$$\operatorname{sgn}(\tau_{a,b}) = (-1)^{|X| - (|X| - 1)} = -1.$$

Expressing permutations by transpositions

Lemma

Every permutation can be expressed as a composition of transpositions.

Proof.

Every permutation is the composition of its cycles. For a cycle, we have

$$(a_1a_2\ldots a_n) = (a_1a_n) \circ (a_1a_{n-1}) \circ \ldots \circ (a_1a_3) \circ (a_1a_2)$$
$$= \tau_{a_1,a_n} \circ \ldots \circ \tau_{a_1,a_3} \circ \tau_{a_1a_2}$$

Sign and transpositions

Lemma

For any permutation π and transposition $\tau_{a,b}$, the permutations π and $\pi \circ \tau_{a,b}$ have opposite signs.

Proof.

$$(ac_1c_2\ldots c_nbd_1\ldots d_m)\circ (ab)=(ad_1\ldots d_m)(bc_1c_2\ldots c_n)$$

$$(ac_1c_2\ldots c_n)(bd_1\ldots d_m)\circ (ab)=(ad_1\ldots d_mbc_1c_2\ldots c_n)$$

Hence, the number of cycles of π and $\pi \circ \tau_{a,b}$ differs by 1.

Corollary

A permutation π is even if and only if it can be expressed as a product of even number of transpositions.

Sign and operations with permutations

- sgn(id) = 1
- $\operatorname{sgn}(\pi^{-1}) = \operatorname{sgn}(\pi)$

•
$$\operatorname{sgn}(\pi \circ \sigma) = \operatorname{sgn}(\pi)\operatorname{sgn}(\sigma)$$

Application: Puzzle solvability

$$\pi_0 = id$$
 $\pi_1 = (5, 6)$

Rotation of the middle piece: $\pi \mapsto \pi \circ (1, 4)(2, 3)$ Shifting the numbers: $\pi \mapsto \pi \circ (1, 2, 3, 4, ..., 18, 19)$

sgn((1,4)(2,3)) = 1 sgn((1,2,3,4,...,18,19)) = 1

But $sgn(\pi_0) \neq sgn(\pi_1) \Rightarrow$ no solution.

Let f, g be symmetries of S.

 Composition of symmetries is a symmetry: (f ∘ g)(S) = f(g(S)) = f(S) = S.

• $rot_{90} \circ rot_{90} = rot_{180}, rot_{90} \circ ref_x = ref_o, \ldots$

• The inverse of a symmetry is a symmetry: $f^{-1}(S) = S$.

•
$$rot_{90}^{-1} = rot_{270}, ref_x^{-1} = ref_x, \dots$$

- What other things can we say about symmetries?
- What sets of isometries may be symmetries of a set in R²?
- What other mathematical objects behave in a similar way?

Definition of a monoid

Definition

A monoid is a pair (X, \circ) , where

• X is a set and $\circ: X \times X \to X$ is a total function,

satisfying the following axioms:

associativity

 $(a \circ b) \circ c = a \circ (b \circ c)$ for all $a, b, c \in X$. neutral element There exists $e \in X$ s.t. $a \circ e = e \circ a = a$ for every $a \in X$.

Lemma

There exists only one neutral element.

Proof.

If $e_1 \circ a = a$ and $a \circ e_2 = a$ for all $a \in X$, then

 $e_1 = e_1 \circ e_2 = e_2.$

Definition of a group

Definition

A group is a monoid (X, \circ) such that

inverse for every $a \in X$ there exists $b \in X$ such that $a \circ b = b \circ a = e$.

The group is abelian if additionally

commutativity $a \circ b = b \circ a$ for all $a, b \in X$.

Lemma

For every $a \in X$, there exists only one inverse element.

Proof.

If
$$b_1 \circ a = e$$
 and $a \circ b_2 = e$, then
 $b_1 = b_1 \circ e = b_1 \circ (a \circ b_2) = (b_1 \circ a) \circ b_2 = e \circ b_2 = b_2.$

Examples

Groups:

- Z with addition (inverse=negation, neutral element 0)
- **Q** with addition (inverse=negation, neutral element 0)
- R with addition (inverse=negation, neutral element 0)
- R \ {0} with multiplication (inverse to a is 1/a, neutral element 1)
- permutations on {1,..., n} with composition (inverse, id): non-abelian
- even permutations on {1,..., n} with composition (inverse, id): non-abelian
- regular $n \times n$ matrices with multiplication (matrix inverse, *I*): non-abelian
- symmetries of a set in R² with composition (function inverse, id): non-abelian

The following objects are not groups:

- Set $\{-1, 0, 1\}$ with addition.
 - 1 + 1 is not in the set.
- Z with subtraction
 - not associative: $(1 1) 1 \neq 1 (1 1)$
- positive integers with addition
 - no neutral element
- *n* × *n* matrices with multiplication
 - not all have inverse

- The binary operation: \circ , + (for abelian groups).
- The neutral element: *e*, 0 (for abelian groups), 1 (for non-abelian groups).
- The inverse element to a: a^{-1} , -a (for abelian groups).

- $a \circ x = b$ has exactly one solution $x = a^{-1} \circ b$
- $x \circ a = b$ has exactly one solution $x = b \circ a^{-1}$
- $(a^{-1})^{-1} = a$ • $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$

Definition

Let (X, \circ) be a group and let Y be a subset of X. If (Y, \circ) is a group, we say it is a subgroup of (X, \circ) .

Examples:

- $(\mathbf{Z}, +)$ is a subgroup of $(\mathbf{R}, +)$.
- even permutations form a subgroup of all permutations (with composition).
- odd permutations do not form a subgroup of all permutations (with composition).
 - composition of two odd permutations is even

Needed:

• $a \circ b \in Y$ for all $a, b \in Y$, and

•
$$a^{-1} \in Y$$
 for all $a \in Y$.

Two groups are **isomorphic** if they differ only by "renaming" their elements.

Definition

Let (X, \circ) and (Y, \bullet) be groups. A bijection $f : X \to Y$ is an isomorphism if $f(a \circ b) = f(a) \bullet f(b)$

for all $a, b \in X$.

Example

Let $\mathcal{G}_1 = (\{id, rot_{90}, rot_{180}, rot_{270}, ref_x, ref_y, ref_d, ref_o\}, \circ)$ be the group of symmetries of the square.

Let

 $\mathcal{G}_2=(\{id,(1234),(13)(24),(1432),(14)(23),(12)(34),(13),(24)\},\circ)$ be a group of permutations.

Then the following function f is an isomorphism.

X	id	rot ₉₀	rot ₁₈₀	rot ₂₇₀
f(x)	id	(1234)	(13)(24)	(1432)
X	ref _x	ref _y	ref _d	ref _o
f(x)	(14)(23)	(12)(34)	(13)	(24)

Let (X, \circ) and (Y, \bullet) be groups with neutral elements e_X and e_Y .

• If $f : X \to Y$ is an isomorphism, then $f^{-1} : Y \to X$ is an isomorphism.

$$f^{-1}[c \bullet d] = f^{-1} \left[f(f^{-1}(c)) \bullet f(f^{-1}(d)) \right]$$

= $f^{-1} \left[f \left(f^{-1}(c) \circ f^{-1}(d) \right) \right]$
= $f^{-1}(c) \circ f^{-1}(d)$

- id : $X \to X$ is an isomorphism of (X, \circ) with itself.
- If $f: X \to Y$ is an isomorphism, then

•
$$f(e_X) = e_Y$$

• $f(e^{-1}) - (f(e^{-1}))^{-1}$ for every

$$f(a^{-1}) = (f(a))^{-1}$$
 for every $a \in X$.