Definition

A function $f: X \rightarrow Y$ is bijective if f maps exactly one element of X to every element of Y. That is, for every $y \in Y$ there exists exactly one $x \in X$ such that $f(x)=y$.

Examples:

- $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=2 x$ is bijective, since only $y / 2$ is mapped to y.
- $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=2^{x}$ is not bijective, since nothing maps to -1 .
- $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x^{3}-x$ is not bijective, since $f(-1)=f(0)=f(1)=0$.

Definition

Let $f: X \rightarrow Y$ be a bijective function. The inverse function $f^{-1}: Y \rightarrow X$ is defined by $f^{-1}(y)=x$ if and only if $f(x)=y$.

- For every $x \in X$,

$$
f^{-1}(f(x))=x
$$

- For every $y \in Y$,

$$
f\left(f^{-1}(y)\right)=y
$$

Permutations

Definition

For a finite set X, a bijective function $\pi: X \rightarrow X$ is a permutation on X.

Example: A function defined by

$$
\begin{array}{lll}
\pi(1)=1 & \pi(2)=3 & \pi(3)=2 \\
\pi(4)=6 & \pi(5)=4 & \pi(6)=5
\end{array}
$$

is a permutation on $\{1,2,3,4,5,6\}$.

Representation of permutations

$$
\begin{array}{lll}
\pi(1)=1 & \pi(2)=3 & \pi(3)=2 \\
\pi(4)=6 & \pi(5)=4 & \pi(6)=5
\end{array}
$$

- By a table of values:

x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5

- By an ordering of the elements (lower line of the table):

$$
1,3,2,6,4,5
$$

Representation of permutations

$$
\begin{array}{lll}
\pi(1)=1 & \pi(2)=3 & \pi(3)=2 \\
\pi(4)=6 & \pi(5)=4 & \pi(6)=5
\end{array}
$$

- By its graph:

- By a list of cycles of the permutation:
$(1)(23)(465)$
- By a reduced list of cycles (excluding cycles of length 1):

Composition of permutations

Definition

Permutation ρ on a set X is the composition of permutations π and σ if $\rho(x)=\pi(\sigma(x))$ for every $x \in X$. We write

$$
\rho=\pi \circ \sigma
$$

Remark: sometimes the opposite notation $(\sigma \circ \pi)$ is used.

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)(5)$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$$
\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)(5)
$$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$$
\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)(5)
$$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$$
\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)(5)
$$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$$
\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(136
$$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$$
\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)(5)
$$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$$
\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)(5)
$$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$$
\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)(5)
$$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)$

Example

x	1	2	3	4	5	6
$\sigma(x)$	2	1	4	3	6	5
x	2	1	4	3	6	5
$\pi(x)$	3	1	6	2	5	4
x	1	2	3	4	5	6
$(\pi \circ \sigma)(x)$	3	1	6	2	5	4

$$
\pi \circ \sigma=(23)(465) \circ(12)(34)(56)=(13642)
$$

Not commutative:

$$
\sigma \circ \pi=(12)(34)(56) \circ(23)(465)=(12453)
$$

Properties

- Associative:

$$
\{\sigma \circ \pi\} \circ \rho=\sigma \circ\{\pi \circ \rho\}
$$

$$
\begin{aligned}
\sigma(\pi(\rho(x))) & =\{\sigma \circ \pi\}(\rho(x))=[\{\sigma \circ \pi\} \circ \rho](x) \\
& =\sigma(\{\pi \circ \rho\}(x))=[\sigma \circ\{\pi \circ \rho\}](x)
\end{aligned}
$$

- Identity permutation:

$$
\begin{aligned}
& \operatorname{id}(x)=x \quad \text { for all } x \\
& \operatorname{id} \circ \pi=\pi \circ \mathrm{id}=\pi
\end{aligned}
$$

Application: Puzzles

Initial state:

Requested final state:

Application: Puzzles

Permutation representing the state: $n \mapsto$ number at position n.

$\pi_{0}=\mathrm{id}$

$\pi_{1}=(5,6)$

Rotation of the middle piece: $\pi \mapsto \pi \circ(1,4)(2,3)$
Shifting the numbers: $\pi \mapsto \pi \circ(1,2,3,4, \ldots, 18,19)$

Lemma

A position is solvable if and only if its permutation can be expressed as a composition $\sigma_{1} \circ \sigma_{2} \circ \ldots \circ \sigma_{m}$, where each of σ_{1}, \ldots, σ_{m} is either $(1,4)(2,3)$ or $(1,2,3,4, \ldots, 18,19)$.

Inverse permutation

Definition

For a permutation $\pi: X \rightarrow X$, we call π^{-1} the inverse permutation.

$$
\pi^{-1}(y)=x \text { if and only if } \pi(x)=y
$$

$$
\begin{aligned}
\pi^{-1} \circ \pi & =\pi \circ \pi^{-1}=\mathrm{id} \\
(\pi \circ \sigma)^{-1} & =\sigma^{-1} \circ \pi^{-1}
\end{aligned}
$$

Example

x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5
x	1	3	2	6	4	5
$\pi^{-1}(x)$	1	2	3	4	5	6

Example

x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5
x	1	2	3	4	5	6
$\pi^{-1}(x)$	1	3	2	5	6	4

Example

x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5
x	1	2	3	4	5	6
$\pi^{-1}(x)$	1	3	2	5	6	4

Example

x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5
x	1	2	3	4	5	6
$\pi^{-1}(x)$	1	3	2	5	6	4

Example

x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5
x	1	2	3	4	5	6
$\pi^{-1}(x)$	1	3	2	5	6	4

$$
\pi^{-1}=[(23)(465)]^{-1}=(32)(564)=(23)(456)
$$

Example

x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5
x	1	2	3	4	5	6
$\pi^{-1}(x)$	1	3	2	5	6	4

$$
\pi^{-1}=[(23)(465)]^{-1}=(32)(564)
$$

Example

x	1	2	3	4	5	6
$\pi(x)$	1	3	2	6	4	5
x	1	2	3	4	5	6
$\pi^{-1}(x)$	1	3	2	5	6	4

$$
\pi^{-1}=[(23)(465)]^{-1}=(32)(564)=(23)(456)
$$

Permutation matrices

Definition

For a permutation $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, the permutation matrix P_{π} is the $n \times n$ matrix satisfying

$$
P_{\pi}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{\pi(1)} \\
x_{\pi(2)} \\
\cdots \\
x_{\pi(n)}
\end{array}\right)
$$

$$
\text { i.e. } P_{\pi} e_{k}=e_{\pi^{-1}(k)}
$$

- $P_{\pi}=\left(e_{\pi(1)}\left|e_{\pi(2)}\right| \ldots \mid e_{\pi(n)}\right)^{T}=\left(e_{\pi^{-1}(1)}\left|e_{\pi^{-1}(2)}\right| \ldots \mid e_{\pi^{-1}(n)}\right)$
- Product and composition (note the reversed order!)

$$
P_{\pi \circ \sigma}=P_{\sigma} P_{\pi}
$$

- $P_{\pi^{-1}}=P_{\pi}^{-1}=P_{\pi}^{T}$

Example

$$
\begin{aligned}
& \begin{array}{c|cccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \pi(x) & 1 & 3 & 2 & 6 & 4 & 5
\end{array} \\
& P_{\pi}=\left(e_{1}\left|e_{3}\right| e_{2}\left|e_{6}\right| e_{4} \mid e_{5}\right)^{T} \\
& \left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
2 \\
6 \\
4 \\
5
\end{array}\right)
\end{aligned}
$$

Sign of a permutation

Definition

For a permutation $\pi: X \rightarrow X$,

$$
\operatorname{sgn}(\pi)=(-1)^{|X|-\text { number of cycles of } \pi}
$$

The permutation π is even if $\operatorname{sgn}(\pi)=1$ and odd if $\operatorname{sgn}(\pi)=-1$.

Example:

$$
\begin{array}{c|cccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \pi(x) & 1 & 3 & 2 & 6 & 4 & 5
\end{array}
$$

$$
\operatorname{sgn}((23)(465))=\operatorname{sgn}((1)(23)(465))=(-1)^{6-3}=-1
$$

Transposition

Definition

For distinct $a, b \in X$, let $\tau_{a, b}: X \rightarrow X$ be defined by

$$
\tau_{\mathrm{a}, \mathrm{~b}}(x)=\left\{\begin{array}{ll}
\mathrm{a} & \text { if } x=b \\
\mathrm{~b} & \text { if } x=a \\
\mathrm{x} & \text { otherwise }
\end{array} .\right.
$$

We call such a permutation a transposition.

$$
\tau_{a, b}=(a b)
$$

has one cycle of length 2 and $|X|-2$ cycles of length 1 , and thus

$$
\operatorname{sgn}\left(\tau_{a, b}\right)=(-1)^{|X|-(|X|-1)}=-1
$$

Expressing permutations by transpositions

Lemma

Every permutation can be expressed as a composition of transpositions.

Proof.

Every permutation is the composition of its cycles. For a cycle, we have

$$
\begin{aligned}
\left(a_{1} a_{2} \ldots a_{n}\right) & =\left(a_{1} a_{n}\right) \circ\left(a_{1} a_{n-1}\right) \circ \ldots \circ\left(a_{1} a_{3}\right) \circ\left(a_{1} a_{2}\right) \\
& =\tau_{a_{1}, a_{n}} \circ \ldots \circ \tau_{a_{1}, a_{3}} \circ \tau_{a_{1} a_{2}}
\end{aligned}
$$

Sign and transpositions

Lemma

For any permutation π and transposition $\tau_{a, b}$, the permutations π and $\pi \circ \tau_{a, b}$ have opposite signs.

Proof.

$$
\begin{aligned}
& \left(a c_{1} c_{2} \ldots c_{n} b d_{1} \ldots d_{m}\right) \circ(a b)=\left(a d_{1} \ldots d_{m}\right)\left(b c_{1} c_{2} \ldots c_{n}\right) \\
& \left(a c_{1} c_{2} \ldots c_{n}\right)\left(b d_{1} \ldots d_{m}\right) \circ(a b)=\left(a d_{1} \ldots d_{m} b c_{1} c_{2} \ldots c_{n}\right)
\end{aligned}
$$

Hence, the number of cycles of π and $\pi \circ \tau_{a, b}$ differs by 1 .

Corollary

A permutation π is even if and only if it can be expressed as a product of even number of transpositions.

Sign and operations with permutations

- $\operatorname{sgn}(i d)=1$
- $\operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\pi)$
- $\operatorname{sgn}(\pi \circ \sigma)=\operatorname{sgn}(\pi) \operatorname{sgn}(\sigma)$

Application: Puzzle solvability

$$
\pi_{0}=\mathrm{id}
$$

$$
\pi_{1}=(5,6)
$$

Rotation of the middle piece: $\pi \mapsto \pi \circ(1,4)(2,3)$ Shifting the numbers: $\pi \mapsto \pi \circ(1,2,3,4, \ldots, 18,19)$

$$
\operatorname{sgn}((1,4)(2,3))=1 \quad \operatorname{sgn}((1,2,3,4, \ldots, 18,19))=1
$$

But $\operatorname{sgn}\left(\pi_{0}\right) \neq \operatorname{sgn}\left(\pi_{1}\right) \Rightarrow$ no solution.

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

identity

$$
\mathrm{id}(x, y)=(x, y)
$$

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

rotation by 90°

$$
\operatorname{rot}_{90}(x, y)=(y,-x)
$$

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

rotation by 180°

$$
\operatorname{rot}_{180}(x, y)=(-x,-y)
$$

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

rotation by 270°

$$
\operatorname{rot}_{270}(x, y)=(-y, x)
$$

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

reflection by x axis

$$
\operatorname{ref}_{x}(x, y)=(x,-y)
$$

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

reflection by y axis

$$
\operatorname{ref}_{y}(x, y)=(-x, y)
$$

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

reflection by a diagonal

$$
\operatorname{ref}_{d}(x, y)=(y, x)
$$

Symmetries

Consider the plane \mathbf{R}^{2}. An isometry is a function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ that preserves distances (rotations, translations, reflections, and their combinations). A symmetry of a set S is an isometry f such that $f(S)=S$.

reflection by the other diagonal

$$
\operatorname{ref}_{o}(x, y)=(-y,-x)
$$

Properties of symmetries

Let f, g be symmetries of S.

- Composition of symmetries is a symmetry: $(f \circ g)(S)=f(g(S))=f(S)=S$.
- rot $_{90} \circ$ rot $_{90}=$ rot $_{180}$, rot $_{90} \circ \mathrm{ref}_{x}=\mathrm{ref}_{o}, \ldots$
- The inverse of a symmetry is a symmetry: $f^{-1}(S)=S$.
- $\mathrm{rot}_{90}^{-1}=\mathrm{rot}_{277}, \mathrm{ref}_{x}^{-1}=\mathrm{ref}_{x}, \ldots$

Motivation for group theory

- What other things can we say about symmetries?
- What sets of isometries may be symmetries of a set in \mathbf{R}^{2} ?
- What other mathematical objects behave in a similar way?

Definition of a monoid

Definition

A monoid is a pair (X, \circ), where

- X is a set and $\circ: X \times X \rightarrow X$ is a total function, satisfying the following axioms:
associativity neutral element
$(a \circ b) \circ c=a \circ(b \circ c)$ for all $a, b, c \in X$.
There exists $e \in X$ s.t. $a \circ e=e \circ a=a$ for every $a \in X$.

Lemma

There exists only one neutral element.

Proof.

If $e_{1} \circ a=a$ and $a \circ e_{2}=a$ for all $a \in X$, then $e_{1}=e_{1} \circ e_{2}=e_{2}$.

Definition of a group

Definition

A group is a monoid (X, \circ) such that
inverse for every $a \in X$ there exists $b \in X$ such that $a \circ b=b \circ a=e$.

The group is abelian if additionally
commutativity $a \circ b=b \circ a$ for all $a, b \in X$.

Lemma

For every $a \in X$, there exists only one inverse element.

Proof.

If $b_{1} \circ a=e$ and $a \circ b_{2}=e$, then
$b_{1}=b_{1} \circ e=b_{1} \circ\left(a \circ b_{2}\right)=\left(b_{1} \circ a\right) \circ b_{2}=e \circ b_{2}=b_{2}$.

Examples

Groups:

- Z with addition (inverse $=$ negation, neutral element 0)
- Q with addition (inverse $=$ negation, neutral element 0)
- \mathbf{R} with addition (inverse \equiv negation, neutral element 0)
- $\mathbf{R} \backslash\{0\}$ with multiplication (inverse to a is $1 / a$, neutral element 1)
- permutations on $\{1, \ldots, n\}$ with composition (inverse, id): non-abelian
- even permutations on $\{1, \ldots, n\}$ with composition (inverse, id): non-abelian
- regular $n \times n$ matrices with multiplication (matrix inverse, l): non-abelian
- symmetries of a set in \mathbf{R}^{2} with composition (function inverse, id): non-abelian

Examples

The following objects are not groups:

- Set $\{-1,0,1\}$ with addition.
- $1+1$ is not in the set.
- \mathbf{Z} with subtraction
- not associative: $(1-1)-1 \neq 1-(1-1)$
- positive integers with addition
- no neutral element
- $n \times n$ matrices with multiplication
- not all have inverse

Notation

- The binary operation: $\circ,+$ (for abelian groups).
- The neutral element: $e, 0$ (for abelian groups), 1 (for non-abelian groups).
- The inverse element to $a: a^{-1},-a$ (for abelian groups).

Basic properties of groups

- $a \circ x=b$ has exactly one solution $x=a^{-1} \circ b$
- $x \circ a=b$ has exactly one solution $x=b \circ a^{-1}$
- $\left(a^{-1}\right)^{-1}=a$
- $(a \circ b)^{-1}=b^{-1} \circ a^{-1}$

Subgroups

Definition

Let (X, \circ) be a group and let Y be a subset of X. If (Y, \circ) is a group, we say it is a subgroup of (X, \circ).

Examples:

- $(\mathbf{Z},+)$ is a subgroup of $(\mathbf{R},+)$.
- even permutations form a subgroup of all permutations (with composition).
- odd permutations do not form a subgroup of all permutations (with composition).
- composition of two odd permutations is even

Needed:

- $a \circ b \in Y$ for all $a, b \in Y$, and
- $a^{-1} \in Y$ for all $a \in Y$.

Group isomorphism

Two groups are isomorphic if they differ only by "renaming" their elements.

Definition

Let (X, \circ) and (Y, \bullet) be groups. A bijection $f: X \rightarrow Y$ is an isomorphism if

$$
f(a \circ b)=f(a) \bullet f(b)
$$

for all $a, b \in X$.

Example

Let $\mathcal{G}_{1}=\left(\left\{\right.\right.$ id 2 rot $_{90}$, rot $_{180}$, rot $_{270}$, ref $_{x}$, ref $_{y}, \operatorname{ref}_{d}$, ref $\left.\left._{o}\right\}, \circ\right)$ be the group of symmetries of the square.
Let
$\mathcal{G}_{2}=(\{$ id $,(1234),(13)(24),(1432),(14)(23),(12)(34),(13),(24)\}, \circ)$ be a group of permutations.

Then the following function f is an isomorphism.

x	id	rot $_{90}$	rot $_{180}$	rot $_{270}$
$f(x)$	id	(1234)	$(13)(24)$	(1432)
x	ref $_{x}$	ref $_{y}$	ref $_{d}$	ref $_{o}$
$f(x)$	$(14)(23)$	$(12)(34)$	(13)	(24)

Isomorphism properties

Let (X, \circ) and (Y, \bullet) be groups with neutral elements e_{X} and e_{Y}.

- If $f: X \rightarrow Y$ is an isomorphism, then $f^{-1}: Y \rightarrow X$ is an isomorphism.

$$
\begin{aligned}
f^{-1}[c \bullet d] & =f^{-1}\left[f\left(f^{-1}(c)\right) \bullet f\left(f^{-1}(d)\right]\right) \\
& =f^{-1}\left[f\left(f^{-1}(c) \circ f^{-1}(d)\right)\right] \\
& =f^{-1}(c) \circ f^{-1}(d)
\end{aligned}
$$

- id : $X \rightarrow X$ is an isomorphism of (X, \circ) with itself.
- If $f: X \rightarrow Y$ is an isomorphism, then
- $f\left(e_{X}\right)=e_{Y}$
- $f\left(a^{-1}\right)=(f(a))^{-1}$ for every $a \in X$.

