
Elementary operation matrices: row addition

For t 6= a, let A(n,t ,a) be the n × n matrix such that

A(n,t ,a)
r ,c =

{
1 if r = c, or if r = t and c = a
0 otherwise

A(n,t ,a) = I + eteT
a

Example:

A(5,2,4) =


1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





Elementary operation matrices: row addition

For t 6= a, let A(n,t ,a) be the n × n matrix such that

A(n,t ,a)
r ,c =

{
1 if r = c, or if r = t and c = a
0 otherwise

A(n,t ,a) = I + eteT
a

Lemma

If B is an n ×m matrix, then A(n,t ,a)B is obtained from B by the
adding a-th row to the t-th row.



Elementary operation matrices: multiplying a row

For real number α 6= 0, let M(n,k ,α) be the n× n matrix such that

M(n,k ,α)
r ,c =


1 if r = c 6= k
α if r = c = k
0 otherwise

M(n,k ,α) = I + (α− 1)ekeT
k

Example:

M(5,2,4) =


1 0 0 0 0
0 4 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





Elementary operation matrices: multiplying a row

For real number α 6= 0, let M(n,k ,α) be the n× n matrix such that

M(n,k ,α)
r ,c =


1 if r = c 6= k
α if r = c = k
0 otherwise

M(n,k ,α) = I + (α− 1)ekeT
k

Lemma

If B is an n ×m matrix, then M(n,k ,α)B is obtained from B by
multiplying the k-th row by α.



Elementary operation matrices: exchanging rows

For r1 6= r2, let T (n,r1,r2) be the n × n matrix such that

T (n,r1,r2)
r ,c =


1 if r = c 6∈ {r1, r2}
1 if r = r1 and c = r2

1 if r = r2 and c = r1

0 otherwise

Example:

T (5,2,4) =


1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1





Elementary operation matrices: exchanging rows

For r1 6= r2, let T (n,r1,r2) be the n × n matrix such that

T (n,r1,r2)
r ,c =


1 if r = c 6∈ {r1, r2}
1 if r = r1 and c = r2

1 if r = r2 and c = r1

0 otherwise

Lemma

If B is an n ×m matrix, then T (n,r1,r2)B is obtained from B by
exchanging the r1-th and the r2-th row.



Elementary operation matrices

Definition

A(n,t ,a), M(n,k ,α) and T (n,r1,r2) are elementary operation matrices.

Lemma

A ∼ B

if and only if
B = E1E2 · · ·EmA

for some elementary operation matrices E1, . . . , Em.



Example

 1 2 3
1 1 1
0 1 0

 ∼
 1 2 3

0 −1 −2
0 1 0

 ∼
 1 2 3

0 1 0
0 −1 −2

 ∼
 1 2 3

0 1 0
0 0 −2

 ∼
 1 2 3

0 1 0
0 0 1


subtract 1st row from 2nd, exchange 2nd and 3rd row, add 2nd
row to 3rd, multiply 3rd row by −1/2

 1 2 3
0 1 0
0 0 1

 = M(3,3,−1/2)A(3,3,2)T (3,2,3)S(3,2,1)

 1 2 3
1 1 1
0 1 0

 ,

where
S(3,2,1) = M(3,1,−1)A(3,2,1)M(3,1,−1)



Invertibility of elementary row operations

If we exchange rows r1 and r2, and then exchange them
again, we obtain the original matrix.

T (n,r1,r2)T (n,r1,r2) = I(n)

If we multiply r -th row by α, and then by 1/α, we obtain the
original matrix.

M(n,r ,1/α)M(n,r ,α) = I(n)

If we add the a-th row to the t-th, and then subtract the a-th
row from the t-th, we obtain the original matrix.
Equivalently,

multiply the a-th row by −1,
add a-th row to the t-th one, and
multiply the a-th row by −1.[

M(n,a,−1)A(n,t ,a)M(n,a,−1)
]

A(n,t ,a) = I(n)



Invertibility of row equivalence

Corollary

A ∼ B

if and only if
A = E1E2 · · ·EmB

for some elementary operation matrices E1, . . . , Em.



Inverse to elementary row operations

Definition

For an elementary operation matrix E , let

E−1 =


M(n,a,−1)A(n,t ,a)M(n,a,−1) if E = A(n,t ,a)

M(n,r ,1/α) if E = M(n,r ,α)

T (n,r1,r2) if E = T (n,r1,r2)

So that
E−1E = I = EE−1

Lemma

For an elementary operation matrix E,

Ex = b if and only if x = E−1b.



Matrix division?

For real numbers:
β
α is the solution to αx = β.
Except if α = 0: no or infinitely many solutions.

For matrices:
Solution to AX = B or XA = B?
“Non-zero” elements: matrices A for that there always
exists exactly one solution?



Example

(
1 2
3 4

)
X =

(
8 5

20 13

)
Equivalent to two systems of linear equations with the same
left-hand sides:(

1 2
3 4

)(
X1,1
X2,1

)
=

(
8
20

) (
1 2
3 4

)(
X1,2
X2,2

)
=

(
5

13

)
They can be solved at the same time:

RREF
(

1 2 8 5
3 4 20 13

)
=

(
1 0 4 3
0 1 2 1

)
⇒ X =

(
4 3
2 1

)



Consequences for matrix division

Let A be n ×m matrix. The following are equivalent:
AX = B has unique solution for every n × p matrix B.
Ax = b has unique solution for every vector b

When is this the case?
A must be square; otherwise there are either

“too many” equations: no solution, or
“too few” equations: infinitely many solutions.

Not sufficient.



Equivalent characterizations of regularity

The following claims are equivalent for any n × n matrix A.

1 For every b, Ax = b has exactly one solution.
2 Ax = 0 has only one solution (x = 0).
3 RREF(A) = I
4 rank(A) = n
5 A ∼ I
6 A is a product of elementary operation matrices.
7 For every b, Ax = b has a solution.



Proofs

1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 6 ⇒ 1

1 ⇒ 7 ⇒ 3 , 3 ⇔ 4

1 For every b, Ax = b has exactly one solution.
2 Ax = 0 has only one solution (x = 0).

Trivial.



Proofs

1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 6 ⇒ 1

1 ⇒ 7 ⇒ 3 , 3 ⇔ 4

2 Ax = 0 has only one solution (x = 0).
3 RREF(A) = I

If RREF(A) 6= I, then not all columns of A are basis, and

(A|0) ∼ (RREF(A)|0)

has infinitely many solutions.



Proofs

1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 6 ⇒ 1

1 ⇒ 7 ⇒ 3 , 3 ⇔ 4

3 RREF(A) = I
5 A ∼ I

Trivial, since A ∼ RREF(A).



Proofs

1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 6 ⇒ 1

1 ⇒ 7 ⇒ 3 , 3 ⇔ 4

5 A ∼ I
6 A is a product of elementary operation matrices.

As we observed before, A ∼ I if and only if

A = E1E2 · · ·EmI = E1E2 · · ·Em

for some elementary operation matrices E1, . . . , Em.



Proofs

1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 6 ⇒ 1

1 ⇒ 7 ⇒ 3 , 3 ⇔ 4

6 A is a product of elementary operation matrices.
1 For every b, Ax = b has exactly one solution.

Let A = E1 · · ·Em for elementary operation matrices E1, . . . , Em.

E1E2E3 · · ·Emx = b if and only if

E2E3 · · ·Emx = E−1
1 b if and only if

E3 · · ·Emx = E−1
2 E−1

1 b if and only if
. . .

x = E−1
m · · ·E−1

3 E−1
2 E−1

1 b



Proofs

1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 6 ⇒ 1

1 ⇒ 7 ⇒ 3 , 3 ⇔ 4

1 For every b, Ax = b has exactly one solution.
7 For every b, Ax = b has a solution.

Trivial.



Proofs

1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 6 ⇒ 1

1 ⇒ 7 ⇒ 3 , 3 ⇔ 4

7 For every b, Ax = b has a solution.
3 RREF(A) = I

If RREF(A) 6= I, the last row of RREF(A) is 0, and

RREF(A)x = en

has no solution. We have A = E1 · · ·EmRREF(A) for some ele-
mentary operation matrices E1, . . . , Em. Consequently,

(RREF(A)|en) ∼ (A|E1 · · ·Emen),

and thus Ax = E1 · · ·Emen has no solution.



Proofs

1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 6 ⇒ 1

1 ⇒ 7 ⇒ 3 , 3 ⇔ 4

3 RREF(A) = I
4 rank(A) = n

Trivial from the definition of rank.



Regular matrices

Definition

A square matrix A is regular if it satisfies any of the described
equivalent conditions.



Further remarks on regular matrices

Lemma

A ∼ B iff there exists a regular matrix Q such that A = QB.

Lemma

Let A and B be n × n matrices. Then AB is regular if and only if
both A and B are regular.

Proof.

⇐ If A,B are products of elementary operation matrices, then
so is AB.

⇒ If B is not regular, then there exists x 6= 0 such that
Bx = 0, and thus ABx = 0; hence AB is not regular.
If B is regular and A is not regular, then there exists y 6= 0
such that Ay = 0, and x such that Bx = y (clearly, x 6= 0).
Hence, again, ABx = 0 implying that AB is not regular.



Matrix inverse

Definition

Let A be a square matrix.
If AC = I, then C is a right inverse to A.
If DA = I, then D is a left inverse to A.

Lemma

If A has both a left inverse D and a right inverse C, then C = D.
Hence, if both left and right inverses exist, they are unique.

Proof.

D = DI = D(AC) = (DA)C = IC = C



Inverse and regularity

Lemma

If a square matrix A has a left or right inverse, then A is regular.

Proof.

I is regular, so if XY = I, then X and Y are regular.



Existence of an inverse

Lemma

If A is regular, then it has both a left and a right inverse.

Proof.

Since A is regular, A = E1 · · ·Em for some elementary operation
matrices E1, . . . , Em. Then,

E−1
m · · ·E−1

1 A = I = AE−1
m · · ·E−1

1 .



Existence of an inverse, another way

Lemma

If A is regular, then it has both a left and a right inverse.

Proof.

If A is regular, then there exist column matrices c1, . . . , cn such
that Ac1 = e1, Ac2 = e2, . . . , Acn = en. Hence, AC = I, where
C = (c1|c2| . . . |cn).
Note that

A(I − CA) = A− (AC)A = A− A = O.

Since A is regular, AX = O if and only if X = O. Hence,
I − CA = O and CA = I.



Matrix inverse: summary

The following claims are equivalent for a square matrix A:
1 A is regular
2 A has a left inverse
3 A has a right inverse
4 A has a unique left inverse and a unique right inverse, and

they are equal.

Definition

For a regular square matrix A, the inverse A−1 is the matrix
satisfying

AA−1 = A−1A = I.



Inverse, regularity and matrix multiplication

For regular n × n matrices A and B:

A−1 is regular, and A is its inverse.
(AB)−1 = B−1A−1

Since
(AB)

[
B−1A−1

]
= A

[
BB−1

]
A−1 = AIA−1 = AA−1 = I.

Let C and D be n ×m matrices. Then

AC = AD if and only if C = D.

AC = AD implies A−1AC = A−1AD

For m × n matrices C′ and D′,

C′A = D′A if and only if C′ = D′.

AX = C has unique solution X = A−1C
XA = C′ has unique solution X = C′A−1



Computing an inverse matrix

Lemma

For a regular matrix A,

RREF(A|I) = (I|A−1).

Proof.

Solution to n systems of linear equations Ac1 = e1, . . . ,
Acn = en.



Example

 1 2 3 1 0 0
1 1 1 0 1 0
0 1 0 0 0 1

 ∼
 1 2 3 1 0 0

0 −1 −2 −1 1 0
0 1 0 0 0 1

 ∼
 1 2 3 1 0 0

0 1 0 0 0 1
0 −1 −2 −1 1 0

 ∼
 1 2 3 1 0 0

0 1 0 0 0 1
0 0 −2 −1 1 1

 ∼
 1 2 3 1 0 0

0 1 0 0 0 1
0 0 1 1

2 −1
2 −1

2

 ∼
 1 2 0 −1

2
3
2

3
2

0 1 0 0 0 1
0 0 1 1

2 −1
2 −1

2

 ∼
 1 0 0 −1

2
3
2 −1

2
0 1 0 0 0 1
0 0 1 1

2 −1
2 −1

2





Example

 1 2 3 1 0 0
1 1 1 0 1 0
0 1 0 0 0 1

 ∼
 1 0 0 −1

2
3
2 −1

2
0 1 0 0 0 1
0 0 1 1

2 −1
2 −1

2


Hence,  1 2 3

1 1 1
0 1 0

−1

=

 −1
2

3
2 −1

2
0 0 1
1
2 −1

2 −1
2




