Spectral radius, symmetric and positive matrices

Zdeněk Dvořák

April 28, 2016

1 Spectral radius

Definition 1. The spectral radius of a square matrix A is

$$
\rho(A)=\max \{|\lambda|: \lambda \text { is an eigenvalue of } A\} .
$$

For an $n \times n$ matrix A, let $\|A\|=\max \left\{\left|A_{i j}\right|: 1 \leq i, j \leq n\right\}$.
Lemma 1. If $\rho(A)<1$, then

$$
\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0
$$

If $\rho(A)>1$, then

$$
\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=\infty .
$$

Proof. Recall that $A=C J C^{-1}$ for a matrix J in Jordan normal form and regular C, and that $A^{n}=C J^{n} C^{-1}$. If $\rho(A)=\rho(J)<1$, then J^{n} converges to the 0 matrix, and thus A^{n} converges to the zero matrix as well. If $\rho(A)>1$, then J^{n} has a diagonal entry $\left(J^{n}\right)_{i i}=\lambda^{n}$ for an eigenvalue λ such that $|\lambda|>1$, and if v is the i-th column of C and v^{\prime} the i-th row of C^{-1}, then $v^{\prime} A^{n} v=v^{\prime} C J^{n} C^{-1} v=e_{i}^{T} J^{n} e_{i}=\lambda^{n}$. Therefore, $\lim _{n \rightarrow \infty}\left|v^{\prime} A^{n} v\right|=\infty$, and thus $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=\infty$.

2 Matrices with real eigenvalues

Lemma 2 (Schur). If all eigenvalues of a real $n \times n$ matrix A are real, then $A=Q U Q^{T}$ for some upper-triangular matrix U and an orthogonal matrix Q.

Proof. We prove the claim by induction on n. Let λ be an eigenvalue of A and let $B^{\prime}=v_{1}, \ldots, v_{k}$ be an orthonormal basis of the space $\operatorname{Ker}(A-$ $\lambda I)$ of the eigenvectors of A for λ. Let us extend B^{\prime} to an orthonormal basis $B=v_{1}, \ldots, v_{n}$ of \mathbf{R}^{n}, and let $C=\left(v_{1}\left|v_{2}\right| \ldots \mid v_{n}\right)$. Note that C is orthogonal and $C^{T} A C=\left(\begin{array}{cc}\lambda I_{k} & X \\ 0 & A^{\prime}\end{array}\right)$ for some matrices X and A^{\prime}. The characteristic polynomial of A is $\operatorname{det}(A-I x)=(\lambda-x)^{k} \operatorname{det}\left(A^{\prime}-I x\right)$, and thus all eigenvalues of A^{\prime} are also eigenvalues of A, and thus they are real. By the induction hypothesis, $D_{0}^{T} A^{\prime} D_{0}=U^{\prime}$ for an upper-triangular matrix A and an orthogonal matrix D_{0}. Let $D=\left(\begin{array}{cc}I_{k} & 0 \\ 0 & D_{0}\end{array}\right)$ and note that D is also orthogonal. We have

$$
D^{T} C^{T} A C D=\left(\begin{array}{cc}
\lambda I_{k} & X D_{0} \\
0 & U^{\prime}
\end{array}\right)
$$

which is upper-triangular, and thus we can set $Q=C D$.

3 Symmetric matrices

Lemma 3. If a real matrix A is symmetric, then all its eigenvalues are real.
Proof. Suppose that λ is an eigenvalue of A and let v be a corresponding eigenvector (possibly complex). Then $\lambda\langle v, v\rangle=\lambda v^{T} \bar{v}=(A v)^{T} \bar{v}=$ $\left(v^{T} A^{T}\right) \bar{v}=\left(v^{T} A\right) \bar{v}=v^{T}(A \bar{v})=v^{T}(\overline{A v})=\bar{\lambda} v^{T} \bar{v}=\bar{\lambda}\langle v, v\rangle$, and thus $\lambda=\bar{\lambda}$ and λ is real.

Corollary 4. If a real matrix A is symmetric, then $A=Q D Q^{T}$ for a diagonal matrix D and an orthogonal matrix Q; i.e., A is diagonalizable and there exists an orthonormal basis formed by eigenvectors of A.

Proof. By Lemma 2, we have $A=Q U Q^{T}$ for an upper-triangular matrix A and an orthogonal matrix Q. Since A is symmetric, we have $A=A^{T}=$ $\left(Q U Q^{T}\right)^{T}=Q U^{T} Q^{T}$, and since Q is regular, it follows that $U^{T}=U$. Hence, U is symmetric, and thus U is diagonal. It follows that columns of Q are eigenvectors of A, and since Q is orthogonal, they form an orthonormal basis.

Lemma 5. If A is a symmetric real matrix A, then $\max \left\{x^{T} A x:\|x\|=1\right\}$ is the largest eigenvalue of A.

Proof. Let $A=Q D Q^{T}$ for a diagonal matrix D and an orthogonal matrix Q. Note that A and D have the same eigenvalues and that $\|Q x\|=\|x\|$
for every x, and since Q is regular, it follows that $\max \left\{x^{T} A x:\|x\|=1\right\}=$ $\max \left\{x^{T} D x:\|x\|=1\right\}$. Therefore, it suffices to show that $\max \left\{x^{T} D x\right.$: $\|x\|=1\}$ is the largest eigenvalue of D. Let $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ be the diagonal entries of D, which are also its eigenvalues. Then $x^{T} D x=\sum_{i=1}^{n} d_{i} x_{i}^{2} \leq$ $d_{1} \sum_{i=1}^{n} x_{i}^{2}=d_{1}\|x\|=d_{1}$ for every x such that $\left\|x_{1}\right\|=1$, and $e_{1}^{T} D e_{1}=d_{1}$. The claim follows.

4 Positive matrices

A matrix A is non-negative if all its entries are non-negative, and it is positive if all its entries are positive.

Lemma 6. If A is a positive matrix, $\rho(A)=1$, and λ is an eigenvalue of A with $|\lambda|=1$, then the real part of λ is positive.

Proof. Suppose for a contradiction that the real part of λ is non-positive. Choose $\varepsilon>0$ such that $A_{i i}>\varepsilon$ for every i. Then $|\lambda-\varepsilon|>1$. Choose $0<\delta<1$ such that $\delta|\lambda-\varepsilon|>1$.

Let $A_{1}=\delta(A-\varepsilon I)$ and $A_{2}=\delta A$. Note that $\delta(\lambda-\varepsilon)$ is an eigenvalue of A_{1}, and thus $\rho\left(A_{1}\right)>1$. On the other hand, $\rho\left(A_{2}\right)=\delta \rho(A)<1$. By Lemma 1, $\lim _{n \rightarrow \infty}\left\|A_{2}^{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|A_{1}^{n}\right\|=\infty$. However, each entry of A_{1} is at most as large as each entry of A_{2}, and A_{1} is a positive matrix, and thus $\left(A_{1}^{n}\right)_{i j} \leq\left(A_{2}^{n}\right)_{i j}$ for all i, j, n. This is a contradiction.

Theorem 7 (Perron-Frobenius). Let A be a non-negative square matrix. If some power of A is positive, then $\rho(A)$ is an eigenvalue of A and all other eigenvalues of A have absolute value strictly less than $\rho(A)$.

Proof. The claim is trivial if $\rho(A)=0$, hence assume that $\rho(A)>0$. Let $m_{0} \geq 1$ be an integer such that $A^{m_{0}}$ is positive. Since A is non-negative, A^{m} is positive for every $m \geq m_{0}$. Suppose that λ is an eigenvalue of A with $|\lambda|=\rho(A)$. Let $A_{1}=A / \rho(A)$ and note that $\rho\left(A_{1}\right)=1$ and $\lambda_{1}=\lambda / \rho(A)$ is an eigenvalue of A_{1} with $\left|\lambda_{1}\right|=1$.

If $\lambda_{1} \neq 1$, then there exists $m \geq m_{0}$ such that the real part of λ_{1}^{m} is non-positive. But λ_{1}^{m} is an eigenvalue of the positive matrix A_{1}^{m} with $\rho\left(A_{1}^{m}\right)=\left|\lambda_{1}^{m}\right|=1$, which contradicts Lemma 6. Therefore, $\lambda_{1}=1$, and thus $\lambda=\rho(A)$ and A has no other eigenvalues with absolute value $\rho(A)$.

Lemma 8. Let A be a non-negative square matrix such that some power of A is positive, with $\rho(A)=1$. If v is a non-negative vector and $(A v)_{i} \geq v_{i}$ for every i, then $A v=v$.

Proof. Let $m \geq 1$ be an integer such that A^{m} is positive. Suppose for a contradiction that $A v \neq v$, and thus $A v-v$ is non-negative and non-zero. Since A^{m} is positive, we have that $A^{m}(A v-v)$ is positive. Thus, there exists $\delta>1$ such that $A^{m}(A v-\delta v)$ is still positive, and thus $\left(A^{m+1} v\right)_{i} \geq \delta\left(A^{m} v\right)_{i}$ for all i. Since A is non-negative, it follows by multiplying the inequality by A that $\left(A^{m+2} v\right)_{i} \geq \delta\left(A^{m+1} v\right)_{i}$ for all i. Combining these inequalities, $\left(A^{m+2} v\right)_{i} \geq \delta^{2}\left(A^{m} v\right)_{i}$ for all i. Similarly, $\left(A^{m+n} v\right)_{i} \geq \delta^{n}\left(A^{m} v\right)_{i}$ for all $n \geq 0$ and all i. Consider any β such that $1<\beta<\delta$, and let $B=A / \beta$. Then $\left(B^{m+n} v\right)_{i} \geq(\delta / \beta)^{n}\left(B^{m} v\right)_{i}$ for all $n \geq 0$ and all i, and thus $\lim _{n \rightarrow \infty}\left\|B^{n}\right\|=$ ∞. However, $\rho(B)=1 / \beta<1$, which contradicts Lemma 1. Therefore, $A v=v$.

Lemma 9. Let A be a non-negative $n \times n$ matrix. If some power of A is positive, then the algebraic multiplicity of $\rho(A)$ is one and there exists a positive eigenvector for $\rho(A)$.

Proof. If $\rho(A)=0$, then by considering the Jordan normal form of A, we conclude that $A^{n}=0$, which contradicts the assumption that some power of A is positive. Hence, $\rho(A)>0$. Without loss of generality, we can assume that $\rho(A)=1$, as otherwise we divide A by $\rho(A)$ first. Let v be an eigenvector for 1 , and let w be the vector such that $w_{i}=\left|v_{i}\right|$ for all i. We have $(A w)_{i} \geq$ $\left|(A v)_{i}\right|=\left|v_{i}\right|=w_{i}$ for all i, and by Lemma 8, it follows that $A w=w$.

Let $m \geq 1$ be an integer such that A^{m} is positive. We have $A^{m} w=w$, and since w is non-negative, the vector $A^{m} w=w$ is positive. Thus, w is actually positive.

Suppose now for contradiction that the algebraic multiplicity of $\rho(A)$ is greater than 1. By considering the Jordan normal form of A, it follows that there exists a non-zero vector z linearly independent on w such that either $A z=z$, or $A z=z+w$. In the former case, there exists a non-zero vector $z^{\prime}=w+\alpha z$ for some α such that z^{\prime} is non-negative, but at least one coordinate of z^{\prime} is 0 . However, $A z^{\prime}=z^{\prime}$, and thus $A^{m} z^{\prime}=z^{\prime}$, and $A^{m} z^{\prime}$ is positive, which is a contradiction. In the latter case, choose $\alpha>0$ so that $w^{\prime}=z+\alpha w$ is positive. Then $\left(A w^{\prime}\right)_{i}=(z+(\alpha+1) w)_{i}>w_{i}^{\prime}$ for all i, which contradicts Lemma 8.

A square matrix is stochastic if each of its columns has sum equal to 1 . Let j denote the row vector of all ones. Note that A is stochastic if and only if $j A=j$, and thus j^{T} is an eigenvector of A^{T} for the eigenvalue 1 .

Lemma 10. Let A be a non-negative square stochastic matrix such that some power of A is positive. Then there exists a unique positive vector v
with $A v=v$ such that $j v=1$. Furthermore, for any vector w such that $j w=1$, we have

$$
\lim _{k \rightarrow \infty} A^{k} w=v
$$

Proof. By Theorem 7 and Lemma $9, \rho(A)$ is an eigenvalue of A with algebraic multiplicity 1 , and the absolute value of any other eigenvalue is strictly less than $\rho(A)$, and there exists a positive vector v such that $A v=\rho(A) v$. Choose v so that $j v=1$. We have $\rho(A)=\rho(A) j v=j(A v)=(j A) v=j v=1$, and thus $A v=v$ and $\rho(A)=1$.

Let J be the matrix in Jordan normal form such that $A=C J C^{-1}$, such that $J_{11}=1$ and all other diagonal entries of J are strictly smaller than 1, and $C_{\star, 1}=v$. Let z be the first row of C^{-1}. We have $z A=z C J C^{-1}=e_{1}^{T} J C^{-1}=$ $e_{1}^{T} C^{-1}=z$, and thus $A^{T} z^{T}=z^{T}$. Therefore, z^{T} is an eigenvector of A^{T} for eigenvalue 1. Note that the eigenvalues of A^{T} are the same as the eigenvalues of A, with the same algebraic multiplicities. Hence, 1 has multiplicity 1 as an eigenvalue of A^{T}, and thus the corresponding eigenvector is unique up to scalar multiplication. It follows that z is a multiple of j. Since z is the first row of C^{-1} and v the first column of C, we have $z v=1$, and since $j v=1$, it follows that $z=j$.

We have $\lim _{k \rightarrow \infty} J^{k}=e_{1} e_{1}^{T}$, and thus $\lim _{k \rightarrow \infty} A^{k} w=C e_{1} e_{1}^{T} C^{-1} w=$ $v z w=v j w=v$.

Example 1. Let G be a connected non-bipartite graph. Start in a vertex v_{1} of G, walk to its neighbor chosen uniformly at random, walk again to a neighbor of the target vertex chosen uniformly at random, etc.

Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $p_{i, k}$ denote the probability that after k steps, we are in the vertex v_{i}, and let $p_{k}=\left(p_{1, k}, p_{2, k}, \ldots, p_{n, k}\right)^{T}$. So, $p_{0}=e_{1}$. Furthermore, $p_{k+1}=A p_{k}$, where A is the matrix such that $A_{i, j}=\frac{1}{\operatorname{deg}\left(v_{j}\right)}$ if $v_{i} v_{j} \in E(G)$ and $A_{i, j}=0$ otherwise. Therefore, $p_{k}=A^{k} e_{1}$.

Since G is connected and not bipartite, there exists k_{0} such that $A^{k_{0}}$ is positive. By Lemma 10, we have $\lim _{k \rightarrow \infty} A^{k} e_{1}=p$ for the unique positive vector p such that $A p=p$ and $j p=1$. Observe that this is true for $p=$ $\frac{1}{2|E(G)|}\left(\operatorname{deg}\left(v_{1}\right), \ldots, \operatorname{deg}\left(v_{n}\right)\right)^{T}$.

Therefore, after many steps, the probability that the walk ends in a vertex v_{i} approaches $\frac{\operatorname{deg}\left(v_{i}\right)}{2|E(G)|}$.

For a directed graph G of links between webpages, the corresponding eigenvector p gives PageRank, which is one of the factors used to measure the importance of a webpage.

