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1 Spectral radius

Definition 1. The spectral radius of a square matrix A is

ρ(A) = max{|λ| : λ is an eigenvalue of A}.

For an n× n matrix A, let ‖A‖ = max{|Aij| : 1 ≤ i, j ≤ n}.

Lemma 1. If ρ(A) < 1, then

lim
n→∞

‖An‖ = 0.

If ρ(A) > 1, then
lim
n→∞

‖An‖ =∞.

Proof. Recall that A = CJC−1 for a matrix J in Jordan normal form and
regular C, and that An = CJnC−1. If ρ(A) = ρ(J) < 1, then Jn converges to
the 0 matrix, and thus An converges to the zero matrix as well. If ρ(A) > 1,
then Jn has a diagonal entry (Jn)ii = λn for an eigenvalue λ such that
|λ| > 1, and if v is the i-th column of C and v′ the i-th row of C−1, then
v′Anv = v′CJnC−1v = eTi J

nei = λn. Therefore, limn→∞ |v′Anv| = ∞, and
thus limn→∞ ‖An‖ =∞.

2 Matrices with real eigenvalues

Lemma 2 (Schur). If all eigenvalues of a real n× n matrix A are real, then
A = QUQT for some upper-triangular matrix U and an orthogonal matrix
Q.
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Proof. We prove the claim by induction on n. Let λ be an eigenvalue of
A and let B′ = v1, . . . , vk be an orthonormal basis of the space Ker(A −
λI) of the eigenvectors of A for λ. Let us extend B′ to an orthonormal
basis B = v1, . . . , vn of Rn, and let C = (v1|v2| . . . |vn). Note that C is

orthogonal and CTAC =

(
λIk X
0 A′

)
for some matrices X and A′. The

characteristic polynomial of A is det(A − Ix) = (λ − x)k det(A′ − Ix), and
thus all eigenvalues of A′ are also eigenvalues of A, and thus they are real.
By the induction hypothesis, DT

0 A
′D0 = U ′ for an upper-triangular matrix

A and an orthogonal matrix D0. Let D =

(
Ik 0
0 D0

)
and note that D is also

orthogonal. We have

DTCTACD =

(
λIk XD0

0 U ′

)
,

which is upper-triangular, and thus we can set Q = CD.

3 Symmetric matrices

Lemma 3. If a real matrix A is symmetric, then all its eigenvalues are real.

Proof. Suppose that λ is an eigenvalue of A and let v be a correspond-
ing eigenvector (possibly complex). Then λ〈v, v〉 = λvTv = (Av)Tv =
(vTAT )v = (vTA)v = vT (Av) = vT (Av) = λvTv = λ〈v, v〉, and thus λ = λ
and λ is real.

Corollary 4. If a real matrix A is symmetric, then A = QDQT for a diago-
nal matrix D and an orthogonal matrix Q; i.e., A is diagonalizable and there
exists an orthonormal basis formed by eigenvectors of A.

Proof. By Lemma 2, we have A = QUQT for an upper-triangular matrix
A and an orthogonal matrix Q. Since A is symmetric, we have A = AT =
(QUQT )T = QUTQT , and since Q is regular, it follows that UT = U . Hence,
U is symmetric, and thus U is diagonal. It follows that columns of Q are
eigenvectors of A, and since Q is orthogonal, they form an orthonormal
basis.

Lemma 5. If A is a symmetric real matrix A, then max{xTAx : ‖x‖ = 1}
is the largest eigenvalue of A.

Proof. Let A = QDQT for a diagonal matrix D and an orthogonal matrix
Q. Note that A and D have the same eigenvalues and that ‖Qx‖ = ‖x‖
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for every x, and since Q is regular, it follows that max{xTAx : ‖x‖ = 1} =
max{xTDx : ‖x‖ = 1}. Therefore, it suffices to show that max{xTDx :
‖x‖ = 1} is the largest eigenvalue of D. Let d1 ≥ d2 ≥ . . . ≥ dn be the diag-
onal entries of D, which are also its eigenvalues. Then xTDx =

∑n
i=1 dix

2
i ≤

d1
∑n

i=1 x
2
i = d1‖x‖ = d1 for every x such that ‖x1‖ = 1, and eT1De1 = d1.

The claim follows.

4 Positive matrices

A matrix A is non-negative if all its entries are non-negative, and it is positive
if all its entries are positive.

Lemma 6. If A is a positive matrix, ρ(A) = 1, and λ is an eigenvalue of A
with |λ| = 1, then the real part of λ is positive.

Proof. Suppose for a contradiction that the real part of λ is non-positive.
Choose ε > 0 such that Aii > ε for every i. Then |λ − ε| > 1. Choose
0 < δ < 1 such that δ|λ− ε| > 1.

Let A1 = δ(A − εI) and A2 = δA. Note that δ(λ − ε) is an eigenvalue
of A1, and thus ρ(A1) > 1. On the other hand, ρ(A2) = δρ(A) < 1. By
Lemma 1, limn→∞ ‖An

2‖ = 0 and limn→∞ ‖An
1‖ =∞. However, each entry of

A1 is at most as large as each entry of A2, and A1 is a positive matrix, and
thus (An

1 )ij ≤ (An
2 )ij for all i, j, n. This is a contradiction.

Theorem 7 (Perron-Frobenius). Let A be a non-negative square matrix. If
some power of A is positive, then ρ(A) is an eigenvalue of A and all other
eigenvalues of A have absolute value strictly less than ρ(A).

Proof. The claim is trivial if ρ(A) = 0, hence assume that ρ(A) > 0. Let
m0 ≥ 1 be an integer such that Am0 is positive. Since A is non-negative,
Am is positive for every m ≥ m0. Suppose that λ is an eigenvalue of A with
|λ| = ρ(A). Let A1 = A/ρ(A) and note that ρ(A1) = 1 and λ1 = λ/ρ(A) is
an eigenvalue of A1 with |λ1| = 1.

If λ1 6= 1, then there exists m ≥ m0 such that the real part of λm1
is non-positive. But λm1 is an eigenvalue of the positive matrix Am

1 with
ρ(Am

1 ) = |λm1 | = 1, which contradicts Lemma 6. Therefore, λ1 = 1, and thus
λ = ρ(A) and A has no other eigenvalues with absolute value ρ(A).

Lemma 8. Let A be a non-negative square matrix such that some power of
A is positive, with ρ(A) = 1. If v is a non-negative vector and (Av)i ≥ vi for
every i, then Av = v.
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Proof. Let m ≥ 1 be an integer such that Am is positive. Suppose for a
contradiction that Av 6= v, and thus Av − v is non-negative and non-zero.
Since Am is positive, we have that Am(Av− v) is positive. Thus, there exists
δ > 1 such that Am(Av − δv) is still positive, and thus (Am+1v)i ≥ δ(Amv)i
for all i. Since A is non-negative, it follows by multiplying the inequality
by A that (Am+2v)i ≥ δ(Am+1v)i for all i. Combining these inequalities,
(Am+2v)i ≥ δ2(Amv)i for all i. Similarly, (Am+nv)i ≥ δn(Amv)i for all n ≥ 0
and all i. Consider any β such that 1 < β < δ, and let B = A/β. Then
(Bm+nv)i ≥ (δ/β)n(Bmv)i for all n ≥ 0 and all i, and thus limn→∞ ‖Bn‖ =
∞. However, ρ(B) = 1/β < 1, which contradicts Lemma 1. Therefore,
Av = v.

Lemma 9. Let A be a non-negative n × n matrix. If some power of A
is positive, then the algebraic multiplicity of ρ(A) is one and there exists a
positive eigenvector for ρ(A).

Proof. If ρ(A) = 0, then by considering the Jordan normal form of A, we
conclude that An = 0, which contradicts the assumption that some power of
A is positive. Hence, ρ(A) > 0. Without loss of generality, we can assume
that ρ(A) = 1, as otherwise we divide A by ρ(A) first. Let v be an eigenvector
for 1, and let w be the vector such that wi = |vi| for all i. We have (Aw)i ≥
|(Av)i| = |vi| = wi for all i, and by Lemma 8, it follows that Aw = w.

Let m ≥ 1 be an integer such that Am is positive. We have Amw = w,
and since w is non-negative, the vector Amw = w is positive. Thus, w is
actually positive.

Suppose now for contradiction that the algebraic multiplicity of ρ(A) is
greater than 1. By considering the Jordan normal form of A, it follows
that there exists a non-zero vector z linearly independent on w such that
either Az = z, or Az = z + w. In the former case, there exists a non-zero
vector z′ = w + αz for some α such that z′ is non-negative, but at least one
coordinate of z′ is 0. However, Az′ = z′, and thus Amz′ = z′, and Amz′ is
positive, which is a contradiction. In the latter case, choose α > 0 so that
w′ = z + αw is positive. Then (Aw′)i = (z + (α+ 1)w)i > w′i for all i, which
contradicts Lemma 8.

A square matrix is stochastic if each of its columns has sum equal to 1.
Let j denote the row vector of all ones. Note that A is stochastic if and only
if jA = j, and thus jT is an eigenvector of AT for the eigenvalue 1.

Lemma 10. Let A be a non-negative square stochastic matrix such that
some power of A is positive. Then there exists a unique positive vector v
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with Av = v such that jv = 1. Furthermore, for any vector w such that
jw = 1, we have

lim
k→∞

Akw = v.

Proof. By Theorem 7 and Lemma 9, ρ(A) is an eigenvalue of A with algebraic
multiplicity 1, and the absolute value of any other eigenvalue is strictly less
than ρ(A), and there exists a positive vector v such that Av = ρ(A)v. Choose
v so that jv = 1. We have ρ(A) = ρ(A)jv = j(Av) = (jA)v = jv = 1, and
thus Av = v and ρ(A) = 1.

Let J be the matrix in Jordan normal form such that A = CJC−1, such
that J11 = 1 and all other diagonal entries of J are strictly smaller than 1, and
C?,1 = v. Let z be the first row of C−1. We have zA = zCJC−1 = eT1 JC

−1 =
eT1C

−1 = z, and thus AT zT = zT . Therefore, zT is an eigenvector of AT for
eigenvalue 1. Note that the eigenvalues of AT are the same as the eigenvalues
of A, with the same algebraic multiplicities. Hence, 1 has multiplicity 1 as
an eigenvalue of AT , and thus the corresponding eigenvector is unique up to
scalar multiplication. It follows that z is a multiple of j. Since z is the first
row of C−1 and v the first column of C, we have zv = 1, and since jv = 1, it
follows that z = j.

We have limk→∞ J
k = e1e

T
1 , and thus limk→∞A

kw = Ce1e
T
1C
−1w =

vzw = vjw = v.

Example 1. Let G be a connected non-bipartite graph. Start in a vertex
v1 of G, walk to its neighbor chosen uniformly at random, walk again to a
neighbor of the target vertex chosen uniformly at random, etc.

Let V (G) = {v1, . . . , vn}. Let pi,k denote the probability that after k steps,
we are in the vertex vi, and let pk = (p1,k, p2,k, . . . , pn,k)T . So, p0 = e1.
Furthermore, pk+1 = Apk, where A is the matrix such that Ai,j = 1

deg(vj)
if

vivj ∈ E(G) and Ai,j = 0 otherwise. Therefore, pk = Ake1.
Since G is connected and not bipartite, there exists k0 such that Ak0 is

positive. By Lemma 10, we have limk→∞A
ke1 = p for the unique positive

vector p such that Ap = p and jp = 1. Observe that this is true for p =
1

2|E(G)|(deg(v1), . . . , deg(vn))T .
Therefore, after many steps, the probability that the walk ends in a vertex

vi approaches
deg(vi)
2|E(G)| .

For a directed graph G of links between webpages, the corresponding
eigenvector p gives PageRank, which is one of the factors used to measure
the importance of a webpage.
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