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1 Spectral radius

Definition 1. The spectral radius of a square matrix A is

p(A) = max{|A| : A is an eigenvalue of A}.
For an n x n matrix A, let ||A|| = max{|A;;| : 1 <i,5 <n}.

Lemma 1. If p(A) < 1, then

lim ||A"|| = 0.
n—o0
If p(A) > 1, then
lim ||A"|| = oo.
n—oo

Proof. Recall that A = CJC~! for a matrix J in Jordan normal form and
regular C, and that A" = CJ"C~!. If p(A) = p(J) < 1, then J" converges to
the 0 matrix, and thus A™ converges to the zero matrix as well. If p(A) > 1,
then J™ has a diagonal entry (J"); = A" for an eigenvalue A\ such that
IA] > 1, and if v is the i-th column of C' and v’ the i-th row of C~! then
VA = v'CJ"C~ v = el J"e; = A". Therefore, lim,, ., [v'A"v| = oo, and
thus lim,, . [|A"]| = oc. O

2 Matrices with real eigenvalues

Lemma 2 (Schur). If all eigenvalues of a real n X n matriz A are real, then
A = QUQT for some upper-triangular matriz U and an orthogonal matriz
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Proof. We prove the claim by induction on n. Let A\ be an eigenvalue of
A and let B" = vy,...,v; be an orthonormal basis of the space Ker(A —
M) of the eigenvectors of A for A\. Let us extend B’ to an orthonormal
basis B = wvy,...,v, of R", and let C' = (vi|vs|...|v,). Note that C is
orthogonal and CTAC = (Aék if,
characteristic polynomial of A is det(A — Ix) = (A — z)*det(A’ — Iz), and
thus all eigenvalues of A" are also eigenvalues of A, and thus they are real.
By the induction hypothesis, DI’ A’Dy = U’ for an upper-triangular matrix
I, 0
0 Dy

for some matrices X and A’. The

A and an orthogonal matrix Dy. Let D = ( ) and note that D is also

orthogonal. We have

M, XD

T AT _ k 0

preracn = (M X0,
which is upper-triangular, and thus we can set ) = C'D. n

3 Symmetric matrices

Lemma 3. If a real matrix A is symmetric, then all its eigenvalues are real.

Proof. Suppose that X\ is an eigenvalue of A and let v be a correspond-

ing eigenvector (possibly complex). Then Av,v) = Mo = (Av)'7 =
(WTATYO = (vTA)p = vT (AD) = v (Av) = 2D = Mo, v), and thus A = X
and A is real. ]

Corollary 4. If a real matriz A is symmetric, then A = QDQT for a diago-
nal matriz D and an orthogonal matriz Q; i.e., A is diagonalizable and there
exists an orthonormal basis formed by eigenvectors of A.

Proof. By Lemma 2, we have A = QUQT for an upper-triangular matrix
A and an orthogonal matrix (). Since A is symmetric, we have A = AT =
(QUQT)T = QUTQT, and since Q is regular, it follows that UT = U. Hence,
U is symmetric, and thus U is diagonal. It follows that columns of @) are
eigenvectors of A, and since () is orthogonal, they form an orthonormal
basis. O]

Lemma 5. If A is a symmetric real matriz A, then max{z? Az : ||z| = 1}
is the largest eigenvalue of A.

Proof. Let A = QDQT for a diagonal matrix D and an orthogonal matrix
Q). Note that A and D have the same eigenvalues and that ||Qz| = ||z]|
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for every z, and since @ is regular, it follows that max{z” Az : ||z|]| = 1} =
max{z? Dz : ||z|]| = 1}. Therefore, it suffices to show that max{z’ Dz :
|z|| = 1} is the largest eigenvalue of D. Let dy > dy > ... > d,, be the diag-
onal entries of D, which are also its eigenvalues. Then 2’ Dx = Y7 | diz? <
di Y a2 = dy||z|| = d; for every  such that ||x1]| = 1, and e] De; = d;.
The claim follows. [l

4 Positive matrices

A matrix A is non-negative if all its entries are non-negative, and it is positive
if all its entries are positive.

Lemma 6. If A is a positive matriz, p(A) =1, and X is an eigenvalue of A
with |\| = 1, then the real part of X\ is positive.

Proof. Suppose for a contradiction that the real part of A\ is non-positive.
Choose ¢ > 0 such that A; > e for every i. Then |\ —¢| > 1. Choose
0 < 0 < 1 such that 6|\ —¢| > 1.

Let Ay = (A —¢l) and Ay = JA. Note that 6(A — ¢) is an eigenvalue
of A, and thus p(A;) > 1. On the other hand, p(As) = dp(A) < 1. By
Lemma 1, lim,_, ||A%]] = 0 and lim,,_, ||A}|| = co. However, each entry of
Aj is at most as large as each entry of Ay, and A; is a positive matrix, and
thus (A7);; < (A%);; for all 4, j,n. This is a contradiction. O

Theorem 7 (Perron-Frobenius). Let A be a non-negative square matriz. If
some power of A is positive, then p(A) is an eigenvalue of A and all other
eigenvalues of A have absolute value strictly less than p(A).

Proof. The claim is trivial if p(A) = 0, hence assume that p(A) > 0. Let
mg > 1 be an integer such that A™° is positive. Since A is non-negative,
A™ is positive for every m > my. Suppose that A is an eigenvalue of A with
Al = p(A). Let Ay = A/p(A) and note that p(A;) =1 and Ay = A\/p(A) is
an eigenvalue of A; with [\ | = 1.

If \y # 1, then there exists m > my such that the real part of AT’
is non-positive. But A]" is an eigenvalue of the positive matrix A}* with
p(AT) = |AT"| = 1, which contradicts Lemma 6. Therefore, \; = 1, and thus
A = p(A) and A has no other eigenvalues with absolute value p(A). O

Lemma 8. Let A be a non-negative square matriz such that some power of
A is positive, with p(A) = 1. Ifv is a non-negative vector and (Av); > v; for
every i, then Av = v.



Proof. Let m > 1 be an integer such that A™ is positive. Suppose for a
contradiction that Av # v, and thus Av — v is non-negative and non-zero.
Since A™ is positive, we have that A™(Av —v) is positive. Thus, there exists
§ > 1 such that A™(Av — dv) is still positive, and thus (A™v); > §(A™v),
for all 7. Since A is non-negative, it follows by multiplying the inequality
by A that (A™*2v); > §(A™w); for all . Combining these inequalities,
(A™+2y); > 6%(A™v); for all i. Similarly, (A™v); > §"(A™v); for all n > 0
and all 7. Consider any 8 such that 1 < f < §, and let B = A/f. Then
(B™t); > (6/8)"(B™v); for all n > 0 and all 4, and thus lim,,_,. || B"]| =
oo. However, p(B) = 1/ < 1, which contradicts Lemma 1. Therefore,
Av = v. [

Lemma 9. Let A be a non-negative n X n matriz. If some power of A
is positive, then the algebraic multiplicity of p(A) is one and there exists a
positive eigenvector for p(A).

Proof. If p(A) = 0, then by considering the Jordan normal form of A, we
conclude that A™ = 0, which contradicts the assumption that some power of
A is positive. Hence, p(A) > 0. Without loss of generality, we can assume
that p(A) = 1, as otherwise we divide A by p(A) first. Let v be an eigenvector
for 1, and let w be the vector such that w; = |v;| for all i. We have (Aw); >
|(Av);| = |v;| = w; for all i, and by Lemma 8, it follows that Aw = w.

Let m > 1 be an integer such that A™ is positive. We have A™w = w,
and since w is non-negative, the vector A™w = w is positive. Thus, w is
actually positive.

Suppose now for contradiction that the algebraic multiplicity of p(A) is
greater than 1. By considering the Jordan normal form of A, it follows
that there exists a non-zero vector z linearly independent on w such that
either Az = 2z, or Az = z + w. In the former case, there exists a non-zero
vector 2/ = w + az for some a such that 2’ is non-negative, but at least one
coordinate of 2z’ is 0. However, Az’ = 2/, and thus A™z = 2/, and A™2 is
positive, which is a contradiction. In the latter case, choose a > 0 so that
w' = z+ aw is positive. Then (Aw'); = (z + (a+ 1)w); > w} for all ¢, which
contradicts Lemma 8. O]

A square matrix is stochastic if each of its columns has sum equal to 1.
Let 5 denote the row vector of all ones. Note that A is stochastic if and only
if jA = j, and thus j7 is an eigenvector of AT for the eigenvalue 1.

Lemma 10. Let A be a non-negative square stochastic matriz such that
some power of A is positive. Then there exists a unique positive vector v



with Av = v such that jv = 1. Furthermore, for any vector w such that
Jw =1, we have

lim A*w = v.

k—o0
Proof. By Theorem 7 and Lemma 9, p(A) is an eigenvalue of A with algebraic
multiplicity 1, and the absolute value of any other eigenvalue is strictly less
than p(A), and there exists a positive vector v such that Av = p(A)v. Choose
v so that ju = 1. We have p(A) = p(A)jv = j(Av) = (JA)v = jv = 1, and
thus Av = v and p(A) = 1.

Let J be the matrix in Jordan normal form such that A = C.JC™!, such
that Ji; = 1 and all other diagonal entries of .J are strictly smaller than 1, and
C,1 = v. Let z be the first row of C~!. We have zA = 2CJC~! = ¢l JC' 1=

el C~1 = 2, and thus AT2T = 2T. Therefore, 27 is an eigenvector of AT for
elgenvalue 1. Note that the elgenvalues of AT are the same as the eigenvalues
of A, with the same algebraic multiplicities. Hence, 1 has multiplicity 1 as
an eigenvalue of AT, and thus the corresponding eigenvector is unique up to
scalar multiplication. It follows that z is a multiple of j. Since z is the first
row of C~! and v the first column of C', we have zv = 1, and since jv = 1, it
follows that z = j.

We have limg_,o J¥ = ejel, and thus limy_,o A¥w = CeelC~lw =
VIW = vjw = V. D

Example 1. Let G be a connected non-bipartite graph. Start in a vertex
v of G, walk to its neighbor chosen uniformly at random, walk again to a
neighbor of the target vertex chosen uniformly at random, etc.

Let V(G) = {v1,...,v,}. Let p;y denote the probability that after k steps
we are in the vertex v;, and let py = (Pr,D2k,---Pnk) - S0, po = e1.
Furthermore, pry1 = Apg, where A is the matriz such that A;j = ——— if

deg(v;)
viv; € E(G) and A;j = 0 otherwise. Therefore, py = A¥e,.

Since G is connected and not bipartite, there exists ko such that Ao is
positive. By Lemma 10, we have limy_,., A¥e; = p for the unique positive
vector p such that Ap = p and jp = 1. Observe that this is true for p =
2|E(G}l (deg(vy), ..., deg(v,))T.

Therefore, after many steps, the probability that the walk ends in a vertex

deg(v;)
2/E(G)|”

v; approaches

For a directed graph G of links between webpages, the corresponding
eigenvector p gives PageRank, which is one of the factors used to measure
the importance of a webpage.



