Eigenvalues, diagonalization, and Jordan normal form

Zdeněk Dvořák

April 20, 2016

Definition 1. Let A be a square matrix whose entries are complex numbers. If $A v=\lambda v$ for a complex number λ and a non-zero vector v, then λ is an eigenvalue of A, and v is the corresponding eigenvector.

Definition 2. Let A be a square matrix. Then

$$
p(x)=\operatorname{det}(A-I x)
$$

is the characteristic polynomial of A.

1 Matrix similarity

Definition 3. Square matrices A and D are similar if $A=C D C^{-1}$ for some regular matrix C. Equivalently, they are similar if they are matrices of the same linear function, with respect to different bases.

Lemma 1. If A and D are similar, then they have the same characteristic polynomials, and thus they have the same eigenvalues with the same algebraic multiplicities. Furthermore, their eigenvalues also have the same geometric multiplicities.
Proof. Suppose that $A=C D C^{-1}$. Then the characteristic polynomial $\operatorname{det}(A-$ $I x)$ of A is equal to

$$
\begin{aligned}
\operatorname{det}(A-I x) & =\operatorname{det}\left(C D C^{-1}-I x\right)=\operatorname{det}\left(C(D-I x) C^{-1}\right) \\
& =\operatorname{det}(C) \operatorname{det}(D-I x) \operatorname{det}\left(C^{-1}\right)=\operatorname{det}(D-I x),
\end{aligned}
$$

which is the characteristic polynomial of D.
Furthermore, for any λ, we have $v \in \operatorname{Ker}(D-\lambda I)$ if and only if $C v \in$ $\operatorname{Ker}(A-\lambda I)$, and since C is regular, we have $\operatorname{dim}(\operatorname{Ker}(D-\lambda I))=\operatorname{dim}(\operatorname{Ker}(A-$ $\lambda I)$); hence, the geometric multiplicities of λ as an eigenvalue of A and D coincide.

Corollary 2. If A and B are square matrices, then $A B$ and $B A$ have the same eigenvalues.
Proof. Let $X=\left(\begin{array}{cc}A B & 0 \\ B & 0\end{array}\right)$ and $Y=\left(\begin{array}{cc}0 & 0 \\ B & B A\end{array}\right)$. Note that $A B$ and X have the same eigenvalues except for extra zero eigenvalues of X, and that $B A$ and Y have the same eigenvalues except for extra zero eigenvalues of Y. Furthermore, let $C=\left(\begin{array}{cc}I & A \\ 0 & I\end{array}\right)$, and note that $X C=C Y$, and thus X and Y are similar and have the same eigenvalues by Lemma 1.
Observation 3. If $A=C D C^{-1}$ for some square matrices A and D, then $A^{n}=C D^{n} C^{-1}$. More generally, for any polynomial p, we have $p(A)=$ $C p(D) C^{-1}$.

2 Diagonalization

Example 1. Let $A=\left(\begin{array}{ccc}-2 & -1 & -2 \\ 4 & 3 & 2 \\ 5 & 1 & 5\end{array}\right)$ and let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be defined by $f(x)=A x$.

Eigenvectors and eigenvalues of A are

- $v_{1}=(1,-1,-1)^{T}$, eigenvalue 1 ,
- $v_{2}=(-1,2,1)^{T}$, eigenvalue 2,
- $v_{3}=(-1,1,2)^{T}$, eigenvalue 3 .

Note that $B=v_{1}, v_{2}, v_{3}$ is a basis of \mathbf{R}^{3}. If $[x]_{B}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, then

$$
\begin{aligned}
f(x) & =f\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}\right) \\
& =\alpha_{1} f\left(v_{1}\right)+\alpha_{2} f\left(v_{2}\right)+\alpha_{3} f\left(v_{3}\right) \\
& =\alpha_{1} v_{1}+2 \alpha_{2} v_{2}+3 \alpha_{3} v_{3},
\end{aligned}
$$

and thus $[f(x)]_{B, B}=\left(\alpha_{1}, 2 \alpha_{2}, 3 \alpha_{3}\right)$. Therefore, the matrix of f with respect to the basis B is

$$
[f]_{B, B}=D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Let B^{\prime} be the standard basis of \mathbf{R}^{3}. Let

$$
C=[i d]_{B, B^{\prime}}=\left(v_{1}\left|v_{2}\right| v_{3}\right)=\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right)
$$

Recall that

$$
[f]_{B^{\prime}, B^{\prime}}=[i d]_{B, B^{\prime}}[f]_{B, B}[i d]_{B^{\prime}, B}=[i d]_{B, B^{\prime}}[f]_{B, B}[i d]_{B, B^{\prime}}^{-1},
$$

and thus

$$
A=C D C^{-1}
$$

Lemma 4. An $n \times n$ matrix A is similar to a diagonal matrix if and only if there exists a basis of \mathbf{C}^{n} formed by eigenvectors of A.

Proof. Suppose that $A=C D C^{-1}$ for a diagonal matrix D with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$. Since C is regular, $B=C e_{1}, \ldots, C e_{n}$ is a basis of \mathbf{C}^{n}. Furthermore, $A\left(C e_{i}\right)=C D e_{i}=\lambda_{i}\left(C e_{i}\right)$, and thus B is formed by eigenvectors of A.

Conversely, suppose that v_{1}, \ldots, v_{n} is a basis of \mathbf{C}^{n} formed by eigenvectors of A corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and let D be the diagonal matrix D with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$. Let $C=\left(v_{1}|\ldots| v_{n}\right)$. Then

$$
C^{-1} A C=C^{-1}\left(A v_{1}|\ldots| A v_{n}\right)=C^{-1}\left(\lambda_{1} v_{1}|\ldots| \lambda_{n} v_{n}\right)=C^{-1} C D=D
$$

and thus A and D are similar.
Lemma 5. If $\lambda_{1}, \ldots, \lambda_{k}$ are pairwise distinct eigenvalues of A (not necessarily all of them) and v_{1}, \ldots, v_{k} are corresponding eigenvectors, then v_{1}, \ldots, v_{k} are linearly independent.

Proof. We proceed by induction on k; the claim is trivial for $k=1$. Suppose that $\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}=o$; then $o=A\left(\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}\right)=\alpha_{1} \lambda_{1} v_{1}+\ldots+$ $\alpha_{k} \lambda_{k} v_{k}$, and $\alpha_{1}\left(\lambda_{1}-\lambda_{k}\right) v_{1}+\alpha_{2}\left(\lambda_{2}-\lambda_{k}\right) v_{2}+\ldots+\alpha_{k-1}\left(\lambda_{k-1}-\lambda_{k}\right) v_{k-1}=o$. By the induction hypothesis, $\alpha_{j}\left(\lambda_{j}-\lambda_{k}\right)=0$ for $1 \leq j \leq k-1$, and since $\lambda_{j} \neq \lambda_{k}$, we have $\alpha_{j}=0$. Therefore, $\alpha_{k} v_{k}=0$, and since $v_{k} \neq o$, we have $\alpha_{k}=0$.

Corollary 6. Let A be an $n \times n$ matrix. If the geometric multiplicity of every eigenvalue of A is equal to its algebraic multiplicity, then A is similar to a diagonal matrix. In particular, this is the case if all eigenvalues of A have algebraic multiplicity 1, i.e., if A has n distinct eigenvalues.

Example 2. Let $a_{0}=3, a_{1}=8$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$ for $n \geq 0$. Determine a formula for a_{n}.

Let $A=\left(\begin{array}{cc}0 & 1 \\ -6 & 5\end{array}\right)$. Note that $A\left(a_{n}, a_{n+1}\right)^{T}=\left(a_{n+1}, 5 a_{n+1}-6 a_{n}\right)^{T}=$ $\left(a_{n+1}, a_{n+2}\right)^{T}$, and thus $\left(a_{n}, a_{n+1}\right)^{T}=A^{n}(3,8)^{T}$. The eigenvalues of A are 2 and 3, and thus

$$
A=C\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) C^{-1}
$$

for some matrix C. Therefore, $\left(a_{n}, a_{n+1}\right)^{T}=C\left(\begin{array}{cc}2^{n} & 0 \\ 0 & 3^{n}\end{array}\right) C^{-1}\binom{3}{8}$. It follows that $a_{n}=\beta_{1} 2^{n}+\beta_{2} 3^{n}$ for some β_{1} and β_{2}. Since $a_{0}=3$ and $a_{1}=8$, we have $\beta_{1}=1$ and $\beta_{2}=2$. Hence, $a_{n}=2^{n}+2 \cdot 3^{n}$.

3 Jordan normal form

Not all matrices are diagonalizable. However, a slight weakening of this claim is true.

Definition 4. Let $J_{k}(\lambda)$ be the $k \times k$ matrix $\left(\begin{array}{ccccc}\lambda & 1 & 0 & 0 & \ldots \\ 0 & \lambda & 1 & 0 & \ldots \\ & & \ldots & & \\ 0 & 0 & \ldots & 0 & \lambda\end{array}\right)$. We call each such matrix a Jordan λ-block.

A matrix J is in Jordan normal form if

$$
J=\left(\begin{array}{cccc}
J_{k_{1}}\left(\lambda_{1}\right) & 0 & 0 & \ldots \\
0 & J_{k_{2}}\left(\lambda_{2}\right) & 0 & \ldots \\
0 & 0 & & \\
0 & 0 & \ldots & J_{k_{m}}\left(\lambda_{m}\right)
\end{array}\right)
$$

for some integers k_{1}, \ldots, k_{m} and complex numbers $\lambda_{1}, \ldots, \lambda_{m}$.
Note that $J_{1}(\lambda)=(\lambda)$, and that $J_{k}(\lambda)$ has eigenvalue λ with algebraic multiplicity k and geometric multiplicity 1 .

Definition 5. Let \mathbf{V} be a linear space over complex numbers. A chain of generalized eigenvectors for a linear function $f: \mathbf{V} \rightarrow \mathbf{V}$ with eigenvalue λ is a sequence of non-zero vectors v_{1}, \ldots, v_{k} such that $f\left(v_{1}\right)=\lambda v_{1}$ and $f\left(v_{i}\right)=\lambda v_{i}+v_{i-1}$ for $i=2, \ldots k$.

Lemma 7. Let \mathbf{V} be a linear space over complex numbers of finite dimension n. For every linear function $f: \mathbf{V} \rightarrow \mathbf{V}$, there exist chains C_{1}, \ldots, C_{m} of generalized eigenvectors such that the union of C_{1}, \ldots, C_{m} is a basis of \mathbf{V}.

Proof. We prove the claim by induction on n. Let λ be an eigenvalue of f, and let $g: \mathbf{V} \rightarrow \mathbf{V}$ be defined by $g(x)=f(x)-\lambda x$. Let $\mathbf{W}=\operatorname{Im}(g)$. Since there exists a non-zero eigenvector corresponding to λ, we have $\operatorname{dim}(\operatorname{Ker}(g))>0$, and thus $d=\operatorname{dim}(\mathbf{W})=n-\operatorname{dim}(\operatorname{Ker}(g))<n$. Note that if $x \in \mathbf{W}$, then $x=g(y)$ for some $y \in \mathbf{V}$, and $f(x)=f(g(y))=f(f(y)-\lambda y)=$ $f(f(y))-\lambda f(y)=g(f(y))$, and thus $f(x) \in \mathbf{W}$. Hence, we can consider f as a function from \mathbf{W} to \mathbf{W}. By the induction hypothesis, there exist
chains $C_{1}^{\prime}, \ldots, C_{m^{\prime}}^{\prime}$ of generalized eigenvectors of f such that their union $B^{\prime}=v_{1}, \ldots, v_{d}$ is a basis of \mathbf{W}. Without loss of generality, the chains C_{1}^{\prime}, \ldots, C_{q}^{\prime} correspond to the eigenvalue λ. Order the elements of the basis B^{\prime} so that $v_{1}, \ldots, v_{m^{\prime}}$ are the last elements of the chains $C_{1}^{\prime}, \ldots, C_{m^{\prime}}^{\prime}$. For $i=1, \ldots, q$, let z_{i} be a vector in \mathbf{V} such that $g\left(z_{i}\right)=v_{i}$. Let C_{1}, \ldots, C_{q} be the chains obtained from $C_{1}^{\prime}, \ldots, C_{q}^{\prime}$ by adding last elements z_{1}, \ldots, z_{q}. Let $C_{i}=C_{i}^{\prime}$ for $i=q+1, \ldots, m^{\prime}$.

Let x_{1}, \ldots, x_{q} be the first elements of the chains $C_{1}^{\prime}, \ldots, C_{q}^{\prime}$. Note that $x_{1}, \ldots, x_{q} \in \mathbf{W} \cap \operatorname{Ker}(g)$. Let v be any vector from $\mathbf{W} \cap \operatorname{Ker}(g)$ and let $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ be the coordinates of v with respect to B^{\prime}. Consider any of the chains C corresponding to an eigenvalue μ, and let v_{i} be its last element such that $\alpha_{i} \neq 0$. Then the i-th coordinate of $g(v)=f(v)-\lambda v$ is $(\mu-\lambda) \alpha_{i}$, and since $g(v)=0$, we conclude that $\mu=\lambda$. Hence, v only has non-zero coordinates in the chains corresponding to the eigenvalue λ. If v_{i} is in such a chain and it is not its first element, then let v_{j} be the element of the chain preceding v_{j}. Then, the j-th coordinate of $g(v)$ is α_{i}, and thus $\alpha_{i}=0$. We conclude that the only coordinates of v that may possibly be non-zero are those corresponding to x_{1}, \ldots, x_{q}. Therefore, $K=x_{1}, \ldots, x_{q}$ forms a basis of $\mathbf{W} \cap \operatorname{Ker}(g)$.

Let $K^{\prime}=K, u_{1}, \ldots, u_{t}$ be a basis of $\operatorname{Ker}(g)$ extending K (where $t=$ $\operatorname{dim}(\operatorname{Ker}(g))-q=n-d-q)$. For $i=m^{\prime}+1, \ldots, m^{\prime}+t$, let C_{i} be the chain consisting of u_{i} (which is an eigenvector corresponding to λ), and let $m=m^{\prime}+t$.

We found chains C_{1}, \ldots, C_{m} of generalized eigenvectors such that their union contains n vectors. To show that it forms a basis, it suffices to argue that these vectors are linearly independent. Consider any $p=\sum_{i=1}^{q} \alpha_{i} z_{i}+$ $\sum_{i=1}^{t} \beta_{i} u_{i}+w$ for some $w \in \mathbf{W}$, and let $u=\sum_{i=1}^{t} \beta_{i} u_{i}$. Note that $g(p) \in \mathbf{W}$, and observe that for $i=1, \ldots, q$, the i-th coordinate of $g(p)$ with respect to the basis B^{\prime} is equal to α_{i}. Hence, if $p=o$, then $\alpha_{1}=\ldots=\alpha_{q}=0$, and thus $w=p-u=-u$. Furthermore, $u \in \operatorname{Ker}(g)$, and thus $g(u)=o$, and if $p=o$, then $g(w)=-g(u)=o$, and $w \in \operatorname{Ker}(g) \cap \mathbf{W}=\operatorname{span}(K)$. However, then $\beta_{1}=\ldots=\beta_{t}=0$ and $w=o$, since K^{\prime} is a basis of $\operatorname{Ker}(g)$.
Theorem 8. Every square matrix A is similar to a matrix in Jordan normal form.

Proof. Let $f(x)=A x$. Let C_{1}, \ldots, C_{m} be chains of generalized eigenvectors of f forming a basis B of \mathbf{C}^{n}. If $C_{1}=v_{1}, \ldots, v_{k}$, then $f\left(v_{1}\right)=\lambda v_{1}$ and $f\left(v_{i}\right)=\lambda v_{i}+v_{i-1}$ for $i=2, \ldots, k$ and some eigenvalue λ. Hence, the first column of $[f]_{B, B}$ is λe_{1} and the i-th column of $[f]_{B, B}$ is $\lambda e_{i}+e_{i-1}$ for $i=2, \ldots, k$. Therefore, the first k columns of $[f]_{B, B}$ are formed by $J_{k}(\lambda)$ padded from below by zeros. Similarly, we conclude that $[f]_{B, B}$ is in Jordan
normal form, with m blocks corresponding to the chains C_{1}, \ldots, C_{m}. Note that $[f]_{B, B}$ is similar to A.

Observation 9. If A is similar to a matrix in Jordan normal form that contains t Jordan λ-blocks of total size m, then λ is an eigenvalue of A with algebraic multiplicity m and geometric multiplicity t. Consequently, the geometric multiplicity of any eigenvalue is at most as large as its algebraic multiplicity.

Example 3. Find the Jordan normal form of the matrix

$$
A=\left(\begin{array}{ccc}
3 & 1 & 2 \\
3 & 3 & 4 \\
-2 & -1 & -1
\end{array}\right)
$$

We know that A has an eigenvalue 1 of algebraic multiplicity 1 and an eigenvalue 2 of algebraic multiplicity 2 and geometric multiplicity 1. Therefore, the Jordan normal form of A is

$$
D=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

The eigenvectors $(0,-2,1)$ (eigenvalue 1) and $(1,1,-1)$ (eigenvalue 2) form the first elements of the chains of generalized eigenvectors. The second element v for the eigenvalue 2 must satisfy $(A-2 I) v=(1,1,-1)^{T}$, which has a solution $v=(-1,0,1)$. Hence $A=C D C^{-1}$, where

$$
C=\left(\begin{array}{ccc}
0 & 1 & -1 \\
-2 & 1 & 0 \\
1 & -1 & 1
\end{array}\right)
$$

Example 4. Solve the system of linear differential equations

$$
\begin{aligned}
f^{\prime} & =3 f+g+2 h \\
g^{\prime} & =3 f+3 g+4 h \\
h^{\prime} & =-2 f-g-h
\end{aligned}
$$

for functions $f, g, h: \mathbf{R} \rightarrow \mathbf{R}$.
Note that $\frac{d}{d x}(f, g, h)^{T}=\left(f^{\prime}, g^{\prime}, h^{\prime}\right)^{T}=A(f, g, h)^{T}=C D C^{-1}(f, g, h)^{T}$ for the matrices A, C, and D from Example 3. Equivalently, $\frac{d}{d x} C^{-1}(f, g, h)^{T}=$
$D C^{-1}(f, g, h)^{T}$. Let $\left(f_{1}, g_{1}, h_{1}\right)^{T}=C^{-1}(f, g, h)^{T}$; hence, we need to solve the system $\frac{d}{d x}\left(f_{1}, g_{1}, h_{1}\right)^{T}=D\left(f_{1}, g_{1}, h_{1}\right)^{T}$, i.e.,

$$
\begin{aligned}
f_{1}^{\prime} & =f_{1} \\
g_{1}^{\prime} & =2 g_{1}+h_{1} \\
h_{1}^{\prime} & =2 h_{1}
\end{aligned}
$$

The general solution for the equation $r^{\prime}=\alpha r$ is $r(x)=C e^{\alpha x}$ for any constant C. Hence, $f_{1}(x)=C_{1} e^{x}$ and $h_{1}(x)=C_{2} e^{2 x}$. Then, $g_{1}^{\prime}=2 g_{1}+C_{2} e^{2 x}$, which has solution $g_{1}(x)=C_{2} x e^{2 x}+C_{3} e^{2 x}$ for any constant C_{3}. Therefore, the solution is $\left(f_{1}, g_{1}, h_{1}\right)=C_{1}\left(e^{x}, 0,0\right)+C_{2}\left(0, x e^{2 x}, e^{2 x}\right)+C_{3}\left(0, e^{2 x}, 0\right)$, i.e., any element of

$$
\operatorname{span}\left(\left(e^{x}, 0,0\right),\left(0, x e^{2 x}, e^{2 x}\right),\left(0, e^{2 x}, 0\right)\right)
$$

Hence $(f, g, h)^{T}=C\left(f_{1}, g_{1}, h_{1}\right)^{T}$ can be any element of

$$
\begin{gathered}
\operatorname{span}\left(C\left(e^{x}, 0,0\right)^{T}, C\left(0, x e^{2 x}, e^{2 x}\right)^{T}, C\left(0, e^{2 x}, 0\right)^{T}\right)= \\
\operatorname{span}\left(\left(0,-2 e^{x}, e^{x}\right)^{T},\left((x-1) e^{2 x}, x e^{2 x},(1-x) e^{2 x}\right)^{T},\left(e^{2 x}, e^{2 x},-e^{2 x}\right)^{T}\right) .
\end{gathered}
$$

Observation 10. For any $n \geq 1$, we have

$$
\left[J_{k}(\lambda)\right]^{n}=\left(\begin{array}{ccccccc}
\lambda^{n} & \binom{n}{1} \lambda^{n-1} \\
0 & \lambda^{n} & \left(\begin{array}{c}
n \\
2 \\
2 \\
n \\
1
\end{array}\right) \lambda^{n-2} & \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} & \ldots & \\
0 & 0 & \lambda^{n} & \binom{n}{1} \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} & \ldots \\
0 & 0 & \ldots
\end{array}\right) .
$$

Definition 6. For a square matrix A, let

$$
\exp (A)=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

Observation 11. If $A=C D C^{-1}$, then $\exp (A)=C \exp (D) C^{-1}$,

$$
\exp \left(J_{k}(\lambda)\right)=\left(\begin{array}{cccccc}
e^{\lambda} & \frac{e^{\lambda}}{1!} & \frac{e^{\lambda}}{2!} & & \cdots & \\
0 & e^{\lambda} & \frac{e^{\lambda}}{1!} & \frac{e^{\lambda}}{2!} & \cdots \\
0 & 0 & e^{\lambda} & \frac{e^{\lambda}}{1!} & \frac{e^{\lambda}}{2!} & \cdots \\
& & & \cdots & &
\end{array}\right)
$$

and

$$
\exp \left(J_{k}(\lambda) x\right)=\left(\begin{array}{cccccc}
e^{\lambda x} & \frac{x e^{\lambda x}}{1!} & \frac{x^{2} e^{\lambda x}}{2} & & \ldots & \\
0 & e^{\lambda x} & \frac{x e^{\lambda x}}{1!} & \frac{x^{2} e^{\lambda x}}{2!} & \cdots \\
0 & 0 & e^{\lambda x} & \frac{x e^{\lambda x}}{1!} & \frac{x^{2} e^{\lambda x}}{2!} & \cdots \\
& & & \cdots & &
\end{array}\right)
$$

Example 5. The solutions to a system of differential equations $v^{\prime}=A v$ are $v(x) \in \operatorname{Col}(\exp (A x))$.

In Example 4, we have

$$
\exp (A x)=C \exp (D x) C^{-1}=C\left(\begin{array}{ccc}
e^{x} & 0 & 0 \\
0 & e^{2 x} & x e^{2 x} \\
0 & 0 & e^{2 x}
\end{array}\right) C^{-1}
$$

and thus the set of solutions is

$$
(f, g, h)^{T} \in \operatorname{Col}\left[C\left(\begin{array}{ccc}
e^{x} & 0 & 0 \\
0 & e^{2 x} & x e^{2 x} \\
0 & 0 & e^{2 x}
\end{array}\right)\right]
$$

Lemma 12. For any polynomial p and an $n \times n$ matrix A, if $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A listed with their algebraic multiplicities, then $p\left(\lambda_{1}\right), \ldots$, $p\left(\lambda_{n}\right)$ are the eigenvalues of $p(A)$ listed with their algebraic multiplicities.
Proof. By Lemma 1, Observation 3 and Theorem 8, it suffices to prove this for matrices in Jordan normal form. Suppose that A_{1}, \ldots, A_{m} are the Jordan blocks of A. Then $p(A)$ is a matrix consisting of blocks $p\left(A_{1}\right), \ldots, p\left(A_{m}\right)$ on the diagonal, and the list of eigenvalues of $p(A)$ is equal to the concatenation of the lists of eigenvalues of $p\left(A_{1}\right), \ldots, p\left(A_{m}\right)$. Therefore, it suffices to prove the claim for a Jordan block $J_{k}(\lambda)$. By Observation 10, the matrix $p\left(J_{k}(\lambda)\right)$ is upper triangular and its entries on the diagonal are all equal to $p(\lambda)$, and thus it has eigenvalue $p(\lambda)$ with the algebraic multiplicity k.

4 Cayley-Hamilton theorem

Theorem 13 (Cayley-Hamilton theorem). If p is the characteristic polynomial of an $n \times n$ matrix A, then $p(A)=0$.
Proof. By Lemma 1, Observation 3 and Theorem 8, it suffices to prove this for matrices in Jordan normal form. Suppose that A_{1}, \ldots, A_{m} are the Jordan blocks of A. Then $p(A)$ is a matrix consisting of blocks $p\left(A_{1}\right), \ldots, p\left(A_{m}\right)$ on the diagonal, and p is the product of characteristic polynomials of A_{1}, \ldots, A_{m}. Hence, it suffices to show that $p_{i}\left(A_{i}\right)=0$ for the characteristic polynomial p_{i} of A_{i}. However, if $A_{i}=J_{k}(\lambda)$, then $p_{i}(x)=(\lambda-x)^{k}$, and $p_{i}\left(A_{i}\right)=\left(\lambda I-A_{i}\right)^{k}=0$.
Example 6. Let $A=\left(\begin{array}{ccc}3 & 1 & 2 \\ 3 & 3 & 4 \\ -2 & -1 & -1\end{array}\right)$. The characteristic polynomial of A is $p(x)=-x^{3}+5 x^{2}-8 x+4$.

Note that $A^{2}=A A=\left(\begin{array}{ccc}8 & 4 & 8 \\ 10 & 8 & 14 \\ -7 & -4 & -7\end{array}\right)$ and $A^{3}=A^{2} A=\left(\begin{array}{ccc}20 & 12 & 24 \\ 26 & 20 & 38 \\ -19 & -12 & -23\end{array}\right)$.
We have $p(A)=-A^{3}+5 A^{2}-8 A+4 I=0$.
Corollary 14. Let A be an $n \times n$ matrix. Then for any $m \geq 0$, the matrix A^{m} is a linear combination of $I, A, A^{2}, \ldots, A^{n-1}$, and thus the space of matrices expressible as polynomials in A has dimension at most n. Furthermore, if A is regular, then A^{-1} is contained in this space as well.

