Determinants

Zdeněk Dvořák

March 24, 2015

Definition 1. Let A be an $n \times n$ matrix. The determinant of A is

$$
\operatorname{det}(A)=\sum_{\pi: \text { permutation of }\{1, \ldots, n\}} \operatorname{sgn}(\pi) A_{1, \pi(1)} A_{2, \pi(2)} \ldots A_{n, \pi(n)} .
$$

- Determinant of an upper-triangular matrix is the product of its diagonal elements.
- Adding a linear combination of rows to another row does not change the determinant.
- Determinant is linear in each row.
- Swapping two rows changes the sign of the determinant.

1 Further properties of determinants

Lemma 1. For an $n \times n$ matrix $A, \operatorname{det}(A) \neq 0$ if and only if A is regular.
Proof. By inspection of the Gauss-Jordan elimination algorithm, $\operatorname{det}(A)=$ $\alpha \operatorname{det}(\operatorname{RREF}(A))$ for some $\alpha \neq 0$. Hence, $\operatorname{det}(A) \neq 0$ if and only if all diagonal entries of $\operatorname{RREF}(A)$ are non-zero, which is equivalent to A being regular.

Lemma 2. For any $n \times n$ matrix, $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$.

Proof.

$$
\begin{aligned}
\operatorname{det}\left(A^{T}\right) & =\sum_{\pi} \operatorname{sgn}(\pi)\left(A^{T}\right)_{1, \pi(1)} \ldots\left(A^{T}\right)_{n, \pi(n)} \\
& =\sum_{\pi} \operatorname{sgn}(\pi) A_{\pi(1), 1} \ldots A_{\pi(n), n} \\
& =\sum_{\pi} \operatorname{sgn}(\pi) A_{1, \pi^{-1}(1)} \ldots A_{n, \pi^{-1}(n)} \\
& =\sum_{\pi} \operatorname{sgn}\left(\pi^{-1}\right) A_{1, \pi^{-1}(1)} \ldots A_{n, \pi^{-1}(n)} \\
& =\sum_{\sigma} \operatorname{sgn}(\sigma) A_{1, \sigma(1)} \ldots A_{n, \sigma(n)} \\
& =\operatorname{det}(A) .
\end{aligned}
$$

Hence, everything we proved for the effect of row operations on the determinant also holds for column operations.
Definition 2. For an $n \times m$ matrix A and integers i and j, let $A^{i j}$ denote the $(n-1) \times(m-1)$ matrix obtained from A by removing the i-th row and the j-th column.

Lemma 3 (Recursive formula for determinant). Let A be an $n \times n$-matrix, and let $i \in\{1, \ldots, n\}$. Then

$$
\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} A_{i j} \operatorname{det}\left(A^{i j}\right)
$$

Proof. Suppose first that the i-th row contains only one non-zero entry $A_{i j}$. Let B be the matrix obtained from A by swapping the i-th row with the ($i-1$)-st, then with $(i-2)$-nd, \ldots, and the j-th column with the $(j-1)$ st, \ldots, so that $B_{1, \star}=\left(A_{i j}, 0,0, \ldots\right)$ and $B^{11}=A^{i j}$. Note that $\operatorname{det}(B)=$ $(-1)^{i+j} \operatorname{det}(A)$. Furthermore, in the definition of $\operatorname{det}(B)$, only the terms with $\pi(1)=1$ contribute a non-zero amount to the determinant, and thus $\operatorname{det}(B)=B_{11} \operatorname{det}\left(B^{11}\right)$. It follows that $\operatorname{det}(A)=(-1)^{i+j} A_{i j} \operatorname{det}\left(A^{i j}\right)$.

In general, the formula then follows from the linearity of the determinant in the i-th row.

Example 1. Determine

$$
\operatorname{det}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 1 \\
2 & 1 & 2 & 1 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 1 \\
2 & 1 & 2 & 1 \\
1 & 2 & 3 & 4
\end{array}\right) & =\operatorname{det}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 2 & 3 & 4
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 3 & 4
\end{array}\right)-\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 2 & 4
\end{array}\right) \\
& =\left[-\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right)\right]+\operatorname{det}\left(\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right) \\
& =[-1+3]+2=4
\end{aligned}
$$

Lemma 4. For any $n \times n$ matrix A and elementary operation matrix Q, $\operatorname{det}(Q A)=\operatorname{det}(Q) \operatorname{det}(A)$.

Proof. Let us distinguish the cases:

- If Q is the matrix of the operation of the addition of the r-th row to the s-th row, then $Q_{i i}=1$ for $i=1, \ldots, n, Q_{s, r}=1$, and all other entries of Q are 0 . Hence, Q is either upper triangular or lower triangular, and thus $\operatorname{det}(Q)$ is the product of its diagonal entries, which is 1 .
On the other hand, $Q A$ is obtained from A by adding the r-th row to the s-th row, and thus $\operatorname{det}(Q A)=\operatorname{det}(A)=\operatorname{det}(Q) \operatorname{det}(A)$.
- If Q is the matrix of the operation of multiplication of the r-th row by a non-zero constant α, then $Q_{i i}=1$ for $i \neq r, Q_{r r}=\alpha$ and all other entries of Q are 0 , and thus $\operatorname{det}(Q)=\alpha$.
On the other hand, $Q A$ is obtained from A by multiplying the r-th row by α, and thus $\operatorname{det}(Q A)=\alpha \operatorname{det}(A)=\operatorname{det}(Q) \operatorname{det}(A)$.
- If Q is the matrix of the operation of exchanging the r-th row and the s-th row, then Q is obtained from I by exchanging the r-th row and the s-th row, and thus $\operatorname{det}(Q)=-\operatorname{det}(I)=-1$.
On the other hand, $Q A$ is obtained from A by exchanging the r-th row and the s-th row, and thus $\operatorname{det}(Q A)=-\operatorname{det}(A)=\operatorname{det}(Q) \operatorname{det}(A)$.

Lemma 5. For any $n \times n$ matrices A and B,

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof. If A is not regular, then $\operatorname{det}(A)=0$, and $A B$ is not regular, and $\operatorname{det}(A B)=0=\operatorname{det}(A) \operatorname{det}(B)$.

If A is regular, then $A=Q_{1} \ldots Q_{n}$ for some elementary operation matrices Q_{1}, \ldots, Q_{n}. Hence,

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left(Q_{1} Q_{2} \ldots Q_{n} B\right) \\
& =\operatorname{det}\left(Q_{1}\right) \operatorname{det}\left(Q_{2} \ldots Q_{n} B\right) \\
& =\operatorname{det}\left(Q_{1}\right) \ldots \operatorname{det}\left(Q_{n}\right) \operatorname{det}(B) \\
& =\operatorname{det}\left(Q_{1} \ldots Q_{n}\right) \operatorname{det}(B) \\
& =\operatorname{det}(A) \operatorname{det}(B) .
\end{aligned}
$$

Corollary 6. For any regular matrix A, $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.
Proof. $\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)=\operatorname{det}\left(A^{-1} A\right)=\operatorname{det}(I)=1$.
Corollary 7. Determinant of an orthogonal matrix is either 1 or -1 .
Proof. If Q is orthogonal, then $Q Q^{T}=I$, and thus $1=\operatorname{det}(I)=\operatorname{det}(Q) \operatorname{det}\left(Q^{T}\right)=$ $\operatorname{det}(Q)^{2}$.

2 Determinants and systems of equations

Theorem 8 (Cramer's rule). Let A be a regular matrix. If $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ satisfies $A x=b$, and $A_{i \rightarrow b}$ is the matrix obtained from A by replacing the i-th column by b, then

$$
x_{i}=\frac{\operatorname{det}\left(A_{i \rightarrow b}\right)}{\operatorname{det}(A)} .
$$

Proof. Since $b=A x=x_{1} A_{\star, 1}+\ldots+x_{n} A_{\star, n}$, the linearity of the determinant in the i-th column implies that

$$
\operatorname{det}\left(A_{i \rightarrow b}\right)=x_{1} \operatorname{det}\left(A_{i \rightarrow A_{\star, 1}}\right)+\ldots+x_{n} \operatorname{det}\left(A_{i \rightarrow A_{\star, n}}\right)
$$

However, if $i \neq j$, then $A_{i \rightarrow A_{\star, j}}$ has two identical columns, and thus $\operatorname{det}\left(A_{i \rightarrow A_{\star, j}}\right)=$ 0 . Therefore,

$$
\operatorname{det}\left(A_{i \rightarrow b}\right)=x_{i} \operatorname{det}\left(A_{i \rightarrow A_{*, i}}\right)=x_{i} \operatorname{det}(A) .
$$

Example 2. Solve the system of equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=5 \\
& 2 x_{1}+x_{2}-x_{3}=0 \\
& 3 x_{1}+2 x_{2}+x_{3}=8 \\
& \operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
3 & 2 & 1
\end{array}\right)=-1 \\
& x_{1}=\frac{\operatorname{det}\left(\begin{array}{ccc}
5 & 1 & 1 \\
0 & 1 & -1 \\
8 & 2 & 1
\end{array}\right)}{-1}=\frac{-1}{-1}=1 \\
& x_{2}=\frac{\operatorname{det}\left(\begin{array}{ccc}
1 & 5 & 1 \\
2 & 0 & -1 \\
3 & 8 & 1
\end{array}\right)}{-1}=\frac{-1}{-1}=1 \\
& x_{3}=\frac{\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 5 \\
2 & 1 & 0 \\
3 & 2 & 8
\end{array}\right)}{-1}=\frac{-3}{-1}=3
\end{aligned}
$$

Theorem 9. If A is a regular matrix, then

$$
\left(A^{-1}\right)_{i j}=(-1)^{i+j} \frac{\operatorname{det}\left(A^{j i}\right)}{\operatorname{det}(A)} .
$$

Proof. We have $A A^{-1}=I$, and thus $A\left(A^{-1}\right)_{\star, j}=I_{\star, j}=e_{j}$. By Theorem 8,

$$
\left(A^{-1}\right)_{i j}=\frac{\operatorname{det}\left(A_{i \rightarrow e_{j}}\right)}{\operatorname{det}(A)}
$$

and $\operatorname{det}\left(A_{i \rightarrow e_{j}}\right)=(-1)^{i+j} \operatorname{det}\left(A^{j i}\right)$ by Lemma 3 .
Example 3. Determine the inverse to $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 0 & 1\end{array}\right)$.

$$
\operatorname{det}(A)=2
$$

$$
\begin{array}{lll}
\operatorname{det}\left(A^{11}\right)=2 & \operatorname{det}\left(A^{21}\right)=1 & \operatorname{det}\left(A^{31}\right)=1 \\
\operatorname{det}\left(A^{12}\right)=-2 & \operatorname{det}\left(A^{22}\right)=0 & \operatorname{det}\left(A^{32}\right)=2 \\
\operatorname{det}\left(A^{13}\right)=-2 & \operatorname{det}\left(A^{23}\right)=-1 & \operatorname{det}\left(A^{33}\right)=1
\end{array}
$$

Hence,

$$
A^{-1}=\frac{1}{2}\left(\begin{array}{ccc}
2 & -1 & 1 \\
2 & 0 & -2 \\
-2 & 1 & 1
\end{array}\right) .
$$

Corollary 10. Let A be a regular $n \times n$ matrix with integer coefficients. Then A^{-1} has integral coefficients if and only if $|\operatorname{det}(A)|=1$. Equivalently, the system $A x=b$ has integral solution for all integral right-hand sides b if and only if $|\operatorname{det}(A)|=1$.

Proof. If $|\operatorname{det}(A)|=1$, then the formula from Theorem 9 gives integral coefficients for A^{-1}. Conversely, if A^{-1} has integral coefficients, then $\operatorname{det}\left(A^{-1}\right)$ is an integer, and since $\operatorname{det}(A)$ is also an integer and $\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$, it follows that $|\operatorname{det}(A)|=1$.

If A^{-1} is integral, then $x=A^{-1} b$ is integral. Furthermore, in the system $A x=e_{j}$, we have $x_{i}=\left(A^{-1} e_{j}\right)_{i}=\left(A^{-1}\right)_{i j}$, and thus if the system $A x=b$ has integral solution for $b=e_{1}, \ldots, e_{n}$, then A^{-1} is integral.

