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Definition 1. Let A be an n× n matrix. The determinant of A is

det(A) =
∑

π: permutation of {1, . . . , n}

sgn(π)A1,π(1)A2,π(2) . . . An,π(n).

• Determinant of an upper-triangular matrix is the product of its diago-
nal elements.

• Adding a linear combination of rows to another row does not change
the determinant.

• Determinant is linear in each row.

• Swapping two rows changes the sign of the determinant.

1 Further properties of determinants

Lemma 1. For an n× n matrix A, det(A) 6= 0 if and only if A is regular.

Proof. By inspection of the Gauss-Jordan elimination algorithm, det(A) =
α det(RREF(A)) for some α 6= 0. Hence, det(A) 6= 0 if and only if all
diagonal entries of RREF(A) are non-zero, which is equivalent to A being
regular.

Lemma 2. For any n× n matrix, det(A) = det(AT ).
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Proof.

det(AT ) =
∑
π

sgn(π)(AT )1,π(1) . . . (A
T )n,π(n)

=
∑
π

sgn(π)Aπ(1),1 . . . Aπ(n),n

=
∑
π

sgn(π)A1,π−1(1) . . . An,π−1(n)

=
∑
π

sgn(π−1)A1,π−1(1) . . . An,π−1(n)

=
∑
σ

sgn(σ)A1,σ(1) . . . An,σ(n)

= det(A).

Hence, everything we proved for the effect of row operations on the de-
terminant also holds for column operations.

Definition 2. For an n ×m matrix A and integers i and j, let Aij denote
the (n− 1)× (m− 1) matrix obtained from A by removing the i-th row and
the j-th column.

Lemma 3 (Recursive formula for determinant). Let A be an n × n-matrix,
and let i ∈ {1, . . . , n}. Then

det(A) =
n∑
j=1

(−1)i+jAij det(Aij).

Proof. Suppose first that the i-th row contains only one non-zero entry Aij.
Let B be the matrix obtained from A by swapping the i-th row with the
(i − 1)-st, then with (i − 2)-nd, . . . , and the j-th column with the (j − 1)-
st, . . . , so that B1,? = (Aij, 0, 0, . . .) and B11 = Aij. Note that det(B) =
(−1)i+j det(A). Furthermore, in the definition of det(B), only the terms
with π(1) = 1 contribute a non-zero amount to the determinant, and thus
det(B) = B11 det(B11). It follows that det(A) = (−1)i+jAij det(Aij).

In general, the formula then follows from the linearity of the determinant
in the i-th row.

Example 1. Determine

det


1 1 1 1
1 2 2 1
2 1 2 1
1 2 3 4

 .
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det


1 1 1 1
1 2 2 1
2 1 2 1
1 2 3 4

 = det


1 1 1 1
0 1 1 0
1 0 1 0
1 2 3 4


= det

 1 1 1
1 1 0
1 3 4

− det

 1 1 1
1 0 0
1 2 4


=

[
− det

(
1 1
3 4

)
+ det

(
1 1
1 4

)]
+ det

(
1 1
2 4

)
= [−1 + 3] + 2 = 4

Lemma 4. For any n × n matrix A and elementary operation matrix Q,
det(QA) = det(Q) det(A).

Proof. Let us distinguish the cases:

• If Q is the matrix of the operation of the addition of the r-th row to the
s-th row, then Qii = 1 for i = 1, . . . , n, Qs,r = 1, and all other entries
of Q are 0. Hence, Q is either upper triangular or lower triangular, and
thus det(Q) is the product of its diagonal entries, which is 1.

On the other hand, QA is obtained from A by adding the r-th row to
the s-th row, and thus det(QA) = det(A) = det(Q) det(A).

• If Q is the matrix of the operation of multiplication of the r-th row by
a non-zero constant α, then Qii = 1 for i 6= r, Qrr = α and all other
entries of Q are 0, and thus det(Q) = α.

On the other hand, QA is obtained from A by multiplying the r-th row
by α, and thus det(QA) = α det(A) = det(Q) det(A).

• If Q is the matrix of the operation of exchanging the r-th row and the
s-th row, then Q is obtained from I by exchanging the r-th row and
the s-th row, and thus det(Q) = − det(I) = −1.

On the other hand, QA is obtained from A by exchanging the r-th row
and the s-th row, and thus det(QA) = − det(A) = det(Q) det(A).

Lemma 5. For any n× n matrices A and B,

det(AB) = det(A) det(B).
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Proof. If A is not regular, then det(A) = 0, and AB is not regular, and
det(AB) = 0 = det(A) det(B).

If A is regular, then A = Q1 . . . Qn for some elementary operation matrices
Q1, . . . , Qn. Hence,

det(AB) = det(Q1Q2 . . . QnB)

= det(Q1) det(Q2 . . . QnB)

= det(Q1) . . . det(Qn) det(B)

= det(Q1 . . . Qn) det(B)

= det(A) det(B).

Corollary 6. For any regular matrix A, det(A−1) = 1/ det(A).

Proof. det(A−1) det(A) = det(A−1A) = det(I) = 1.

Corollary 7. Determinant of an orthogonal matrix is either 1 or −1.

Proof. IfQ is orthogonal, thenQQT = I, and thus 1 = det(I) = det(Q) det(QT ) =
det(Q)2.

2 Determinants and systems of equations

Theorem 8 (Cramer’s rule). Let A be a regular matrix. If x = (x1, . . . , xn)T

satisfies Ax = b, and Ai→b is the matrix obtained from A by replacing the
i-th column by b, then

xi =
det(Ai→b)

det(A)
.

Proof. Since b = Ax = x1A?,1 + . . .+xnA?,n, the linearity of the determinant
in the i-th column implies that

det(Ai→b) = x1 det(Ai→A?,1) + . . .+ xn det(Ai→A?,n).

However, if i 6= j, thenAi→A?,j
has two identical columns, and thus det(Ai→A?,j

) =
0. Therefore,

det(Ai→b) = xi det(Ai→A?,i
) = xi det(A).
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Example 2. Solve the system of equations

x1 + x2 + x3 = 5

2x1 + x2 − x3 = 0

3x1 + 2x2 + x3 = 8

det

 1 1 1
2 1 −1
3 2 1

 = −1

x1 =

det

 5 1 1
0 1 −1
8 2 1


−1

=
−1

−1
= 1

x2 =

det

 1 5 1
2 0 −1
3 8 1


−1

=
−1

−1
= 1

x3 =

det

 1 1 5
2 1 0
3 2 8


−1

=
−3

−1
= 3

Theorem 9. If A is a regular matrix, then

(A−1)ij = (−1)i+j
det(Aji)

det(A)
.

Proof. We have AA−1 = I, and thus A(A−1)?,j = I?,j = ej. By Theorem 8,

(A−1)ij =
det(Ai→ej)

det(A)
,

and det(Ai→ej) = (−1)i+j det(Aji) by Lemma 3.

Example 3. Determine the inverse to A =

 1 1 1
1 2 3
1 0 1

.

det(A) = 2
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det(A11) = 2 det(A21) = 1 det(A31) = 1

det(A12) = −2 det(A22) = 0 det(A32) = 2

det(A13) = −2 det(A23) = −1 det(A33) = 1

Hence,

A−1 =
1

2

 2 −1 1
2 0 −2
−2 1 1

 .

Corollary 10. Let A be a regular n × n matrix with integer coefficients.
Then A−1 has integral coefficients if and only if | det(A)| = 1. Equivalently,
the system Ax = b has integral solution for all integral right-hand sides b if
and only if | det(A)| = 1.

Proof. If | det(A)| = 1, then the formula from Theorem 9 gives integral
coefficients forA−1. Conversely, ifA−1 has integral coefficients, then det(A−1)
is an integer, and since det(A) is also an integer and det(A) det(A−1) = 1, it
follows that | det(A)| = 1.

If A−1 is integral, then x = A−1b is integral. Furthermore, in the system
Ax = ej, we have xi = (A−1ej)i = (A−1)ij, and thus if the system Ax = b
has integral solution for b = e1, . . . , en, then A−1 is integral.
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