Least squares method, pseudoinverse. Orthogonal matrices and isometries.

Zdeněk Dvořák

March 16, 2016

Definition 1. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension. For $v \in \mathbf{V}$, the <u>orthogonal projection of v on \mathbf{U} </u> is the vector $p \in \mathbf{U}$ such that $v - p \in \mathbf{U}^{\perp}$.

Lemma 1. Let V be an inner product space and let U be its subspace of finite dimension. Let $p \in U$ be the projection of $v \in V$. Then p is the vector of U closest to v, that is,

$$||v - x|| > ||v - p||$$

for every $x \in \mathbf{U} \setminus \{p\}$.

Lemma 2. Let V be an inner product space and let U be its subspace of finite dimension. Let $B = u_1, \ldots, u_k$ be a (not necessarily othonormal) basis of U. Let $p \in U$ be the projection of $v \in V$ on U. Let

$$G = \begin{pmatrix} \langle u_1, u_1 \rangle & \langle u_2, u_1 \rangle & \dots & \langle u_k, u_1 \rangle \\ \langle u_1, u_2 \rangle & \langle u_2, u_2 \rangle & \dots & \langle u_k, u_2 \rangle \\ & & \ddots & \\ \langle u_1, u_k \rangle & \langle u_2, u_k \rangle & \dots & \langle u_k, u_k \rangle \end{pmatrix}$$

Then G is a regular matrix and

$$G[p]_B^T = (\langle v, u_1 \rangle, \dots, \langle v, u_k \rangle)^T.$$

Proof. Let $[p]_B = (\alpha_1, \ldots, \alpha_k)$. For $i = 1, \ldots, k$, we have

$$(G[p]_B^T)_i = \langle u_1, u_i \rangle \,\alpha_1 + \langle u_2, u_i \rangle \,\alpha_2 + \ldots + \langle u_k, u_i \rangle \,\alpha_k$$

= $\langle \alpha_1 u_1 + \ldots + \alpha_k u_k, u_i \rangle = \langle p, u_i \rangle.$

Since $v - p \in \mathbf{U}^{\perp}$, we have $\langle v - p, u_i \rangle = 0$ for $i = 1, \ldots, k$, and thus $\langle p, u_i \rangle = \langle v, u_i \rangle$. Hence, the equality follows.

Suppose that $x = (\beta_1, \ldots, \beta_n)^T$ is a solution of the system Gx = 0. Let $u = \beta_1 u_1 + \ldots + \beta_k u_k$. Then, $\langle u, u_i \rangle = \beta_1 \langle u_1, u_i \rangle + \ldots + \beta_k \langle u_k, u_i \rangle = 0$ for $i = 1, \ldots, k$, and thus $u \in \{u_1, \ldots, u_k\}^{\perp} = \mathbf{U}^{\perp}$. However, $u \in \operatorname{span}(u_1, \ldots, u_k) = \mathbf{U}$. Since $u \in \mathbf{U} \cap \mathbf{U}^{\perp}$, it follows that u = o, and thus $x = (0, \ldots, 0)$. Consequently, G is regular.

Example 1. Let $\mathbf{U} = span((1, 1, 1), (1, 2, 3))$ be a plane in \mathbf{R}^3 . Determine the distance of the point v = (3, 5, 1) from \mathbf{U} , without finding an orthogonal basis of \mathbf{U} .

Let $u_1 = (1, 1, 1)$ and $u_2 = (1, 2, 3)$. We have

 $G = \left(\begin{array}{cc} \langle u_1, u_1 \rangle & \langle u_2, u_1 \rangle \\ \langle u_1, u_2 \rangle & \langle u_2, u_2 \rangle \end{array}\right) = \left(\begin{array}{cc} 3 & 6 \\ 6 & 14 \end{array}\right)$

The solution to the system $Gx = (\langle v, u_1 \rangle, \langle v, u_2 \rangle)^T = (9, 16)$ is x = (5, -1). Hence, the projection of v on \mathbf{U} is $5u_1 - u_2 = (4, 3, 2)$, and the distance from v to \mathbf{U} is $||v - (4, 3, 2)|| = \sqrt{6}$.

Corollary 3. Consider the Euclidean space \mathbf{R}^n with the inner product defined as the dot product, and let \mathbf{U} be its subspace. Let $p : \mathbf{R}^n \to \mathbf{R}^n$ be the function that maps each vector to its projection on \mathbf{U} . Let $B = u_1, \ldots, u_k$ be a (not necessarily othonormal) basis of \mathbf{U} . Let $A = (u_1|u_2|\ldots|u_k)$. Then $p(v) = A(A^T A)^{-1}A^T v$, and thus $A(A^T A)^{-1}A^T$ is the matrix of the function p (with respect to the canonical basis of \mathbf{R}^n).

Proof. Let G be the matrix from Lemma 2. Note that $\langle u_i, u_j \rangle = u_i^T u_j$, and thus $G = A^T A$. Similarly, $b = (\langle v, u_1 \rangle, \dots, \langle v, u_k \rangle)^T = A^T v$. By Lemma 2, if the coordinates of p(v) with respect to the basis B are $(\alpha_1, \dots, \alpha_k)$, then $(\alpha_1, \dots, \alpha_k)^T = G^{-1}b = (A^T A)^{-1}A^T v$. It follows that $p(v) = \alpha_1 u_1 + \dots + \alpha_k u_k = A(\alpha_1, \dots, \alpha_k)^T = A(A^T A)^{-1}A^T$. \Box

1 Least squares method and pseudoinverse

Example 2. Suppose we measured the following dependence of some quantity on time:

Let $S = \{0, 1, 2, 3, 7\}$. Find the approximation of f by a quadratic polynomial p such that $\sum_{t \in S} (f(t) - p(t))^2$ is minimum.

Consider the space \mathbf{V} of functions $S \to \mathbf{R}$, with inner product $\langle g_1, g_2 \rangle = \sum_{t \in S} g_1(t)g_2(t)$. Let $p_1(t) = 1$, $p_2(t) = t$ and $p_3(t) = t^2$ be elements of \mathbf{V} . Any quadratic polynomial is a linear combination of p_1 , p_2 and p_3 . Hence, p is the projection of f on span (p_1, p_2, p_3) . Let

$$G = \begin{pmatrix} \langle p_1, p_1 \rangle & \langle p_2, p_1 \rangle & \langle p_3, p_1 \rangle \\ \langle p_1, p_2 \rangle & \langle p_2, p_2 \rangle & \langle p_3, p_2 \rangle \\ \langle p_1, p_3 \rangle & \langle p_2, p_3 \rangle & \langle p_3, p_3 \rangle \end{pmatrix} = \begin{pmatrix} 5 & 11 & 63 \\ 11 & 63 & 379 \\ 63 & 379 & 2499 \end{pmatrix}$$

and

$$b = (\langle f, p_1 \rangle, \langle f, p_2 \rangle, \langle f, p_3 \rangle)^T = (10.634, 47.095, 269.547)^T.$$

By Lemma 2, the coordinates of p with respect to the basis p_1 , p_2 , p_3 are the solution to the system Gx = b, which is

$$x \approx (-0.032, 1.146, -0.065)^T.$$

Hence, $p \approx -0.032 + 1.146t - 0.065t^2$.

Example 3. Another way of viewing Example 2: Suppose that $p = \alpha_0 + \alpha_1 t + \alpha_2 t^2$ for some (unknown) coefficients α_0 , α_1 and α_2 . Let

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 7 & 49 \end{pmatrix}$$

Then

$$(p(0), p(1), p(2), p(3), p(7))^T = A(\alpha_0, \alpha_1, \alpha_2)^T.$$

Ideally, we would like to have p = f, and thus $(\alpha_0, \alpha_1, \alpha_2)$ would be a solution to the system

$$A(\alpha_0, \alpha_1, \alpha_2)^T = (0.000, 0.998, 1.987, 2.855, 4.794)^T$$

However, this system has no solution, and thus we want to find $(\alpha_0, \alpha_1, \alpha_2)$ so that $A(\alpha_0, \alpha_1, \alpha_2)^T$ differs from $(0.000, 0.998, 1.987, 2.855, 4.794)^T$ (in the Euclidean norm) as little as possible.

Lemma 4. Let A be an $m \times n$ real matrix of rank n, let b be a column vector of m real numbers, and let x be such ||Ax - b|| is minimum. Then $x = (A^T A)^{-1} A^T b$.

Proof. Observe that Ax is the projection of b on the column space of A, and thus by Corollary 3,

$$Ax = A(A^T A)^{-1} A^T b.$$

By comparing the sides, we see that we can choose $x = (A^T A)^{-1} A^T b$. Note that x is unique, by the uniqueness property from Lemma 1 and the assumption that A has full column rank.

Let us remark that the previous lemma can be modified to handle the case when A does not have full column rank: then, x can be chosen as any of the (infinitely many) solutions to the system $A^T A x = A^T b$.

The matrix $(A^T A)^{-1} A^T$ is the <u>pseudoinverse</u> to A (and if A is regular, its pseudoinverse is equal to A^{-1}). The pseudoinverse can be defined (in a somewhat more complicated way) even if A does not have full column rank.

2 Orthogonal matrices and isometries

Definition 2. Let V be an inner product space over R. A function $f : V \to V$ is an isometry if ||f(x) - f(y)|| = ||x - y|| for every $x, y \in V$.

Examples: rotations, reflections, translations, ...

Proposition 5. Any isometry of an inner product space is an affine function; and thus, if $f : \mathbf{V} \to \mathbf{V}$ is an isometry and f(o) = o, then f is a linear function.

We skip the proof of this proposition, which requires a bit of math analysis.

Lemma 6. Let V be an inner product space over R. Let $f : V \to V$ be a linear function. The following claims are equivalent:

- 1. f is an isometry
- 2. f preserves the norm, that is, ||f(x)|| = ||x|| for every $x \in \mathbf{V}$.
- 3. f preserves the inner product, that is, $\langle f(x), f(y) \rangle = \langle x, y \rangle$ for every $x, y \in \mathbf{V}$.

Proof. Since f is linear, ||f(x) - f(y)|| = ||f(x-y)||. If f preserves the norm, then ||f(x-y)|| = ||x-y|| as required. Conversely, if f is an isometry, then ||f(x)|| = ||f(x) - f(o)|| = ||x - o|| = ||x||.

If f preserves the inner product, then $||f(x)|| = \sqrt{\langle f(x), f(x) \rangle} = \sqrt{\langle x, x \rangle} = ||x||$, and thus it preserves the norm. Conversely, if f preserves the norm, then $\langle f(x), f(y) \rangle = \frac{1}{2} (||f(x+y)||^2 - ||f(x)||^2 - ||f(y)||^2) = \frac{1}{2} (||x+y||^2 - ||x||^2 - ||y||^2) = \langle x, y \rangle.$

Lemma 6 shows that isometries also preserve angles.

Definition 3. A square matrix Q is orthogonal if $Q^T Q = I$.

Lemma 7. Let V be an inner product space over R. Let $f : V \to V$ be a linear function. Let $B = v_1, \ldots, v_n$ and C be orthonormal bases of V. Then f is an isometry if and only if $[f]_{B,C}$ is an orthogonal matrix.

Proof. Recall that if $(\alpha_1, \ldots, \alpha_n)$ and $(\beta_1, \ldots, \beta_n)$ are the coordinates of vectors x and y with respect to an orthonormal basis, then $\langle x, y \rangle = \alpha_1 \beta_1 + \ldots + \alpha_n \beta_n$. Hence, $\langle x, y \rangle = [x]_B[y]_B^T = [x]_C[y]_C^T$. Let $Q = [f]_{B,C}$.

Suppose that Q is orthogonal. Then $\langle f(x), f(y) \rangle = [f(x)]_C [f(y)]_C^T = (Q[x]_B^T)^T (Q[y]_B^T) = [x]_B (Q^T Q)[y]_B^T = [x]_B [y]_B^T = \langle x, y \rangle$, hence f preserves the inner product, and thus f is an isometry.

Conversely, suppose that f is an isometry, and thus f preserves the inner product. Hence, $\langle x, y \rangle = \langle f(x), f(y) \rangle = [x]_B (Q^T Q) [y]_B^T$ for every $x, y \in \mathbf{V}$, and in particular, $\langle v_i, v_j \rangle = [v_i]_B (Q^T Q) [v_j]_B^T = e_i (Q^T Q) e_j^T = (Q^T Q)_{ij}$. Since $\langle v_i, v_j \rangle = 0$ if $i \neq j$ and $\langle v_i, v_i \rangle = 1$ for all i, it follows that $Q^T Q$ is the identity matrix, and thus Q is orthogonal. \Box

Since id is an isometry, this implies that the transition matrix $[id]_{B,C}$ between orthonormal bases is orthogonal.

Lemma 8. For any $n \times n$ matrix Q, the following claims are equivalent:

- 1. Q is orthogonal.
- 2. Q is regular and $Q^{-1} = Q^T$.
- 3. Q^T is orthogonal.
- 4. $QQ^T = I$.
- 5. Q is regular and Q^{-1} is orthogonal.
- 6. The rows of Q form an orthonormal basis of \mathbf{R}^n .
- 7. The columns of Q form an orthonormal basis of \mathbf{R}^n .

Proof. From the definition of the orthogonal matrix, $Q^T Q = I$, and thus $Q^{-1} = Q^T$. Hence, $I = QQ^{-1} = QQ^T = (Q^T)^T Q^T$, and thus Q^T is orthogonal. Also, $(Q^{-1})^T = (Q^T)^T = Q$, and thus $(Q^{-1})^T Q^{-1} = QQ^{-1} = I$ and Q^{-1} is orthogonal. The reverse implications follow by symmetry.

Also, note that $(Q^T Q)_{ij}$ is equal to the dot product of *i*-th and the *j*-th column of Q. Hence, $Q^T Q = I$ if and only if the set of columns of Q is orthonormal, and similarly $QQ^T = I$ if and only if the set of rows of Q is orthonormal.

Lemma 9. The product of two orthogonal matrices is orthogonal.

Proof. If $Q_1^T Q_1 = I$ and $Q_2^T Q_2 = I$, then $(Q_1 Q_2)^T (Q_1 Q_2) = Q_2^T Q_1^T Q_1 Q_2 = Q_2^T Q_2 = I$.