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Definition 1. Let V be an inner product space and let U be its subspace
of finite dimension. For v ∈ V, the orthogonal projection of v on U is the
vector p ∈ U such that v − p ∈ U⊥.

Lemma 1. Let V be an inner product space and let U be its subspace of
finite dimension. Let p ∈ U be the projection of v ∈ V. Then p is the vector
of U closest to v, that is,

‖v − x‖ > ‖v − p‖

for every x ∈ U \ {p}.

Lemma 2. Let V be an inner product space and let U be its subspace of
finite dimension. Let B = u1, . . . , uk be a (not necessarily othonormal) basis
of U. Let p ∈ U be the projection of v ∈ V on U. Let

G =


〈u1, u1〉 〈u2, u1〉 . . . 〈uk, u1〉
〈u1, u2〉 〈u2, u2〉 . . . 〈uk, u2〉

. . .
〈u1, uk〉 〈u2, uk〉 . . . 〈uk, uk〉

 .

Then G is a regular matrix and

G[p]TB = (〈v, u1〉 , . . . , 〈v, uk〉)T .

Proof. Let [p]B = (α1, . . . , αk). For i = 1, . . . , k, we have

(G[p]TB)i = 〈u1, ui〉α1 + 〈u2, ui〉α2 + . . .+ 〈uk, ui〉αk

= 〈α1u1 + . . .+ αkuk, ui〉 = 〈p, ui〉 .

Since v− p ∈ U⊥, we have 〈v − p, ui〉 = 0 for i = 1, . . . , k, and thus 〈p, ui〉 =
〈v, ui〉. Hence, the equality follows.
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Suppose that x = (β1, . . . , βn)T is a solution of the system Gx = 0. Let
u = β1u1+ . . .+βkuk. Then, 〈u, ui〉 = β1 〈u1, ui〉+ . . .+βk 〈uk, ui〉 = 0 for i =
1, . . . , k, and thus u ∈ {u1, . . . , uk}⊥ = U⊥. However, u ∈ span(u1, . . . , uk) =
U. Since u ∈ U ∩ U⊥, it follows that u = o, and thus x = (0, . . . , 0).
Consequently, G is regular.

Example 1. Let U = span((1, 1, 1), (1, 2, 3)) be a plane in R3. Determine
the distance of the point v = (3, 5, 1) from U, without finding an orthogonal
basis of U.

Let u1 = (1, 1, 1) and u2 = (1, 2, 3). We have

G =

(
〈u1, u1〉 〈u2, u1〉
〈u1, u2〉 〈u2, u2〉

)
=

(
3 6
6 14

)
The solution to the system Gx = (〈v, u1〉 , 〈v, u2〉)T = (9, 16) is x = (5,−1).
Hence, the projection of v on U is 5u1−u2 = (4, 3, 2), and the distance from
v to U is ‖v − (4, 3, 2)‖ =

√
6.

Corollary 3. Consider the Euclidean space Rn with the inner product defined
as the dot product, and let U be its subspace. Let p : Rn → Rn be the
function that maps each vector to its projection on U. Let B = u1, . . . , uk
be a (not necessarily othonormal) basis of U. Let A = (u1|u2| . . . |uk). Then
p(v) = A(ATA)−1ATv, and thus A(ATA)−1AT is the matrix of the function
p (with respect to the canonical basis of Rn).

Proof. Let G be the matrix from Lemma 2. Note that 〈ui, uj〉 = uTi uj, and
thus G = ATA. Similarly, b = (〈v, u1〉 , . . . , 〈v, uk〉)T = ATv. By Lemma 2,
if the coordinates of p(v) with respect to the basis B are (α1, . . . , αk), then
(α1, . . . , αk)T = G−1b = (ATA)−1ATv. It follows that p(v) = α1u1 + . . . +
αkuk = A(α1, . . . , αk)T = A(ATA)−1AT .

1 Least squares method and pseudoinverse

Example 2. Suppose we measured the following dependence of some quantity
on time:

t 0 1 2 3 7
f(t) 0.000 0.998 1.987 2.855 4.794
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Let S = {0, 1, 2, 3, 7}. Find the approximation of f by a quadratic poly-
nomial p such that

∑
t∈S(f(t)− p(t))2 is minimum.

Consider the space V of functions S → R, with inner product 〈g1, g2〉 =∑
t∈S g1(t)g2(t). Let p1(t) = 1, p2(t) = t and p3(t) = t2 be elements of V.

Any quadratic polynomial is a linear combination of p1, p2 and p3. Hence, p
is the projection of f on span(p1, p2, p3). Let

G =

 〈p1, p1〉 〈p2, p1〉 〈p3, p1〉〈p1, p2〉 〈p2, p2〉 〈p3, p2〉
〈p1, p3〉 〈p2, p3〉 〈p3, p3〉

 =

 5 11 63
11 63 379
63 379 2499


and

b = (〈f, p1〉 , 〈f, p2〉 , 〈f, p3〉)T = (10.634, 47.095, 269.547)T .

By Lemma 2, the coordinates of p with respect to the basis p1, p2, p3 are the
solution to the system Gx = b, which is

x ≈ (−0.032, 1.146,−0.065)T .

3



Hence, p ≈ −0.032 + 1.146t− 0.065t2.

Example 3. Another way of viewing Example 2: Suppose that p = α0 +
α1t+ α2t

2 for some (unknown) coefficients α0, α1 and α2. Let

A =


1 0 0
1 1 1
1 2 4
1 3 9
1 7 49

 .

Then
(p(0), p(1), p(2), p(3), p(7))T = A(α0, α1, α2)

T .

Ideally, we would like to have p = f , and thus (α0, α1, α2) would be a solution
to the system

A(α0, α1, α2)
T = (0.000, 0.998, 1.987, 2.855, 4.794)T .

However, this system has no solution, and thus we want to find (α0, α1, α2)
so that A(α0, α1, α2)

T differs from (0.000, 0.998, 1.987, 2.855, 4.794)T (in the
Euclidean norm) as little as possible.

Lemma 4. Let A be an m × n real matrix of rank n, let b be a column
vector of m real numbers, and let x be such ‖Ax − b‖ is minimum. Then
x = (ATA)−1AT b.

Proof. Observe that Ax is the projection of b on the column space of A, and
thus by Corollary 3,

Ax = A(ATA)−1AT b.

By comparing the sides, we see that we can choose x = (ATA)−1AT b. Note
that x is unique, by the uniqueness property from Lemma 1 and the assump-
tion that A has full column rank.

Let us remark that the previous lemma can be modified to handle the
case when A does not have full column rank: then, x can be chosen as any
of the (infinitely many) solutions to the system ATAx = AT b.

The matrix (ATA)−1AT is the pseudoinverse to A (and if A is regular,
its pseudoinverse is equal to A−1). The pseudoinverse can be defined (in a
somewhat more complicated way) even if A does not have full column rank.
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2 Orthogonal matrices and isometries

Definition 2. Let V be an inner product space over R. A function f : V→
V is an isometry if ‖f(x)− f(y)‖ = ‖x− y‖ for every x, y ∈ V.

Examples: rotations, reflections, translations, . . .

Proposition 5. Any isometry of an inner product space is an affine function;
and thus, if f : V → V is an isometry and f(o) = o, then f is a linear
function.

We skip the proof of this proposition, which requires a bit of math anal-
ysis.

Lemma 6. Let V be an inner product space over R. Let f : V → V be a
linear function. The following claims are equivalent:

1. f is an isometry

2. f preserves the norm, that is, ‖f(x)‖ = ‖x‖ for every x ∈ V.

3. f preserves the inner product, that is, 〈f(x), f(y)〉 = 〈x, y〉 for every
x, y ∈ V.

Proof. Since f is linear, ‖f(x)−f(y)‖ = ‖f(x−y)‖. If f preserves the norm,
then ‖f(x− y)‖ = ‖x− y‖ as required. Conversely, if f is an isometry, then
‖f(x)‖ = ‖f(x)− f(o)‖ = ‖x− o‖ = ‖x‖.

If f preserves the inner product, then ‖f(x)‖ =
√
〈f(x), f(x)〉 =

√
〈x, x〉 =

‖x‖, and thus it preserves the norm. Conversely, if f preserves the norm, then
〈f(x), f(y)〉 = 1

2
(‖f(x+ y)‖2 − ‖f(x)‖2 − ‖f(y)‖2) = 1

2
(‖x+ y‖2 − ‖x‖2 − ‖y‖2) =

〈x, y〉.

Lemma 6 shows that isometries also preserve angles.

Definition 3. A square matrix Q is orthogonal if QTQ = I.

Lemma 7. Let V be an inner product space over R. Let f : V → V be a
linear function. Let B = v1, . . . , vn and C be orthonormal bases of V. Then
f is an isometry if and only if [f ]B,C is an orthogonal matrix.

Proof. Recall that if (α1, . . . , αn) and (β1, . . . , βn) are the coordinates of vec-
tors x and y with respect to an orthonormal basis, then 〈x, y〉 = α1β1 + . . .+
αnβn. Hence, 〈x, y〉 = [x]B[y]TB = [x]C [y]TC . Let Q = [f ]B,C .

Suppose that Q is orthogonal. Then 〈f(x), f(y)〉 = [f(x)]C [f(y)]TC =
(Q[x]TB)T (Q[y]TB) = [x]B(QTQ)[y]TB = [x]B[y]TB = 〈x, y〉, hence f preserves the
inner product, and thus f is an isometry.
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Conversely, suppose that f is an isometry, and thus f preserves the inner
product. Hence, 〈x, y〉 = 〈f(x), f(y)〉 = [x]B(QTQ)[y]TB for every x, y ∈ V,
and in particular, 〈vi, vj〉 = [vi]B(QTQ)[vj]

T
B = ei(Q

TQ)eTj = (QTQ)ij. Since
〈vi, vj〉 = 0 if i 6= j and 〈vi, vi〉 = 1 for all i, it follows that QTQ is the
identity matrix, and thus Q is orthogonal.

Since id is an isometry, this implies that the transition matrix [id]B,C

between orthonormal bases is orthogonal.

Lemma 8. For any n× n matrix Q, the following claims are equivalent:

1. Q is orthogonal.

2. Q is regular and Q−1 = QT .

3. QT is orthogonal.

4. QQT = I.

5. Q is regular and Q−1 is orthogonal.

6. The rows of Q form an orthonormal basis of Rn.

7. The columns of Q form an orthonormal basis of Rn.

Proof. From the definition of the orthogonal matrix, QTQ = I, and thus
Q−1 = QT . Hence, I = QQ−1 = QQT = (QT )TQT , and thus QT is orthogo-
nal. Also, (Q−1)T = (QT )T = Q, and thus (Q−1)TQ−1 = QQ−1 = I and Q−1

is orthogonal. The reverse implications follow by symmetry.
Also, note that (QTQ)ij is equal to the dot product of i-th and the j-th

column of Q. Hence, QTQ = I if and only if the set of columns of Q is
orthonormal, and similarly QQT = I if and only if the set of rows of Q is
orthonormal.

Lemma 9. The product of two orthogonal matrices is orthogonal.

Proof. If QT
1Q1 = I and QT

2Q2 = I, then (Q1Q2)
T (Q1Q2) = QT

2Q
T
1Q1Q2 =

QT
2Q2 = I.
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