Least squares method, pseudoinverse. Orthogonal matrices and isometries.

Zdeněk Dvořák

March 16, 2016

Definition 1. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension. For $v \in \mathbf{V}$, the orthogonal projection of v on \mathbf{U} is the vector $p \in \mathbf{U}$ such that $v-p \in \mathbf{U}^{\perp}$.

Lemma 1. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension. Let $p \in \mathbf{U}$ be the projection of $v \in \mathbf{V}$. Then p is the vector of \mathbf{U} closest to v, that is,

$$
\|v-x\|>\|v-p\|
$$

for every $x \in \mathbf{U} \backslash\{p\}$.
Lemma 2. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension. Let $B=u_{1}, \ldots, u_{k}$ be a (not necessarily othonormal) basis of \mathbf{U}. Let $p \in \mathbf{U}$ be the projection of $v \in \mathbf{V}$ on \mathbf{U}. Let

$$
G=\left(\begin{array}{cccc}
\left\langle u_{1}, u_{1}\right\rangle & \left\langle u_{2}, u_{1}\right\rangle & \ldots & \left\langle u_{k}, u_{1}\right\rangle \\
\left\langle u_{1}, u_{2}\right\rangle & \left\langle u_{2}, u_{2}\right\rangle & \ldots & \left\langle u_{k}, u_{2}\right\rangle \\
& \ldots & & \\
\left\langle u_{1}, u_{k}\right\rangle & \left\langle u_{2}, u_{k}\right\rangle & \ldots & \left\langle u_{k}, u_{k}\right\rangle
\end{array}\right) .
$$

Then G is a regular matrix and

$$
G[p]_{B}^{T}=\left(\left\langle v, u_{1}\right\rangle, \ldots,\left\langle v, u_{k}\right\rangle\right)^{T} .
$$

Proof. Let $[p]_{B}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. For $i=1, \ldots, k$, we have

$$
\begin{aligned}
\left(G[p]_{B}^{T}\right)_{i} & =\left\langle u_{1}, u_{i}\right\rangle \alpha_{1}+\left\langle u_{2}, u_{i}\right\rangle \alpha_{2}+\ldots+\left\langle u_{k}, u_{i}\right\rangle \alpha_{k} \\
& =\left\langle\alpha_{1} u_{1}+\ldots+\alpha_{k} u_{k}, u_{i}\right\rangle=\left\langle p, u_{i}\right\rangle
\end{aligned}
$$

Since $v-p \in \mathbf{U}^{\perp}$, we have $\left\langle v-p, u_{i}\right\rangle=0$ for $i=1, \ldots, k$, and thus $\left\langle p, u_{i}\right\rangle=$ $\left\langle v, u_{i}\right\rangle$. Hence, the equality follows.

Suppose that $x=\left(\beta_{1}, \ldots, \beta_{n}\right)^{T}$ is a solution of the system $G x=0$. Let $u=\beta_{1} u_{1}+\ldots+\beta_{k} u_{k}$. Then, $\left\langle u, u_{i}\right\rangle=\beta_{1}\left\langle u_{1}, u_{i}\right\rangle+\ldots+\beta_{k}\left\langle u_{k}, u_{i}\right\rangle=0$ for $i=$ $1, \ldots, k$, and thus $u \in\left\{u_{1}, \ldots, u_{k}\right\}^{\perp}=\mathbf{U}^{\perp}$. However, $u \in \operatorname{span}\left(u_{1}, \ldots, u_{k}\right)=$ \mathbf{U}. Since $u \in \mathbf{U} \cap \mathbf{U}^{\perp}$, it follows that $u=o$, and thus $x=(0, \ldots, 0)$. Consequently, G is regular.

Example 1. Let $\mathbf{U}=\operatorname{span}((1,1,1),(1,2,3))$ be a plane in \mathbf{R}^{3}. Determine the distance of the point $v=(3,5,1)$ from \mathbf{U}, without finding an orthogonal basis of \mathbf{U}.

Let $u_{1}=(1,1,1)$ and $u_{2}=(1,2,3)$. We have

$$
G=\left(\begin{array}{ll}
\left\langle u_{1}, u_{1}\right\rangle & \left\langle u_{2}, u_{1}\right\rangle \\
\left\langle u_{1}, u_{2}\right\rangle & \left\langle u_{2}, u_{2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
3 & 6 \\
6 & 14
\end{array}\right)
$$

The solution to the system $G x=\left(\left\langle v, u_{1}\right\rangle,\left\langle v, u_{2}\right\rangle\right)^{T}=(9,16)$ is $x=(5,-1)$. Hence, the projection of v on \mathbf{U} is $5 u_{1}-u_{2}=(4,3,2)$, and the distance from v to \mathbf{U} is $\|v-(4,3,2)\|=\sqrt{6}$.

Corollary 3. Consider the Euclidean space \mathbf{R}^{n} with the inner product defined as the dot product, and let \mathbf{U} be its subspace. Let $p: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the function that maps each vector to its projection on \mathbf{U}. Let $B=u_{1}, \ldots, u_{k}$ be a (not necessarily othonormal) basis of \mathbf{U}. Let $A=\left(u_{1}\left|u_{2}\right| \ldots \mid u_{k}\right)$. Then $p(v)=A\left(A^{T} A\right)^{-1} A^{T} v$, and thus $A\left(A^{T} A\right)^{-1} A^{T}$ is the matrix of the function p (with respect to the canonical basis of \mathbf{R}^{n}).

Proof. Let G be the matrix from Lemma 2. Note that $\left\langle u_{i}, u_{j}\right\rangle=u_{i}^{T} u_{j}$, and thus $G=A^{T} A$. Similarly, $b=\left(\left\langle v, u_{1}\right\rangle, \ldots,\left\langle v, u_{k}\right\rangle\right)^{T}=A^{T} v$. By Lemma 2, if the coordinates of $p(v)$ with respect to the basis B are $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, then $\left(\alpha_{1}, \ldots, \alpha_{k}\right)^{T}=G^{-1} b=\left(A^{T} A\right)^{-1} A^{T} v$. It follows that $p(v)=\alpha_{1} u_{1}+\ldots+$ $\alpha_{k} u_{k}=A\left(\alpha_{1}, \ldots, \alpha_{k}\right)^{T}=A\left(A^{T} A\right)^{-1} A^{T}$.

1 Least squares method and pseudoinverse

Example 2. Suppose we measured the following dependence of some quantity on time:

t	0	1	2	3	7
$f(t)$	0.000	0.998	1.987	2.855	4.794

Let $S=\{0,1,2,3,7\}$. Find the approximation of f by a quadratic polynomial p such that $\sum_{t \in S}(f(t)-p(t))^{2}$ is minimum.

Consider the space \mathbf{V} of functions $S \rightarrow \mathbf{R}$, with inner product $\left\langle g_{1}, g_{2}\right\rangle=$ $\sum_{t \in S} g_{1}(t) g_{2}(t)$. Let $p_{1}(t)=1, p_{2}(t)=t$ and $p_{3}(t)=t^{2}$ be elements of \mathbf{V}. Any quadratic polynomial is a linear combination of p_{1}, p_{2} and p_{3}. Hence, p is the projection of f on $\operatorname{span}\left(p_{1}, p_{2}, p_{3}\right)$. Let

$$
G=\left(\begin{array}{lll}
\left\langle p_{1}, p_{1}\right\rangle & \left\langle p_{2}, p_{1}\right\rangle & \left\langle p_{3}, p_{1}\right\rangle \\
\left\langle p_{1}, p_{2}\right\rangle & \left\langle p_{2}, p_{2}\right\rangle & \left\langle p_{3}, p_{2}\right\rangle \\
\left\langle p_{1}, p_{3}\right\rangle & \left\langle p_{2}, p_{3}\right\rangle & \left\langle p_{3}, p_{3}\right\rangle
\end{array}\right)=\left(\begin{array}{ccc}
5 & 11 & 63 \\
11 & 63 & 379 \\
63 & 379 & 2499
\end{array}\right)
$$

and

$$
b=\left(\left\langle f, p_{1}\right\rangle,\left\langle f, p_{2}\right\rangle,\left\langle f, p_{3}\right\rangle\right)^{T}=(10.634,47.095,269.547)^{T}
$$

By Lemma 2, the coordinates of p with respect to the basis p_{1}, p_{2}, p_{3} are the solution to the system $G x=b$, which is

$$
x \approx(-0.032,1.146,-0.065)^{T}
$$

Hence, $p \approx-0.032+1.146 t-0.065 t^{2}$.
Example 3. Another way of viewing Example 2: Suppose that $p=\alpha_{0}+$ $\alpha_{1} t+\alpha_{2} t^{2}$ for some (unknown) coefficients α_{0}, α_{1} and α_{2}. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 7 & 49
\end{array}\right)
$$

Then

$$
(p(0), p(1), p(2), p(3), p(7))^{T}=A\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)^{T} .
$$

Ideally, we would like to have $p=f$, and thus $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)$ would be a solution to the system

$$
A\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)^{T}=(0.000,0.998,1.987,2.855,4.794)^{T}
$$

However, this system has no solution, and thus we want to find ($\alpha_{0}, \alpha_{1}, \alpha_{2}$) so that $A\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)^{T}$ differs from $(0.000,0.998,1.987,2.855,4.794)^{T}$ (in the Euclidean norm) as little as possible.

Lemma 4. Let A be an $m \times n$ real matrix of rank n, let b be a column vector of m real numbers, and let x be such $\|A x-b\|$ is minimum. Then $x=\left(A^{T} A\right)^{-1} A^{T} b$.

Proof. Observe that $A x$ is the projection of b on the column space of A, and thus by Corollary 3 ,

$$
A x=A\left(A^{T} A\right)^{-1} A^{T} b
$$

By comparing the sides, we see that we can choose $x=\left(A^{T} A\right)^{-1} A^{T} b$. Note that x is unique, by the uniqueness property from Lemma 1 and the assumption that A has full column rank.

Let us remark that the previous lemma can be modified to handle the case when A does not have full column rank: then, x can be chosen as any of the (infinitely many) solutions to the system $A^{T} A x=A^{T} b$.

The matrix $\left(A^{T} A\right)^{-1} A^{T}$ is the pseudoinverse to A (and if A is regular, its pseudoinverse is equal to A^{-1}). The pseudoinverse can be defined (in a somewhat more complicated way) even if A does not have full column rank.

2 Orthogonal matrices and isometries

Definition 2. Let \mathbf{V} be an inner product space over \mathbf{R}. A function $f: \mathbf{V} \rightarrow$ \mathbf{V} is an isometry if $\|f(x)-f(y)\|=\|x-y\|$ for every $x, y \in \mathbf{V}$.

Examples: rotations, reflections, translations, ...
Proposition 5. Any isometry of an inner product space is an affine function; and thus, if $f: \mathbf{V} \rightarrow \mathbf{V}$ is an isometry and $f(o)=o$, then f is a linear function.

We skip the proof of this proposition, which requires a bit of math analysis.

Lemma 6. Let \mathbf{V} be an inner product space over \mathbf{R}. Let $f: \mathbf{V} \rightarrow \mathbf{V}$ be a linear function. The following claims are equivalent:

1. f is an isometry
2. f preserves the norm, that is, $\|f(x)\|=\|x\|$ for every $x \in \mathbf{V}$.
3. f preserves the inner product, that is, $\langle f(x), f(y)\rangle=\langle x, y\rangle$ for every $x, y \in \mathbf{V}$.

Proof. Since f is linear, $\|f(x)-f(y)\|=\|f(x-y)\|$. If f preserves the norm, then $\|f(x-y)\|=\|x-y\|$ as required. Conversely, if f is an isometry, then $\|f(x)\|=\|f(x)-f(o)\|=\|x-o\|=\|x\|$.

If f preserves the inner product, then $\|f(x)\|=\sqrt{\langle f(x), f(x)\rangle}=\sqrt{\langle x, x\rangle}=$ $\|x\|$, and thus it preserves the norm. Conversely, if f preserves the norm, then $\langle f(x), f(y)\rangle=\frac{1}{2}\left(\|f(x+y)\|^{2}-\|f(x)\|^{2}-\|f(y)\|^{2}\right)=\frac{1}{2}\left(\|x+y\|^{2}-\|x\|^{2}-\|y\|^{2}\right)=$ $\langle x, y\rangle$.

Lemma 6 shows that isometries also preserve angles.
Definition 3. A square matrix Q is orthogonal if $Q^{T} Q=I$.
Lemma 7. Let \mathbf{V} be an inner product space over \mathbf{R}. Let $f: \mathbf{V} \rightarrow \mathbf{V}$ be a linear function. Let $B=v_{1}, \ldots, v_{n}$ and C be orthonormal bases of \mathbf{V}. Then f is an isometry if and only if $[f]_{B, C}$ is an orthogonal matrix.

Proof. Recall that if $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)$ are the coordinates of vectors x and y with respect to an orthonormal basis, then $\langle x, y\rangle=\alpha_{1} \beta_{1}+\ldots+$ $\alpha_{n} \beta_{n}$. Hence, $\langle x, y\rangle=[x]_{B}[y]_{B}^{T}=[x]_{C}[y]_{C}^{T}$. Let $Q=[f]_{B, C}$.

Suppose that Q is orthogonal. Then $\langle f(x), f(y)\rangle=[f(x)]_{C}[f(y)]_{C}^{T}=$ $\left(Q[x]_{B}^{T}\right)^{T}\left(Q[y]_{B}^{T}\right)=[x]_{B}\left(Q^{T} Q\right)[y]_{B}^{T}=[x]_{B}[y]_{B}^{T}=\langle x, y\rangle$, hence f preserves the inner product, and thus f is an isometry.

Conversely, suppose that f is an isometry, and thus f preserves the inner product. Hence, $\langle x, y\rangle=\langle f(x), f(y)\rangle=[x]_{B}\left(Q^{T} Q\right)[y]_{B}^{T}$ for every $x, y \in \mathbf{V}$, and in particular, $\left\langle v_{i}, v_{j}\right\rangle=\left[v_{i}\right]_{B}\left(Q^{T} Q\right)\left[v_{j}\right]_{B}^{T}=e_{i}\left(Q^{T} Q\right) e_{j}^{T}=\left(Q^{T} Q\right)_{i j}$. Since $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$ and $\left\langle v_{i}, v_{i}\right\rangle=1$ for all i, it follows that $Q^{T} Q$ is the identity matrix, and thus Q is orthogonal.

Since id is an isometry, this implies that the transition matrix $[\mathrm{id}]_{B, C}$ between orthonormal bases is orthogonal.

Lemma 8. For any $n \times n$ matrix Q, the following claims are equivalent:

1. Q is orthogonal.
2. Q is regular and $Q^{-1}=Q^{T}$.
3. Q^{T} is orthogonal.
4. $Q Q^{T}=I$.
5. Q is regular and Q^{-1} is orthogonal.
6. The rows of Q form an orthonormal basis of \mathbf{R}^{n}.
7. The columns of Q form an orthonormal basis of \mathbf{R}^{n}.

Proof. From the definition of the orthogonal matrix, $Q^{T} Q=I$, and thus $Q^{-1}=Q^{T}$. Hence, $I=Q Q^{-1}=Q Q^{T}=\left(Q^{T}\right)^{T} Q^{T}$, and thus Q^{T} is orthogonal. Also, $\left(Q^{-1}\right)^{T}=\left(Q^{T}\right)^{T}=Q$, and thus $\left(Q^{-1}\right)^{T} Q^{-1}=Q Q^{-1}=I$ and Q^{-1} is orthogonal. The reverse implications follow by symmetry.

Also, note that $\left(Q^{T} Q\right)_{i j}$ is equal to the dot product of i-th and the j-th column of Q. Hence, $Q^{T} Q=I$ if and only if the set of columns of Q is orthonormal, and similarly $Q Q^{T}=I$ if and only if the set of rows of Q is orthonormal.

Lemma 9. The product of two orthogonal matrices is orthogonal.
Proof. If $Q_{1}^{T} Q_{1}=I$ and $Q_{2}^{T} Q_{2}=I$, then $\left(Q_{1} Q_{2}\right)^{T}\left(Q_{1} Q_{2}\right)=Q_{2}^{T} Q_{1}^{T} Q_{1} Q_{2}=$ $Q_{2}^{T} Q_{2}=I$.

