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Theorem 1 (Properties of orthonormal bases). Let V be an inner product
space and let B = v1, . . . , vn be an orthonormal basis of V.

1. The coordinates of a vector v with respect to B are (〈v, v1〉 , 〈v, v2〉 , . . . , 〈v, vn〉).

2. If the coordinates of u, v ∈ V with respect to B are (α1, . . . , αn) and
(β1, . . . , βn), respectively, then 〈u, v〉 = α1β1 + . . .+ αnβn.

3. If the coordinates of v ∈ V with respect to B are (β1, . . . , βn), then
‖v‖ =

√
|β1|2 + . . .+ |βn|2.

Example 1. Consider the space P2 of real polynomials of degree at most
two, with inner product defined by

〈p, q〉 =

∫ 1

0

p(x)q(x) dx.

Find an orthonormal basis of P2.

We apply the Gram-Schmidt process to the standard basis 1, x, x2 of the
space P2.

• v′1 = 1, ‖1‖ = 1, u1 = 1.

• v′2 = x− 〈x, 1〉 1 = x− 1/2, ‖x− 1/2‖ =
√

1/12, u2 =
√

3(2x− 1).

• v′3 = x2 − 〈x2, 1〉 1 −
〈
x2,
√

3(2x− 1)
〉√

3(2x − 1) = x2 − 1/3 − (2x −
1)/2 = x2−x+ 1/6, ‖x2−x+ 1/6‖ =

√
1/180, u3 =

√
5(6x2− 6x+ 1)

Hence, an orthonormal basis is 1,
√

3(2x− 1),
√

5(6x2 − 6x+ 1).
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1 Orthogonal complement and projection

Definition 1. Let V be an inner product space and let S ⊆ V. The
orthogonal complement of S is

S⊥ = {u : u ⊥ s for all s ∈ S}.

Lemma 2. Let V be an inner product space over the field F and let S ⊆ V.

• S⊥ is a subspace of V.

• If T ⊆ S, then S⊥ ⊆ T⊥.

• S⊥ = span(S)⊥.

• If x ∈ S ∩ S⊥, then x = o.

Proof. • Suppose that u, v ∈ S⊥ and α ∈ F. For every s ∈ S, we have

〈u+ v, s〉 = 〈u, s〉+ 〈v, s〉 = 0

〈αv, s〉 = α 〈v, s〉 = 0,

and thus u+ v, αv ∈ S⊥.

• If u ∈ S⊥, then u ⊥ t for every t ∈ T ⊆ S, and thus u ∈ T⊥.

• Suppose that x ∈ S⊥, and consider any v ∈ span(S), v = α1s1 + . . . +
αnsn for some s1, . . . , sn ∈ S and α1, . . . , αn ∈ F. We have

〈v, x〉 = α1 〈s1, x〉+ . . .+ αn 〈sn, x〉 = 0,

and thus x ⊥ v. It follows that x ∈ span(S)⊥, and thus S⊥ ⊆ span(S)⊥.
By the previous claim, span(S)⊥ ⊆ S⊥, since S ⊆ span(S).

• If x ∈ S ∩ S⊥, then x ⊥ x, and thus 0 = 〈x, x〉 and x = o.

Lemma 3. Let V be an inner product space and let U be its subspace. If
v1, . . . , vn is an orthonormal basis of V and U = span(v1, . . . , vm), then U⊥ =
span(vm+1, . . . , vn).

Proof. Since the basis is orthonormal, we have vm+1, . . . , vn ⊥ v1, . . . , vm,
and thus vm+1, . . . , vn ∈ {v1, . . . , vm}⊥ = U⊥. Since U⊥ is a subspace,

2



span(vm+1, . . . , vn) is a subspace of U⊥. By Lemma 2, we have U∩U⊥ = {o},
and thus

n = dim(U) + dim(span(vm+1, . . . , vn))

≤ dim(U) + dim(U⊥)

= dim(U ∩U⊥) + dim(U + U⊥)

≤ 0 + n.

It follows that dim(U⊥) = dim(span(vm+1, . . . , vn)), and U⊥ = span(vm+1, . . . , vn).

Therefore, we can determine the basis of U⊥ as follows.

Algorithm 1. Let V be an inner product space of finite dimension.

Input: A subspace U of V.

Output: A basis w1, . . . , wk of U⊥.

• Let v1, . . . , vn be a basis of V, and u1, . . . , um a basis of U.

• Apply the Gram-Schmidt process on u1, . . . , um, v1, . . . , vn, giving an
orthonormal basis z1, . . . , zm, w1, . . . , wk of V.

Then z1, . . . , zm is an orthonormal basis of U, and w1, . . . , wk is an orthonor-
mal basis of U⊥.

Example 2. Let U = span((1, 1, 1), (1, 2, 3)) be a plane in R3. Find the
coefficients of the equation ax+ by + cz = 0 of this plane.

We are looking for a non-zero vector (a, b, c) such that (a, b, c)·(x, y, z) = 0
for every (x, y, z) ∈ U, i.e., (a, b, c) ∈ U⊥. The Gram-Schmidt process on

(1, 1, 1), (1, 2, 3), (1, 0, 0), (0, 1, 0), (0, 0, 1) returns
√
3
3

(1, 1, 1),
√
2
2

(−1, 0, 1),
√
6
6

(1,−2, 1),

and thus U⊥ = span
(√

6
6

(1,−2, 1)
)

= span((1,−2, 1)). The equation of the

plane U is x− 2y + z = 0.
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Theorem 4. Let V be an inner product space and let U be its subspace of
finite dimension.

• For every v ∈ V, there exist unique p ∈ U and q ∈ U⊥ such that
v = p+ q.

– If B = u1, . . . , uk is an orthonormal basis of U, then the coor-
dinates of p with respect to B are (〈v, u1〉 , . . . , 〈v, uk〉), and thus
p = 〈v, u1〉u1 + . . .+ 〈v, uk〉uk.

• V = U+U⊥, and if V has a finite dimension, then dim(V) = dim(U)+
dim(U⊥).

•
(
U⊥)⊥ = U.

Proof. • Consider any x ∈ U, and let (α1, . . . , αk) be its coordinates with
respect to B. Now, v−x ∈ U⊥ = {u1, . . . , uk}⊥ if and only if v−x ⊥ ui
for i = 1, . . . , k, that is,

0 = 〈v − x, ui〉 = 〈v, ui〉 − 〈x, ui〉 = 〈v, ui〉 − αi.

Therefore, the vector p with coordinates (〈v, u1〉 , . . . , 〈v, uk〉) is the only
element of U such that q = v − p ∈ U⊥.
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• By the first claim, every element of V belongs to U + U⊥. Since
U ∩ U⊥ = {o} has dimension 0, it follows that dim(V) = dim(U) +
dim(U⊥).

• Note that each u ∈ U satisfies u ⊥ x for every x ∈ U⊥, and thus

u ∈
(
U⊥)⊥.

Conversely, consider any v ∈
(
U⊥)⊥. By the first claim, there exist

p ∈ U and q ∈ U⊥ such that v = p + q. Note that v ⊥ q and p ⊥ q,
and thus 0 = 〈v, q〉 = 〈p+ q, q〉 = 〈p, q〉 + 〈q, q〉 = 〈q, q〉. Therefore,
q = o and p = v, and thus v ∈ U.

Warning: Theorem 4 is not necessarily true if U has infinite dimension.

Example 3. Consider the space P of all real polynomials in variable x, and
its subspace U = span(x − 1, x2 − 1, x3 − 1, . . .). Note that a polynomial p
belongs to U if and only if the sum of its coefficients is 0, and thus U 6= P. Let
us define the inner product of two polynomials by 〈∑n

i=0 αix
i,
∑n

i=0 βix
i〉 =∑n

i=0 αiβi.
Then for a polynomial p =

∑n
i=0 αix

i, we have
〈
p, xk − 1

〉
= 0 if and

only if αk = α0. Consequently, p ∈ U⊥ if and only if α0 = α1 = α2 = . . ..
Since p has only finitely many non-zero coefficients, this is only possible if
p = 0, and thus U⊥ = {0}. Consequently, U + U⊥ = U 6= P. Also,(
U⊥)⊥ = {0}⊥ = P 6= U.

Definition 2. Let V be an inner product space and let U be its subspace
of finite dimension. For v ∈ V, the orthogonal projection of v on U is the
vector p ∈ U such that v − p ∈ U⊥.

Lemma 5 (Basic properties of the projection). Let V be an inner product
space and let U be its subspace of finite dimension. Let P : V → U be the
function mapping each vector to its projection on U. Then

1. P is a linear function,

2. if u1, . . . , uk is an orthonormal basis of U, then P (v) = 〈v, u1〉u1 +
. . .+ 〈v, uk〉uk for every v ∈ V,

3. P (u) = u for every u ∈ U, and

4. P (P (v)) = P (v) for every v ∈ V.
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Proof. 1. We have v1−P (v1), v2−P (v2) ∈ U⊥, and thus (v1+v2)−(P (v1)+
P (v2)) ∈ U⊥ and αv1 − αP (v1) ∈ U⊥. Consequently, P (v1 + v2) =
P (v1) + P (v2) and P (αv1) = αP (v1).

2. This holds by Theorem 4.

3. This holds since u− u = o ∈ U⊥.

4. This holds by the previous item, since P (v) ∈ U.

Lemma 6 (Bessel’s inequality, Parseval’s theorem). Let V be an inner prod-
uct space and let S = {v1, . . . , vm} be a finite orthonormal set in V. For
every v ∈ V,

‖v‖ ≥
√
| 〈v, v1〉 |2 + . . .+ | 〈v, vm〉 |2,

and the equality holds if and only if v ∈ span(S).
Equivalently, for every v ∈ V, if p is the projection of v on span(S), then

‖v‖ ≥ ‖p‖.

Proof. By Theorem 4, the coordinates of p with respect to the orthonormal
basis v1, . . . , vm of span(S) are (〈v, v1〉 , . . . , 〈v, vm〉), and by Theorem 1, we
have

‖p‖ =
√
| 〈v, v1〉 |2 + . . .+ | 〈v, vm〉 |2.

However, by the definition of the projection, we have v − p ⊥ p, and by the
Pythagoras theorem,

‖v‖2 = ‖p‖2 + ‖v − p‖2 ≥ ‖p‖2,

with equality if and only if v − p = o, i.e., v = p ∈ span(S).

Lemma 7. Let V be an inner product space and let U be its subspace of
finite dimension. Let p ∈ U be the projection of v ∈ V. Then p is the vector
of U closest to v, that is,

‖v − x‖ > ‖v − p‖

for every x ∈ U \ {p}.

Proof. Note that p − x ∈ U and v − p ∈ U⊥, and thus p − x ⊥ v − p. By
Pythagoras theorem, we have

‖v − p‖2 + ‖p− x‖2 = ‖v − x‖2,

and since p 6= x, ‖p− x‖ > 0 and ‖v − x‖ > ‖v − p‖.
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Example 4. Let U = span((1, 1, 1), (1, 2, 3)) be a plane in R3. Determine
the distance of the point v = (3, 5, 1) from U.

In Example 2, we determined that u1, u2 =
√
3
3

(1, 1, 1),
√
2
2

(−1, 0, 1) is an
orthonormal basis of U, and thus the projection p of v on U is

p = (v · u1)u1 + (v · u2)u2 = 3(1, 1, 1)− (−1, 0, 1) = (4, 3, 2).

Hence, the distance is |v − p| = |(−1, 2,−1)| =
√

6.

Example 5. Find the polynomial p of degree at most two that approximates
sinx on the interval [0, 1] the best, i.e., such that

∫ 1

0
(p(x) − sin(x))2 dx is

minimum.

Consider sinx as an element of the vector space V of continuous functions
from [0, 1] to R, and let U = P2 be its subspace. By Lemma 7, p is the
projection of sinx on U. Let B = u1, u2, u3 = 1,

√
3(2x− 1),

√
5(6x2 − 6x+

1) be the orthonormal basis of P2 that we determined in Example 1. By
Theorem 4, p = 〈sinx, u1〉u1 + 〈sinx, u2〉u2 + 〈sinx, u3〉u3.

〈sinx, u1〉 =

∫ 1

0

sinx dx ≈ 0.4597

〈sinx, u2〉 =
√

3

∫ 1

0

sinx(2x− 1) dx ≈ 0.2471

〈sinx, u3〉 =
√

5

∫ 1

0

sinx(6x2 − 6x+ 1) dx ≈ 0.0176

Hence, p ≈ −0.2361x2 + 1.092x− 0.008.
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