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Theorem 1 (Properties of orthonormal bases). Let V be an inner product
space and let B = vy, ...,v, be an orthonormal basis of V.

1. The coordinates of a vector v with respect to B are ({(v,v1) , (v, v9) , ..., (v, 0,)).

2. If the coordinates of u,v € 'V with respect to B are (ﬂ, co, ) and
(Bi, ..., Bn), respectively, then (u,v) = a1y + ...+ apfy.

3. If the coordinates of v € V with respect to B are (f,...,0,), then
o]l = V112 + ... + [Bal*.

Example 1. Consider the space Py of real polynomials of degree at most
two, with inner product defined by

(p,q) = /0 p(x)q(x) d.

Find an orthonormal basis of Ps.

We apply the Gram-Schmidt process to the standard basis 1, x, x> of the
space Ps.

e v =11 =1, ug = 1.

o vy =12 — (2%, 1)1 — (22, V322 — 1)) V3(2z — 1) =2? — 1/3 — (22 —
1)/2=a2?—2+1/6, |22 — 2+ 1/6| = \/1/180, uz = V/5(62> — 62 + 1)

Hence, an orthonormal basis is 1,+/3(2x — 1),v/5(62% — 62 + 1).



1 Orthogonal complement and projection

Definition 1. Let 'V be an inner product space and let S C V. The
orthogonal complement of S is

St ={u:u L s forallsc S}
Lemma 2. Let 'V be an inner product space over the field F and let S C V.
o St is a subspace of V.
o IfT CS, then St CT+.
o St = span(9)*t.
o Ifr € SNSt, then x = o.

Proof. e Suppose that u,v € S+ and a € F. For every s € S, we have

(u+0,5) = (u,5) + (v,5) = 0
(aw, sy = a(v,s) =0,
and thus u +v,av € S*.

o If u € S, then u L t for every t € T C S, and thus v € T+.

e Suppose that x € S+, and consider any v € span(S), v = ;81 + ... +
a, S, for some s1,...,s, € S and ay,...,q, € F. We have

(v,) =y ($1,2) + ... + ap (Sn,x) =0,

and thus x L v. It follows that = € span(S)*, and thus S+ C span(S)*.
By the previous claim, span(S)t C S+, since S C span(S).

o Ifx € SNSE, then z L x, and thus 0 = (z,z) and = = o.
O

Lemma 3. Let V be an inner product space and let U be its subspace. If
V1, ...,V is an orthonormal basis of V and U = span(vy, ..., vy,), then UL =

Span(Vm1, - - -5 Up)-

Proof. Since the basis is orthonormal, we have v, 41,...,v, L v1,..., 0,
and thus vpy1,...,v, € {v1,..., 0}t = UL, Since Ut is a subspace,



span(Vp 41, - - -, Uy) is a subspace of U+. By Lemma 2, we have UNU* = {0},
and thus

= dim(U) + dim(span (v, 41, - - -, 0,))
< dim(U) + dim(U™)

= dim(U N U*) + dim(U + U™)
<0+n.

It follows that dim(Ut) = dim(span(vyi1, . .., vs)), and UL = span(vp,1, ..., vy).

[
Therefore, we can determine the basis of Ut as follows.
Algorithm 1. Let 'V be an inner product space of finite dimension.
Input: A subspace U of V.
Output: A basis wy, ..., wy of UL,
o Letwvy,...,v, be a basis of V, and uy, ..., u, a basis of U.
o Apply the Gram-Schmidt process on Ui, ..., U, V1,...,Up, GIVING aN
orthonormal basis z1, ..., Zm, W1, ..., wg of V.
Then zq, . .., zm 1S an orthonormal basis of U, and wy, . .., wy is an orthonor-

mal basis of Ut.

Example 2. Let U = span((1,1,1),(1,2,3)) be a plane in R3. Find the
coefficients of the equation ax + by + cz = 0 of this plane.

We are looking for a non-zero vector (a, b, ¢) such that (a,b, c)-(x,y,z) =0
for every (x,y,2) € U, i.e., (a,b,c) € UL. The Gram-Schmidt process on
(1,1,1),(1,2,3),(1,0,0), (0,1,0), (0,0, 1) returns %3(1,1,1), 22(~1,0,1), ¥0(1, -2,1),
and thus Ut = span <£(1 -2, 1)) = span((1,—2,1)). The equation of the
plane U s x — 2y + z = 0.



Theorem 4. Let V be an inner product space and let U be its subspace of
finite dimension.

o For every v € V, there exist unique p € U and q¢ € Ut such that
v=p-+q.

— If B = uy,...,u is an orthonormal basis of U, then the coor-
dinates of p with respect to B are ((v,uy),...,(v,ux)), and thus
p=(v,u)us + ...+ (v, ug) uy.

o V =U+U", and if V has a finite dimension, then dim(V) = dim(U)+

dim(U4).
° (UJ')L =U.
Proof. e Consider any € U, and let (ay, ..., ay) be its coordinates with
respect to B. Now, v—x € Ut = {ug, ... ,uk}l if and only if v—2 L w;

fori=1,...,k, that is,
0= (v—x,u) = (v,u) — (x,u;) = (v, u;) — .

Therefore, the vector p with coordinates ((v,u1) , ..., (v, u)) is the only
element of U such that ¢ =v —p € U+,

4



e By the first claim, every element of V belongs to U + U*. Since
U N UL = {0} has dimension 0, it follows that dim(V) = dim(U) +
dim(U%).

e Note that each u € U satisfies u L x for every x € Ut, and thus
u € (UL)L.

Conversely, consider any v € (UL)L. By the first claim, there exist
p € U and ¢ € Ut such that v = p+ ¢. Note that v L. ¢ and p L g,
and thus 0 = (v,q) = (p+¢,9) = (p,q) +(¢:9) = (¢,q). Therefore,
g =o0 and p = v, and thus v € U.

O

Warning: Theorem 4 is not necessarily true if U has infinite dimension.

Example 3. Consider the space P of all real polynomials in variable x, and
its subspace U = span(x — 1,2*> — 1,2% — 1,...). Note that a polynomial p
belongs to U if and only if the sum of its coefficients is 0, and thus U # P. Let
us define the inner product of two polynomials by (Y., cux’, > " Bix') =
> ico Qili-

Then for a polynomial p = Y &, a;x', we have <p, zF — 1> = 0 if and
only if a = . Consequently, p € UL if and only if g = a; = ag = .. ..
Since p has only finitely many non-zero coefficients, this is only possible if
p = 0, and thus U+ = {0}. Consequently, U + Ut = U # P. Also,

(UH) = {0}t =P £ U.

Definition 2. Let V be an inner product space and let U be its subspace
of finite dimension. For v € V, the orthogonal projection of v on U is the
vector p € U such that v —p € UL,

Lemma 5 (Basic properties of the projection). Let V be an inner product
space and let U be its subspace of finite dimension. Let P : V — U be the
function mapping each vector to its projection on U. Then

1. P is a linear function,

2. if uy, ..., ug is an orthonormal basis of U, then P(v) = (v,u1) u; +
oo (v, ug) uy for everyv €'V,

3. P(u) = u for every u € U, and
4. P(P(v)) = P(v) for everyv € V.



Proof. 1. We have v;—P(v;),vy—P(v5) € UL, and thus (vy+ve)—(P(vy)+
P(vy)) € Ut and av; — aP(v;) € Ut. Consequently, P(v; + vq) =
P(v1) + P(vq) and P(awvy) = aP(vy).

2. This holds by Theorem 4.
3. This holds since v —u = o € U+,

4. This holds by the previous item, since P(v) € U.

[
Lemma 6 (Bessel’s inequality, Parseval’s theorem). Let V be an inner prod-
uct space and let S = {vy,...,v,} be a finite orthonormal set in V. For
every v € V,

[0 = VI (v, 00) P+ | (v, o) 2,

and the equality holds if and only if v € span(S).
FEquivalently, for every v € V, if p is the projection of v on span(S), then

loll = pll-

Proof. By Theorem 4, the coordinates of p with respect to the orthonormal
basis vy, ..., vy, of span(S) are ((v,v1),..., (v,v,)), and by Theorem 1, we
have

ol = V1w, vn) P+ 4 ] (0, 0m) [

However, by the definition of the projection, we have v — p L p, and by the
Pythagoras theorem,

o[ = 1lplI* + llv = plI* > Il
with equality if and only if v — p = o, i.e., v = p € span(S). O

Lemma 7. Let V be an inner product space and let U be its subspace of
finite dimension. Let p € U be the projection of v € V. Then p is the vector
of U closest to v, that is,

lv =[] > flv—pl

for every x € U\ {p}.

Proof. Note that p — 2 € U and v —p € U+, and thus p — 2 L v — p. By
Pythagoras theorem, we have

lv—plI* + llp — 2l* = llv — 2|,

and since p # z, ||p — z|| > 0 and |jv — z|| > [Jv — p||- O



),(1,2,3)) be a plane in R®. Determine
) from U.

Example 4. Let U = span((

1,1,1
the distance of the point v = (3,5, 1

In Example 2, we determined that uy, us = ‘/Tg(l, 1,1), \/75(—1,0, 1) is an
orthonormal basis of U, and thus the projection p of v on U is
p=(v-up)ug + (v-ug)up = 3(1,1,1) — (-1,0,1) = (4,3,2).
Hence, the distance is |v — p| = |(—1,2, —1)| = V6.

Example 5. Find the polynomial p of degree at most two that approrimates
sinx on the interval [0,1] the best, i.e., such that fol(p(x) — sin(z))?dx is
minimum.

Considersin x as an element of the vector space V of continuous functions
from [0,1] to R, and let U = Py be its subspace. By Lemma 7, p is the
projection of sinx on U. Let B = uy, ug, us = 1,v/3(2x — 1), v/5(62> — 62 +
1) be the orthonormal basis of Py that we determined in Example 1. By
Theorem 4, p = (sinx, uq) ug + (sinz, ug) ug + (sinz, uz) us.

1
(sinz,uy) = / sinz dx ~ 0.4597
0
1
(sinz, up) = \/3/ sinz(2c — 1) da ~ 0.2471
0

1
(sinz,uz) = \/3/ sinz(62% — 6z + 1) dv ~ 0.0176
0

Hence, p ~ —0.23612% + 1.092z — 0.008.
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