Projections

Zdeněk Dvořák

March 10, 2015

Theorem 1 (Properties of orthonormal bases). Let V be an inner product space and let $B = v_1, \ldots, v_n$ be an orthonormal basis of V.

- 1. The coordinates of a vector v with respect to B are $(\langle v, v_1 \rangle, \langle v, v_2 \rangle, \dots, \langle v, v_n \rangle)$.
- 2. If the coordinates of $u, v \in \mathbf{V}$ with respect to B are $(\alpha_1, \ldots, \alpha_n)$ and $(\beta_1, \ldots, \beta_n)$, respectively, then $\langle u, v \rangle = \alpha_1 \overline{\beta_1} + \ldots + \alpha_n \overline{\beta_n}$.
- 3. If the coordinates of $v \in \mathbf{V}$ with respect to B are $(\beta_1, \ldots, \beta_n)$, then $||v|| = \sqrt{|\beta_1|^2 + \ldots + |\beta_n|^2}$.

Example 1. Consider the space \mathcal{P}_2 of real polynomials of degree at most two, with inner product defined by

$$\langle p,q\rangle = \int_0^1 p(x)q(x)\,dx.$$

Find an orthonormal basis of \mathcal{P}_2 .

We apply the Gram-Schmidt process to the standard basis $1, x, x^2$ of the space \mathcal{P}_2 .

• $v'_1 = 1$, ||1|| = 1, $u_1 = 1$.

•
$$v'_2 = x - \langle x, 1 \rangle 1 = x - 1/2, ||x - 1/2|| = \sqrt{1/12}, u_2 = \sqrt{3}(2x - 1).$$

• $v'_3 = x^2 - \langle x^2, 1 \rangle 1 - \langle x^2, \sqrt{3}(2x-1) \rangle \sqrt{3}(2x-1) = x^2 - 1/3 - (2x-1)/2 = x^2 - x + 1/6, \ \|x^2 - x + 1/6\| = \sqrt{1/180}, \ u_3 = \sqrt{5}(6x^2 - 6x + 1)$

Hence, an orthonormal basis is $1, \sqrt{3}(2x-1), \sqrt{5}(6x^2-6x+1)$.

1 Orthogonal complement and projection

Definition 1. Let V be an inner product space and let $S \subseteq V$. The orthogonal complement of S is

$$S^{\perp} = \{ u : u \perp s \text{ for all } s \in S \}.$$

Lemma 2. Let V be an inner product space over the field F and let $S \subseteq V$.

- S^{\perp} is a subspace of **V**.
- If $T \subseteq S$, then $S^{\perp} \subseteq T^{\perp}$.
- $S^{\perp} = span(S)^{\perp}$.
- If $x \in S \cap S^{\perp}$, then x = o.

Proof. • Suppose that $u, v \in S^{\perp}$ and $\alpha \in \mathbf{F}$. For every $s \in S$, we have

$$\begin{split} \langle u+v,s\rangle &= \langle u,s\rangle + \langle v,s\rangle = 0 \\ \langle \alpha v,s\rangle &= \alpha \, \langle v,s\rangle = 0, \end{split}$$

and thus $u + v, \alpha v \in S^{\perp}$.

- If $u \in S^{\perp}$, then $u \perp t$ for every $t \in T \subseteq S$, and thus $u \in T^{\perp}$.
- Suppose that $x \in S^{\perp}$, and consider any $v \in \text{span}(S)$, $v = \alpha_1 s_1 + \ldots + \alpha_n s_n$ for some $s_1, \ldots, s_n \in S$ and $\alpha_1, \ldots, \alpha_n \in \mathbf{F}$. We have

$$\langle v, x \rangle = \alpha_1 \langle s_1, x \rangle + \ldots + \alpha_n \langle s_n, x \rangle = 0,$$

and thus $x \perp v$. It follows that $x \in \operatorname{span}(S)^{\perp}$, and thus $S^{\perp} \subseteq \operatorname{span}(S)^{\perp}$. By the previous claim, $\operatorname{span}(S)^{\perp} \subseteq S^{\perp}$, since $S \subseteq \operatorname{span}(S)$.

• If $x \in S \cap S^{\perp}$, then $x \perp x$, and thus $0 = \langle x, x \rangle$ and x = o.

Lemma 3. Let V be an inner product space and let U be its subspace. If v_1, \ldots, v_n is an orthonormal basis of V and U = $span(v_1, \ldots, v_m)$, then U^{\perp} = $span(v_{m+1}, \ldots, v_n)$.

Proof. Since the basis is orthonormal, we have $v_{m+1}, \ldots, v_n \perp v_1, \ldots, v_m$, and thus $v_{m+1}, \ldots, v_n \in \{v_1, \ldots, v_m\}^{\perp} = \mathbf{U}^{\perp}$. Since \mathbf{U}^{\perp} is a subspace, span (v_{m+1}, \ldots, v_n) is a subspace of \mathbf{U}^{\perp} . By Lemma 2, we have $\mathbf{U} \cap \mathbf{U}^{\perp} = \{o\}$, and thus

$$n = \dim(\mathbf{U}) + \dim(\operatorname{span}(v_{m+1}, \dots, v_n))$$

$$\leq \dim(\mathbf{U}) + \dim(\mathbf{U}^{\perp})$$

$$= \dim(\mathbf{U} \cap \mathbf{U}^{\perp}) + \dim(\mathbf{U} + \mathbf{U}^{\perp})$$

$$\leq 0 + n.$$

It follows that $\dim(\mathbf{U}^{\perp}) = \dim(\operatorname{span}(v_{m+1},\ldots,v_n))$, and $\mathbf{U}^{\perp} = \operatorname{span}(v_{m+1},\ldots,v_n)$.

Therefore, we can determine the basis of \mathbf{U}^{\perp} as follows.

Algorithm 1. Let V be an inner product space of finite dimension.

Input: A subspace \mathbf{U} of \mathbf{V} .

Output: A basis w_1, \ldots, w_k of \mathbf{U}^{\perp} .

- Let v_1, \ldots, v_n be a basis of \mathbf{V} , and u_1, \ldots, u_m a basis of \mathbf{U} .
- Apply the Gram-Schmidt process on $u_1, \ldots, u_m, v_1, \ldots, v_n$, giving an orthonormal basis $z_1, \ldots, z_m, w_1, \ldots, w_k$ of **V**.

Then z_1, \ldots, z_m is an orthonormal basis of \mathbf{U} , and w_1, \ldots, w_k is an orthonormal basis of \mathbf{U}^{\perp} .

Example 2. Let $\mathbf{U} = span((1,1,1),(1,2,3))$ be a plane in \mathbf{R}^3 . Find the coefficients of the equation ax + by + cz = 0 of this plane.

We are looking for a non-zero vector (a, b, c) such that $(a, b, c) \cdot (x, y, z) = 0$ for every $(x, y, z) \in \mathbf{U}$, i.e., $(a, b, c) \in \mathbf{U}^{\perp}$. The Gram-Schmidt process on (1, 1, 1), (1, 2, 3), (1, 0, 0), (0, 1, 0), (0, 0, 1) returns $\frac{\sqrt{3}}{3}(1, 1, 1), \frac{\sqrt{2}}{2}(-1, 0, 1), \frac{\sqrt{6}}{6}(1, -2, 1),$ and thus $\mathbf{U}^{\perp} = span\left(\frac{\sqrt{6}}{6}(1, -2, 1)\right) = span((1, -2, 1))$. The equation of the plane \mathbf{U} is x - 2y + z = 0.

Theorem 4. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension.

- For every $v \in \mathbf{V}$, there exist unique $p \in \mathbf{U}$ and $q \in \mathbf{U}^{\perp}$ such that v = p + q.
 - If $B = u_1, \ldots, u_k$ is an orthonormal basis of **U**, then the coordinates of p with respect to B are $(\langle v, u_1 \rangle, \ldots, \langle v, u_k \rangle)$, and thus $p = \langle v, u_1 \rangle u_1 + \ldots + \langle v, u_k \rangle u_k$.
- V = U+U[⊥], and if V has a finite dimension, then dim(V) = dim(U)+ dim(U[⊥]).
- $(\mathbf{U}^{\perp})^{\perp} = \mathbf{U}.$
- *Proof.* Consider any $x \in \mathbf{U}$, and let $(\alpha_1, \ldots, \alpha_k)$ be its coordinates with respect to B. Now, $v x \in \mathbf{U}^{\perp} = \{u_1, \ldots, u_k\}^{\perp}$ if and only if $v x \perp u_i$ for $i = 1, \ldots, k$, that is,

$$0 = \langle v - x, u_i \rangle = \langle v, u_i \rangle - \langle x, u_i \rangle = \langle v, u_i \rangle - \alpha_i.$$

Therefore, the vector p with coordinates $(\langle v, u_1 \rangle, \ldots, \langle v, u_k \rangle)$ is the only element of **U** such that $q = v - p \in \mathbf{U}^{\perp}$.

- By the first claim, every element of V belongs to U + U[⊥]. Since U ∩ U[⊥] = {o} has dimension 0, it follows that dim(V) = dim(U) + dim(U[⊥]).
- Note that each $u \in \mathbf{U}$ satisfies $u \perp x$ for every $x \in \mathbf{U}^{\perp}$, and thus $u \in (\mathbf{U}^{\perp})^{\perp}$.

Conversely, consider any $v \in (\mathbf{U}^{\perp})^{\perp}$. By the first claim, there exist $p \in \mathbf{U}$ and $q \in \mathbf{U}^{\perp}$ such that v = p + q. Note that $v \perp q$ and $p \perp q$, and thus $0 = \langle v, q \rangle = \langle p + q, q \rangle = \langle p, q \rangle + \langle q, q \rangle = \langle q, q \rangle$. Therefore, q = o and p = v, and thus $v \in \mathbf{U}$.

Warning: Theorem 4 is not necessarily true if U has infinite dimension.

Example 3. Consider the space \mathcal{P} of all real polynomials in variable x, and its subspace $\mathbf{U} = span(x - 1, x^2 - 1, x^3 - 1, ...)$. Note that a polynomial p belongs to U if and only if the sum of its coefficients is 0, and thus $\mathbf{U} \neq \mathcal{P}$. Let us define the inner product of two polynomials by $\langle \sum_{i=0}^{n} \alpha_i x^i, \sum_{i=0}^{n} \beta_i x^i \rangle = \sum_{i=0}^{n} \alpha_i \beta_i$.

Then for a polynomial $p = \sum_{i=0}^{n} \alpha_i x^i$, we have $\langle p, x^k - 1 \rangle = 0$ if and only if $\alpha_k = \alpha_0$. Consequently, $p \in \mathbf{U}^{\perp}$ if and only if $\alpha_0 = \alpha_1 = \alpha_2 = \dots$. Since p has only finitely many non-zero coefficients, this is only possible if p = 0, and thus $\mathbf{U}^{\perp} = \{0\}$. Consequently, $\mathbf{U} + \mathbf{U}^{\perp} = \mathbf{U} \neq \mathcal{P}$. Also, $(\mathbf{U}^{\perp})^{\perp} = \{0\}^{\perp} = \mathcal{P} \neq \mathbf{U}$.

Definition 2. Let V be an inner product space and let U be its subspace of finite dimension. For $v \in V$, the <u>orthogonal projection of v on U</u> is the vector $p \in U$ such that $v - p \in U^{\perp}$.

Lemma 5 (Basic properties of the projection). Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension. Let $P : \mathbf{V} \to \mathbf{U}$ be the function mapping each vector to its projection on \mathbf{U} . Then

- 1. P is a linear function,
- 2. if u_1, \ldots, u_k is an orthonormal basis of **U**, then $P(v) = \langle v, u_1 \rangle u_1 + \ldots + \langle v, u_k \rangle u_k$ for every $v \in \mathbf{V}$,
- 3. P(u) = u for every $u \in \mathbf{U}$, and
- 4. P(P(v)) = P(v) for every $v \in \mathbf{V}$.

- *Proof.* 1. We have $v_1 P(v_1), v_2 P(v_2) \in \mathbf{U}^{\perp}$, and thus $(v_1 + v_2) (P(v_1) + P(v_2)) \in \mathbf{U}^{\perp}$ and $\alpha v_1 \alpha P(v_1) \in \mathbf{U}^{\perp}$. Consequently, $P(v_1 + v_2) = P(v_1) + P(v_2)$ and $P(\alpha v_1) = \alpha P(v_1)$.
 - 2. This holds by Theorem 4.
 - 3. This holds since $u u = o \in \mathbf{U}^{\perp}$.
 - 4. This holds by the previous item, since $P(v) \in \mathbf{U}$.

Lemma 6 (Bessel's inequality, Parseval's theorem). Let \mathbf{V} be an inner product space and let $S = \{v_1, \ldots, v_m\}$ be a finite orthonormal set in \mathbf{V} . For every $v \in \mathbf{V}$,

$$\|v\| \ge \sqrt{|\langle v, v_1 \rangle|^2 + \ldots + |\langle v, v_m \rangle|^2},$$

and the equality holds if and only if $v \in span(S)$.

Equivalently, for every $v \in \mathbf{V}$, if p is the projection of v on span(S), then $||v|| \ge ||p||$.

Proof. By Theorem 4, the coordinates of p with respect to the orthonormal basis v_1, \ldots, v_m of span(S) are $(\langle v, v_1 \rangle, \ldots, \langle v, v_m \rangle)$, and by Theorem 1, we have

$$||p|| = \sqrt{|\langle v, v_1 \rangle|^2 + \ldots + |\langle v, v_m \rangle|^2}.$$

However, by the definition of the projection, we have $v - p \perp p$, and by the Pythagoras theorem,

$$||v||^2 = ||p||^2 + ||v - p||^2 \ge ||p||^2,$$

with equality if and only if v - p = o, i.e., $v = p \in \text{span}(S)$.

Lemma 7. Let V be an inner product space and let U be its subspace of finite dimension. Let $p \in U$ be the projection of $v \in V$. Then p is the vector of U closest to v, that is,

$$||v - x|| > ||v - p||$$

for every $x \in \mathbf{U} \setminus \{p\}$.

Proof. Note that $p - x \in \mathbf{U}$ and $v - p \in \mathbf{U}^{\perp}$, and thus $p - x \perp v - p$. By Pythagoras theorem, we have

$$||v - p||^2 + ||p - x||^2 = ||v - x||^2$$

and since $p \neq x$, ||p - x|| > 0 and ||v - x|| > ||v - p||.

Example 4. Let $\mathbf{U} = span((1,1,1),(1,2,3))$ be a plane in \mathbf{R}^3 . Determine the distance of the point v = (3,5,1) from \mathbf{U} .

In Example 2, we determined that $u_1, u_2 = \frac{\sqrt{3}}{3}(1, 1, 1), \frac{\sqrt{2}}{2}(-1, 0, 1)$ is an orthonormal basis of **U**, and thus the projection p of v on **U** is

 $p = (v \cdot u_1)u_1 + (v \cdot u_2)u_2 = 3(1, 1, 1) - (-1, 0, 1) = (4, 3, 2).$

Hence, the distance is $|v - p| = |(-1, 2, -1)| = \sqrt{6}$.

Example 5. Find the polynomial p of degree at most two that approximates $\sin x$ on the interval [0,1] the best, i.e., such that $\int_0^1 (p(x) - \sin(x))^2 dx$ is minimum.

Consider $\sin x$ as an element of the vector space **V** of continuous functions from [0,1] to **R**, and let $\mathbf{U} = \mathcal{P}_2$ be its subspace. By Lemma 7, p is the projection of $\sin x$ on **U**. Let $B = u_1, u_2, u_3 = 1, \sqrt{3}(2x-1), \sqrt{5}(6x^2 - 6x + 1)$ be the orthonormal basis of \mathcal{P}_2 that we determined in Example 1. By Theorem 4, $p = \langle \sin x, u_1 \rangle u_1 + \langle \sin x, u_2 \rangle u_2 + \langle \sin x, u_3 \rangle u_3$.

$$\langle \sin x, u_1 \rangle = \int_0^1 \sin x \, dx \approx 0.4597$$
$$\langle \sin x, u_2 \rangle = \sqrt{3} \int_0^1 \sin x (2x - 1) \, dx \approx 0.2471$$
$$\langle \sin x, u_3 \rangle = \sqrt{5} \int_0^1 \sin x (6x^2 - 6x + 1) \, dx \approx 0.0176$$

Hence, $p \approx -0.2361x^2 + 1.092x - 0.008$.

