Projections

Zdeněk Dvořák

March 10, 2015

Theorem 1 (Properties of orthonormal bases). Let \mathbf{V} be an inner product space and let $B=v_{1}, \ldots, v_{n}$ be an orthonormal basis of \mathbf{V}.

1. The coordinates of a vector v with respect to B are $\left(\left\langle v, v_{1}\right\rangle,\left\langle v, v_{2}\right\rangle, \ldots,\left\langle v, v_{n}\right\rangle\right)$.
2. If the coordinates of $u, v \in \mathbf{V}$ with respect to B are $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\left(\beta_{1}, \ldots, \beta_{n}\right)$, respectively, then $\langle u, v\rangle=\alpha_{1} \overline{\beta_{1}}+\ldots+\alpha_{n} \overline{\beta_{n}}$.
3. If the coordinates of $v \in \mathbf{V}$ with respect to B are $\left(\beta_{1}, \ldots, \beta_{n}\right)$, then $\|v\|=\sqrt{\left|\beta_{1}\right|^{2}+\ldots+\left|\beta_{n}\right|^{2}}$.

Example 1. Consider the space \mathcal{P}_{2} of real polynomials of degree at most two, with inner product defined by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Find an orthonormal basis of \mathcal{P}_{2}.
We apply the Gram-Schmidt process to the standard basis $1, x, x^{2}$ of the space \mathcal{P}_{2}.

- $v_{1}^{\prime}=1,\|1\|=1, u_{1}=1$.
- $v_{2}^{\prime}=x-\langle x, 1\rangle 1=x-1 / 2,\|x-1 / 2\|=\sqrt{1 / 12}, u_{2}=\sqrt{3}(2 x-1)$.
- $v_{3}^{\prime}=x^{2}-\left\langle x^{2}, 1\right\rangle 1-\left\langle x^{2}, \sqrt{3}(2 x-1)\right\rangle \sqrt{3}(2 x-1)=x^{2}-1 / 3-(2 x-$ 1) $/ 2=x^{2}-x+1 / 6,\left\|x^{2}-x+1 / 6\right\|=\sqrt{1 / 180}, u_{3}=\sqrt{5}\left(6 x^{2}-6 x+1\right)$

Hence, an orthonormal basis is $1, \sqrt{3}(2 x-1), \sqrt{5}\left(6 x^{2}-6 x+1\right)$.

1 Orthogonal complement and projection

Definition 1. Let \mathbf{V} be an inner product space and let $S \subseteq \mathbf{V}$. The orthogonal complement of S is

$$
S^{\perp}=\{u: u \perp s \text { for all } s \in S\} .
$$

Lemma 2. Let \mathbf{V} be an inner product space over the field \mathbf{F} and let $S \subseteq \mathbf{V}$.

- S^{\perp} is a subspace of \mathbf{V}.
- If $T \subseteq S$, then $S^{\perp} \subseteq T^{\perp}$.
- $S^{\perp}=\operatorname{span}(S)^{\perp}$.
- If $x \in S \cap S^{\perp}$, then $x=o$.

Proof. - Suppose that $u, v \in S^{\perp}$ and $\alpha \in \mathbf{F}$. For every $s \in S$, we have

$$
\begin{aligned}
\langle u+v, s\rangle & =\langle u, s\rangle+\langle v, s\rangle=0 \\
\langle\alpha v, s\rangle & =\alpha\langle v, s\rangle=0,
\end{aligned}
$$

and thus $u+v, \alpha v \in S^{\perp}$.

- If $u \in S^{\perp}$, then $u \perp t$ for every $t \in T \subseteq S$, and thus $u \in T^{\perp}$.
- Suppose that $x \in S^{\perp}$, and consider any $v \in \operatorname{span}(S), v=\alpha_{1} s_{1}+\ldots+$ $\alpha_{n} s_{n}$ for some $s_{1}, \ldots, s_{n} \in S$ and $\alpha_{1}, \ldots, \alpha_{n} \in \mathbf{F}$. We have

$$
\langle v, x\rangle=\alpha_{1}\left\langle s_{1}, x\right\rangle+\ldots+\alpha_{n}\left\langle s_{n}, x\right\rangle=0,
$$

and thus $x \perp v$. It follows that $x \in \operatorname{span}(S)^{\perp}$, and thus $S^{\perp} \subseteq \operatorname{span}(S)^{\perp}$. By the previous claim, $\operatorname{span}(S)^{\perp} \subseteq S^{\perp}$, since $S \subseteq \operatorname{span}(S)$.

- If $x \in S \cap S^{\perp}$, then $x \perp x$, and thus $0=\langle x, x\rangle$ and $x=o$.

Lemma 3. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace. If v_{1}, \ldots, v_{n} is an orthonormal basis of \mathbf{V} and $\mathbf{U}=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, then $\mathbf{U}^{\perp}=$ $\operatorname{span}\left(v_{m+1}, \ldots, v_{n}\right)$.

Proof. Since the basis is orthonormal, we have $v_{m+1}, \ldots, v_{n} \perp v_{1}, \ldots, v_{m}$, and thus $v_{m+1}, \ldots, v_{n} \in\left\{v_{1}, \ldots, v_{m}\right\}^{\perp}=\mathbf{U}^{\perp}$. Since \mathbf{U}^{\perp} is a subspace,
$\operatorname{span}\left(v_{m+1}, \ldots, v_{n}\right)$ is a subspace of \mathbf{U}^{\perp}. By Lemma 2, we have $\mathbf{U} \cap \mathbf{U}^{\perp}=\{o\}$, and thus

$$
\begin{aligned}
n & =\operatorname{dim}(\mathbf{U})+\operatorname{dim}\left(\operatorname{span}\left(v_{m+1}, \ldots, v_{n}\right)\right) \\
& \leq \operatorname{dim}(\mathbf{U})+\operatorname{dim}\left(\mathbf{U}^{\perp}\right) \\
& =\operatorname{dim}\left(\mathbf{U} \cap \mathbf{U}^{\perp}\right)+\operatorname{dim}\left(\mathbf{U}+\mathbf{U}^{\perp}\right) \\
& \leq 0+n
\end{aligned}
$$

It follows that $\operatorname{dim}\left(\mathbf{U}^{\perp}\right)=\operatorname{dim}\left(\operatorname{span}\left(v_{m+1}, \ldots, v_{n}\right)\right)$, and $\mathbf{U}^{\perp}=\operatorname{span}\left(v_{m+1}, \ldots, v_{n}\right)$.

Therefore, we can determine the basis of \mathbf{U}^{\perp} as follows.
Algorithm 1. Let \mathbf{V} be an inner product space of finite dimension.
Input: A subspace \mathbf{U} of \mathbf{V}.
Output: A basis w_{1}, \ldots, w_{k} of \mathbf{U}^{\perp}.

- Let v_{1}, \ldots, v_{n} be a basis of \mathbf{V}, and u_{1}, \ldots, u_{m} a basis of \mathbf{U}.
- Apply the Gram-Schmidt process on $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n}$, giving an orthonormal basis $z_{1}, \ldots, z_{m}, w_{1}, \ldots, w_{k}$ of \mathbf{V}.

Then z_{1}, \ldots, z_{m} is an orthonormal basis of \mathbf{U}, and w_{1}, \ldots, w_{k} is an orthonormal basis of \mathbf{U}^{\perp}.

Example 2. Let $\mathbf{U}=\operatorname{span}((1,1,1),(1,2,3))$ be a plane in \mathbf{R}^{3}. Find the coefficients of the equation $a x+b y+c z=0$ of this plane.

We are looking for a non-zero vector (a, b, c) such that $(a, b, c) \cdot(x, y, z)=0$ for every $(x, y, z) \in \mathbf{U}$, i.e., $(a, b, c) \in \mathbf{U}^{\perp}$. The Gram-Schmidt process on $(1,1,1),(1,2,3),(1,0,0),(0,1,0),(0,0,1)$ returns $\frac{\sqrt{3}}{3}(1,1,1), \frac{\sqrt{2}}{2}(-1,0,1), \frac{\sqrt{6}}{6}(1,-2,1)$, and thus $\mathbf{U}^{\perp}=\operatorname{span}\left(\frac{\sqrt{6}}{6}(1,-2,1)\right)=\operatorname{span}((1,-2,1))$. The equation of the plane \mathbf{U} is $x-2 y+z=0$.

Theorem 4. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension.

- For every $v \in \mathbf{V}$, there exist unique $p \in \mathbf{U}$ and $q \in \mathbf{U}^{\perp}$ such that $v=p+q$.
- If $B=u_{1}, \ldots, u_{k}$ is an orthonormal basis of \mathbf{U}, then the coordinates of p with respect to B are $\left(\left\langle v, u_{1}\right\rangle, \ldots,\left\langle v, u_{k}\right\rangle\right)$, and thus $p=\left\langle v, u_{1}\right\rangle u_{1}+\ldots+\left\langle v, u_{k}\right\rangle u_{k}$.
- $\mathbf{V}=\mathbf{U}+\mathbf{U}^{\perp}$, and if \mathbf{V} has a finite dimension, then $\operatorname{dim}(\mathbf{V})=\operatorname{dim}(\mathbf{U})+$ $\operatorname{dim}\left(\mathbf{U}^{\perp}\right)$.
- $\left(\mathbf{U}^{\perp}\right)^{\perp}=\mathbf{U}$.

Proof. - Consider any $x \in \mathbf{U}$, and let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be its coordinates with respect to B. Now, $v-x \in \mathbf{U}^{\perp}=\left\{u_{1}, \ldots, u_{k}\right\}^{\perp}$ if and only if $v-x \perp u_{i}$ for $i=1, \ldots, k$, that is,

$$
0=\left\langle v-x, u_{i}\right\rangle=\left\langle v, u_{i}\right\rangle-\left\langle x, u_{i}\right\rangle=\left\langle v, u_{i}\right\rangle-\alpha_{i} .
$$

Therefore, the vector p with coordinates $\left(\left\langle v, u_{1}\right\rangle, \ldots,\left\langle v, u_{k}\right\rangle\right)$ is the only element of \mathbf{U} such that $q=v-p \in \mathbf{U}^{\perp}$.

- By the first claim, every element of \mathbf{V} belongs to $\mathbf{U}+\mathbf{U}^{\perp}$. Since $\mathbf{U} \cap \mathbf{U}^{\perp}=\{o\}$ has dimension 0 , it follows that $\operatorname{dim}(\mathbf{V})=\operatorname{dim}(\mathbf{U})+$ $\operatorname{dim}\left(\mathbf{U}^{\perp}\right)$.
- Note that each $u \in \mathbf{U}$ satisfies $u \perp x$ for every $x \in \mathbf{U}^{\perp}$, and thus $u \in\left(\mathbf{U}^{\perp}\right)^{\perp}$.
Conversely, consider any $v \in\left(\mathbf{U}^{\perp}\right)^{\perp}$. By the first claim, there exist $p \in \mathbf{U}$ and $q \in \mathbf{U}^{\perp}$ such that $v=p+q$. Note that $v \perp q$ and $p \perp q$, and thus $0=\langle v, q\rangle=\langle p+q, q\rangle=\langle p, q\rangle+\langle q, q\rangle=\langle q, q\rangle$. Therefore, $q=o$ and $p=v$, and thus $v \in \mathbf{U}$.

Warning: Theorem 4 is not necessarily true if \mathbf{U} has infinite dimension.
Example 3. Consider the space \mathcal{P} of all real polynomials in variable x, and its subspace $\mathbf{U}=\operatorname{span}\left(x-1, x^{2}-1, x^{3}-1, \ldots\right)$. Note that a polynomial p belongs to U if and only if the sum of its coefficients is 0 , and thus $\mathbf{U} \neq \mathcal{P}$. Let us define the inner product of two polynomials by $\left\langle\sum_{i=0}^{n} \alpha_{i} x^{i}, \sum_{i=0}^{n} \beta_{i} x^{i}\right\rangle=$ $\sum_{i=0}^{n} \alpha_{i} \beta_{i}$.

Then for a polynomial $p=\sum_{i=0}^{n} \alpha_{i} x^{i}$, we have $\left\langle p, x^{k}-1\right\rangle=0$ if and only if $\alpha_{k}=\alpha_{0}$. Consequently, $p \in \mathbf{U}^{\perp}$ if and only if $\alpha_{0}=\alpha_{1}=\alpha_{2}=\ldots$. Since p has only finitely many non-zero coefficients, this is only possible if $p=0$, and thus $\mathbf{U}^{\perp}=\{0\}$. Consequently, $\mathbf{U}+\mathbf{U}^{\perp}=\mathbf{U} \neq \mathcal{P}$. Also, $\left(\mathbf{U}^{\perp}\right)^{\perp}=\{0\}^{\perp}=\mathcal{P} \neq \mathbf{U}$.

Definition 2. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension. For $v \in \mathbf{V}$, the orthogonal projection of v on \mathbf{U} is the vector $p \in \mathbf{U}$ such that $v-p \in \mathbf{U}^{\perp}$.

Lemma 5 (Basic properties of the projection). Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension. Let $P: \mathbf{V} \rightarrow \mathbf{U}$ be the function mapping each vector to its projection on \mathbf{U}. Then

1. P is a linear function,
2. if u_{1}, \ldots, u_{k} is an orthonormal basis of \mathbf{U}, then $P(v)=\left\langle v, u_{1}\right\rangle u_{1}+$ $\ldots+\left\langle v, u_{k}\right\rangle u_{k}$ for every $v \in \mathbf{V}$,
3. $P(u)=u$ for every $u \in \mathbf{U}$, and
4. $P(P(v))=P(v)$ for every $v \in \mathbf{V}$.

Proof. 1. We have $v_{1}-P\left(v_{1}\right), v_{2}-P\left(v_{2}\right) \in \mathbf{U}^{\perp}$, and thus $\left(v_{1}+v_{2}\right)-\left(P\left(v_{1}\right)+\right.$ $\left.P\left(v_{2}\right)\right) \in \mathbf{U}^{\perp}$ and $\alpha v_{1}-\alpha P\left(v_{1}\right) \in \mathbf{U}^{\perp}$. Consequently, $P\left(v_{1}+v_{2}\right)=$ $P\left(v_{1}\right)+P\left(v_{2}\right)$ and $P\left(\alpha v_{1}\right)=\alpha P\left(v_{1}\right)$.
2. This holds by Theorem 4.
3. This holds since $u-u=o \in \mathbf{U}^{\perp}$.
4. This holds by the previous item, since $P(v) \in \mathbf{U}$.

Lemma 6 (Bessel's inequality, Parseval's theorem). Let \mathbf{V} be an inner product space and let $S=\left\{v_{1}, \ldots, v_{m}\right\}$ be a finite orthonormal set in \mathbf{V}. For every $v \in \mathbf{V}$,

$$
\|v\| \geq \sqrt{\left|\left\langle v, v_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, v_{m}\right\rangle\right|^{2}}
$$

and the equality holds if and only if $v \in \operatorname{span}(S)$.
Equivalently, for every $v \in \mathbf{V}$, if p is the projection of v on $\operatorname{span}(S)$, then $\|v\| \geq\|p\|$.

Proof. By Theorem 4, the coordinates of p with respect to the orthonormal basis v_{1}, \ldots, v_{m} of $\operatorname{span}(S)$ are $\left(\left\langle v, v_{1}\right\rangle, \ldots,\left\langle v, v_{m}\right\rangle\right)$, and by Theorem 1 , we have

$$
\|p\|=\sqrt{\left|\left\langle v, v_{1}\right\rangle\right|^{2}+\ldots+\left|\left\langle v, v_{m}\right\rangle\right|^{2}} .
$$

However, by the definition of the projection, we have $v-p \perp p$, and by the Pythagoras theorem,

$$
\|v\|^{2}=\|p\|^{2}+\|v-p\|^{2} \geq\|p\|^{2}
$$

with equality if and only if $v-p=o$, i.e., $v=p \in \operatorname{span}(S)$.
Lemma 7. Let \mathbf{V} be an inner product space and let \mathbf{U} be its subspace of finite dimension. Let $p \in \mathbf{U}$ be the projection of $v \in \mathbf{V}$. Then p is the vector of \mathbf{U} closest to v, that is,

$$
\|v-x\|>\|v-p\|
$$

for every $x \in \mathbf{U} \backslash\{p\}$.
Proof. Note that $p-x \in \mathbf{U}$ and $v-p \in \mathbf{U}^{\perp}$, and thus $p-x \perp v-p$. By Pythagoras theorem, we have

$$
\|v-p\|^{2}+\|p-x\|^{2}=\|v-x\|^{2}
$$

and since $p \neq x,\|p-x\|>0$ and $\|v-x\|>\|v-p\|$.

Example 4. Let $\mathbf{U}=\operatorname{span}((1,1,1),(1,2,3))$ be a plane in \mathbf{R}^{3}. Determine the distance of the point $v=(3,5,1)$ from \mathbf{U}.

In Example 2, we determined that $u_{1}, u_{2}=\frac{\sqrt{3}}{3}(1,1,1), \frac{\sqrt{2}}{2}(-1,0,1)$ is an orthonormal basis of \mathbf{U}, and thus the projection p of v on \mathbf{U} is

$$
p=\left(v \cdot u_{1}\right) u_{1}+\left(v \cdot u_{2}\right) u_{2}=3(1,1,1)-(-1,0,1)=(4,3,2) .
$$

Hence, the distance is $|v-p|=|(-1,2,-1)|=\sqrt{6}$.
Example 5. Find the polynomial p of degree at most two that approximates $\sin x$ on the interval $[0,1]$ the best, i.e., such that $\int_{0}^{1}(p(x)-\sin (x))^{2} d x$ is minimum.

Consider $\sin x$ as an element of the vector space \mathbf{V} of continuous functions from $[0,1]$ to \mathbf{R}, and let $\mathbf{U}=\mathcal{P}_{2}$ be its subspace. By Lemma 7, p is the projection of $\sin x$ on \mathbf{U}. Let $B=u_{1}, u_{2}, u_{3}=1, \sqrt{3}(2 x-1), \sqrt{5}\left(6 x^{2}-6 x+\right.$ 1) be the orthonormal basis of \mathcal{P}_{2} that we determined in Example 1. By Theorem 4, $p=\left\langle\sin x, u_{1}\right\rangle u_{1}+\left\langle\sin x, u_{2}\right\rangle u_{2}+\left\langle\sin x, u_{3}\right\rangle u_{3}$.

$$
\begin{aligned}
& \left\langle\sin x, u_{1}\right\rangle=\int_{0}^{1} \sin x d x \approx 0.4597 \\
& \left\langle\sin x, u_{2}\right\rangle=\sqrt{3} \int_{0}^{1} \sin x(2 x-1) d x \approx 0.2471 \\
& \left\langle\sin x, u_{3}\right\rangle=\sqrt{5} \int_{0}^{1} \sin x\left(6 x^{2}-6 x+1\right) d x \approx 0.0176
\end{aligned}
$$

Hence, $p \approx-0.2361 x^{2}+1.092 x-0.008$.

