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Lemma 1 (Schur decomposition). If A is a symmetric real matriz, then there
exists an orthogonal matriz Q and a diagonal matriz D such that A = QDQT .
The diagonal entries of D are the eigenvalues of A.

Lemma 2 (Cholesky decomposition). If A is a positive definite n X n matriz,
then there exists a unique lower-triangular matrix L with positive entries on
the diagonal such that A= LL".

1 LU(P) decomposition

Definition 1. Let A be an nxm matriz. Then A = LU is an LU decomposition
of A if L is a lower-triangular n X n matrixz with ones on the diagonal, and
U is an upper-triangular n X m matriz.

Similar to Cholesky decomposition, but does not require positive semidef-
initeness of A. LU decomposition does not always exist. But:

Lemma 3. For every square matriz A, there exists a permutation matriz P
such that PA has an LU decomposition.

Proof. Reorder the rows of A so that Gaussian elimination algorithm does
not need to exchange rows—the reordering is described by the permutation
matrix P. Run Gaussian elimination for PA, only allowing addition of a
multiple of a row to some row with higher index; the resulting matrix is U.
The matrix L is obtained by performing the inverse operations on an identity

matrix in the reverse order. [
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Example 1. Find an LUP decomposition of A = 011 1
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In the Gaussian elimination algorithm, we select the first pivot in the 1st
row, the second pivot in the 3rd row, and the third pivot in the 2nd row (and

1 0 00
_ 0010
the remaining rows are zero, afterwards). Hence, we set P = 010 0l
0 0 01
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so that PA = 2920 0 and the Gaussian elimination no longer needs
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to exchange rows.
In the Gaussian elimination, we in order add

a X ‘ 1-th row to ‘ J-th row

—2 1 3
-2 1 4
—1/2 3 4,
11 1 1 1 0 O
. ) 01 1 1 . 01 0
ending up with U = 00 -2 —9 . This corresponds to L = 9 0 1
0O 0 O 0 2 0 1/2
Hence,
1 0 00 10 0 O 11 1 1
0010 A 01 0 O 01 1 1
01 00 120 1 0 00 -2 =2
0001 2 0 1/2 1 00 O 0
Applications:

e To solve system Ax = b, equivalently we can solve PAx = LUx = Pb
by forward and backward substitution (efficient when solving repeat-
edly with different right-hand sides).

e Computing inverse, determinant (slower than direct methods).

2 QR decomposition

Definition 2. Let A be an nxm matriz. Then A = QR is a QR decomposition
of A if Q is an orthogonal n X n matriz and R is an upper-triangular n x m
matriz.
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Lemma 4. Fvery matriz has a QR decomposition.

Proof. Run the Gram-Schmidt ortonormalization process for the columns vy,

..., Uy of A to obtain an orthonormal basis uy, ..., u of span(vy,...,vy),
such that for i = 1,...,k, we have v; € span(uy,...,u;). Let ugi1, ..., uy
be arbitrary vectors extending wuq, ..., up to an orthonormal basis, and let
Q = (uy|...|uy). Then R = Q1A = QT A is upper-triangular. O
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Example 2. Compute a QR decomposition of A = 011 1
2 2 11

Gram-Schmidt ortonormalization process for the columns of A gives

1
g(1, 2,0,2)",(0,0,1,0)",1/3(2,-2,0,1)".

This can be extended to an orthonormal basis by adding the vector1/3(2,1,0, —2),
1/3 0 2/3 2/3
2/3 0 -2/3 1/3
0 1 0 0
2/3 0 1/3 -2/3
3 1

hence we can set () =

Hence, R=QTA =

OO = W
O~ =

0 1
0 1
0 0

Remark: there exist better (numerically more stable) ways of computing
QR decomposition.

Definition 3. Let A = QR be a QR decomposition of an n X m matriz A
of rank k, where last n — k rows of R are equal to 0. Let R’ be the k x m
matriz consisting of the first k rows of R, and let Q = (Q'|Q"), where Q' has
k columns. Then A = Q'R is a reduced QR decomposition of A.

Applications:

e To solve system Ax = b, solve Rz = Qb by substitution (numerically
more stable than Gaussian elimination, but slower).

e If Ais an n x m matrix with m < n, the rank of Ais m, and A = Q'R’
is a reduced QR decomposition of A, then the solution to R’z = (Q')Th
is the least-squares approximate solution to Az = b.
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e QR algorithm to compute eigenvalues (basic idea): Let Ay = A and for
1 >0, let A; = Q; R; be a QR decomposition of A; and let A;,1 = R;Q;.
Note that Ai+1 = RzQz = QZ_IQ’LR’LQ’L = Ql_lAzQ“ and thus Ao, Al,
... have the same eigenvalues. The sequence typically converges to an
upper-triangular matrix, whose diagonal entries give the eigenvalues.

3 Singular value (SVD) decomposition

Definition 4. Let A be an n x m matriz. Then A = Q,DQ3 is an SVD
decomposition of A if Q1 is an orthogonal n X n matriz, D is a diagonal n xm
matriz with non-negative entries on the diagonal, and Qo is an orthogonal
m x m matriz. Let r = rank(A). The non-zero entries dy, ..., d, of the
diagonal matriz D are positive, and we call them the singular values of A.

Lemma 5. If dy, ..., d, are the singular values of A, then d3, ..., d* are
the non-zero eigenvalues of AT A.

Proof. We have ATA = (Q.DTQT)Q,DQY = Q,(DTD)Q?¥. Note that DTD
is diagonal with d2, ..., d? on the diagonal and that AT A and DT D have
the same eigenvalues. O

To construct an SVD decomposition, first find a Schur decomposition
Q2D'QF of AT A, thus determining @, and the singular values di, ..., d, as
the roots of the elements of the diagonal of D’; this also determines D and
r = rank(A). Let Q) consist of the first 7 columns of @Q5, let D" be the r x r
diagonal matrix with d;*, ..., d-! on the diagonal, and let Q) = AQ,D".
Extend the n x r matrix )} to an orthonormal matrix (), arbitrarily.
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Example 3. Compute an SVD decomposition of A = 011 1
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9 9 3 3
’ 0 10 4 4| 5 .
We have A* A = 3 4 3 3 with Schur decomposition QLG5 for
3 4 3 3
—0.615 0.473 —-0.631 0.000 21.670 0 0
Q= —0.673 0.101 0.732  0.000 and I — 0 3.059 0
27| —0.200 —0.619 —0.181 —0.707 - 0 0  0.272
—0.290 —-0.619 —-0.181 0.707 0 0 0

o O O O



Thus, the singular values are v/21.670 ~ 4.655, v/3.059 ~ 1.749, and v/0.272 =~

0.522.
—-0.615 0.473 —0.631

0215 0 0
We gel O — AQ,D" — A | ~0673 0101 0.732 0 05T o
~0.290 —0.619 —0.181 0 0 Lot

~0.290 —0.619 —0.181 '
—0.402 —0.380 —0.500
—0.554 0.657  0.387
—0.269 —0.650 0.709
—0.679 —0.051 —0.307
—0.402 —0.380 —0.500 0.666
get Oy — | 0%+ 0657 0387 0.334
—0.269 —0.650 0.709 —0.050
—0.679 —0.051 —0.307 —0.665

. Eztending Q) to an orthonormal matriz, we

Applications:

e Decomposes f(x) = Az to isometries and scaling (singular values de-
scribe the deformation).

e For regular matrix A, the ratio d;/d,, of singular values estimates loss
of precision for matrix computations (inverse, solution of systems of
equations, ... ).

e Signal processing, compression (replacing small singular values by 0
does not change the matrix too much).

e The Frobenius norm of a matrix Ais [|Al| = /37, . A7, = \/Trace(ATA) =

/Y. d?, where dy, ..., d, are the singular values of A. Hence the small-
est singular value of A is the distance in Frobenius norm from A to a
singular matrix (and actually, there exists no closer singular matrix).




