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Lemma 1 (Schur decomposition). If A is a symmetric real matrix, then there
exists an orthogonal matrix Q and a diagonal matrix D such that A = QDQT .
The diagonal entries of D are the eigenvalues of A.

Lemma 2 (Cholesky decomposition). If A is a positive definite n×n matrix,
then there exists a unique lower-triangular matrix L with positive entries on
the diagonal such that A = LLT .

1 LU(P) decomposition

Definition 1. Let A be an n×m matrix. Then A = LU is an LU decomposition
of A if L is a lower-triangular n× n matrix with ones on the diagonal, and
U is an upper-triangular n×m matrix.

Similar to Cholesky decomposition, but does not require positive semidef-
initeness of A. LU decomposition does not always exist. But:

Lemma 3. For every square matrix A, there exists a permutation matrix P
such that PA has an LU decomposition.

Proof. Reorder the rows of A so that Gaussian elimination algorithm does
not need to exchange rows—the reordering is described by the permutation
matrix P . Run Gaussian elimination for PA, only allowing addition of a
multiple of a row to some row with higher index; the resulting matrix is U .
The matrix L is obtained by performing the inverse operations on an identity
matrix in the reverse order.

Example 1. Find an LUP decomposition of A =


1 1 1 1
2 2 0 0
0 1 1 1
2 2 1 1

 .
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In the Gaussian elimination algorithm, we select the first pivot in the 1st
row, the second pivot in the 3rd row, and the third pivot in the 2nd row (and

the remaining rows are zero, afterwards). Hence, we set P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

,

so that PA =


1 1 1 1
0 1 1 1
2 2 0 0
2 2 1 1

 and the Gaussian elimination no longer needs

to exchange rows.
In the Gaussian elimination, we in order add

α× i-th row to j-th row
−2 1 3
−2 1 4
−1/2 3 4,

ending up with U =


1 1 1 1
0 1 1 1
0 0 −2 −2
0 0 0 0

. This corresponds to L =


1 0 0 0
0 1 0 0
2 0 1 0
2 0 1/2 1

 .

Hence, 
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

A =


1 0 0 0
0 1 0 0
2 0 1 0
2 0 1/2 1




1 1 1 1
0 1 1 1
0 0 −2 −2
0 0 0 0

 .

Applications:

• To solve system Ax = b, equivalently we can solve PAx = LUx = Pb
by forward and backward substitution (efficient when solving repeat-
edly with different right-hand sides).

• Computing inverse, determinant (slower than direct methods).

2 QR decomposition

Definition 2. Let A be an n×m matrix. Then A = QR is a QR decomposition
of A if Q is an orthogonal n× n matrix and R is an upper-triangular n×m
matrix.
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Lemma 4. Every matrix has a QR decomposition.

Proof. Run the Gram-Schmidt ortonormalization process for the columns v1,
. . . , vm of A to obtain an orthonormal basis u1, . . . , uk of span(v1, . . . , vm),
such that for i = 1, . . . , k, we have vi ∈ span(u1, . . . , ui). Let uk+1, . . . , un
be arbitrary vectors extending u1, . . . , uk to an orthonormal basis, and let
Q = (u1| . . . |un). Then R = Q−1A = QTA is upper-triangular.

Example 2. Compute a QR decomposition of A =


1 1 1 1
2 2 0 0
0 1 1 1
2 2 1 1

 .

Gram-Schmidt ortonormalization process for the columns of A gives

1

3
(1, 2, 0, 2)T , (0, 0, 1, 0)T , 1/3(2,−2, 0, 1)T .

This can be extended to an orthonormal basis by adding the vector 1/3(2, 1, 0,−2),

hence we can set Q =


1/3 0 2/3 2/3
2/3 0 −2/3 1/3
0 1 0 0

2/3 0 1/3 −2/3

 .

Hence, R = QTA =


3 3 1 1
0 1 1 1
0 0 1 1
0 0 0 0

 .

Remark: there exist better (numerically more stable) ways of computing
QR decomposition.

Definition 3. Let A = QR be a QR decomposition of an n ×m matrix A
of rank k, where last n − k rows of R are equal to 0. Let R′ be the k × m
matrix consisting of the first k rows of R, and let Q = (Q′|Q′′), where Q′ has
k columns. Then A = Q′R′ is a reduced QR decomposition of A.

Applications:

• To solve system Ax = b, solve Rx = QT b by substitution (numerically
more stable than Gaussian elimination, but slower).

• If A is an n×m matrix with m ≤ n, the rank of A is m, and A = Q′R′

is a reduced QR decomposition of A, then the solution to R′x = (Q′)T b
is the least-squares approximate solution to Ax = b.
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• QR algorithm to compute eigenvalues (basic idea): Let A0 = A and for
i ≥ 0, let Ai = QiRi be a QR decomposition of Ai and let Ai+1 = RiQi.
Note that Ai+1 = RiQi = Q−1i QiRiQi = Q−1i AiQi, and thus A0, A1,
. . . have the same eigenvalues. The sequence typically converges to an
upper-triangular matrix, whose diagonal entries give the eigenvalues.

3 Singular value (SVD) decomposition

Definition 4. Let A be an n × m matrix. Then A = Q1DQ
T
2 is an SVD

decomposition of A if Q1 is an orthogonal n×n matrix, D is a diagonal n×m
matrix with non-negative entries on the diagonal, and Q2 is an orthogonal
m × m matrix. Let r = rank(A). The non-zero entries d1, . . . , dr of the
diagonal matrix D are positive, and we call them the singular values of A.

Lemma 5. If d1, . . . , dr are the singular values of A, then d21, . . . , d2r are
the non-zero eigenvalues of ATA.

Proof. We have ATA = (Q2D
TQT

1 )Q1DQ
T
2 = Q2(D

TD)QT
2 . Note that DTD

is diagonal with d21, . . . , d2r on the diagonal and that ATA and DTD have
the same eigenvalues.

To construct an SVD decomposition, first find a Schur decomposition
Q2D

′QT
2 of ATA, thus determining Q2 and the singular values d1, . . . , dr as

the roots of the elements of the diagonal of D′; this also determines D and
r = rank(A). Let Q′2 consist of the first r columns of Q2, let D′′ be the r× r
diagonal matrix with d−11 , . . . , d−1r on the diagonal, and let Q′1 = AQ′2D

′′.
Extend the n× r matrix Q′1 to an orthonormal matrix Q1 arbitrarily.

Example 3. Compute an SVD decomposition of A =


1 1 1 1
2 2 0 0
0 1 1 1
2 2 1 1

 .

We have ATA =


9 9 3 3
9 10 4 4
3 4 3 3
3 4 3 3

 with Schur decomposition Q2LQ
T
2 for

Q2 =


−0.615 0.473 −0.631 0.000
−0.673 0.101 0.732 0.000
−0.290 −0.619 −0.181 −0.707
−0.290 −0.619 −0.181 0.707

 and L =


21.670 0 0 0

0 3.059 0 0
0 0 0.272 0
0 0 0 0

.
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Thus, the singular values are
√

21.670 ≈ 4.655,
√

3.059 ≈ 1.749, and
√

0.272 ≈
0.522.

We get Q′1 = AQ′2D
′′ = A


−0.615 0.473 −0.631
−0.673 0.101 0.732
−0.290 −0.619 −0.181
−0.290 −0.619 −0.181


0.215 0 0

0 0.572 0
0 0 1.916

 =


−0.402 −0.380 −0.500
−0.554 0.657 0.387
−0.269 −0.650 0.709
−0.679 −0.051 −0.307

 . Extending Q′1 to an orthonormal matrix, we

get Q1 =


−0.402 −0.380 −0.500 0.666
−0.554 0.657 0.387 0.334
−0.269 −0.650 0.709 −0.050
−0.679 −0.051 −0.307 −0.665

 .

Applications:

• Decomposes f(x) = Ax to isometries and scaling (singular values de-
scribe the deformation).

• For regular matrix A, the ratio d1/dn of singular values estimates loss
of precision for matrix computations (inverse, solution of systems of
equations, . . . ).

• Signal processing, compression (replacing small singular values by 0
does not change the matrix too much).

• The Frobenius norm of a matrixA is ‖A‖ =
√∑

i,j A
2
i,j =

√
Trace(ATA) =√∑

i d
2
i , where d1, . . . , dr are the singular values of A. Hence the small-

est singular value of A is the distance in Frobenius norm from A to a
singular matrix (and actually, there exists no closer singular matrix).
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