Bilinear and quadratic forms

Zdeněk Dvořák

April 28, 2015

1 Bilinear forms

Definition 1. Let **V** be a vector space over a field **F**. A function $b: V \times V \rightarrow$ F is a bilinear form if

 $b(u + v, w) = b(u, w) + b(v, w)$ $b(u, v + w) = b(u, v) + b(u, w)$ $b(\alpha u, v) = \alpha b(u, v)$ $b(u, \alpha v) = \alpha b(u, v)$

for all $u, v, w \in V$ and $\alpha \in F$.

The bilinear form b is symmetric if $b(u, v) = b(v, u)$ for all $u, v \in V$.

Remark: $b(o, v) = b(v, o) = 0$. Examples:

- $b(x, y) = \langle x, y \rangle$ in \mathbb{R}^n is bilinear and symmetric for any scalar product.
- $b((x_1, y_1), (x_2, y_2)) = x_1x_2 + 2x_1y_2 + 3y_1x_2 + 4y_1y_2$ is bilinear, but not symmetric.

Definition 2. Let $C = v_1, \ldots, v_n$ be a basis of **V** and let b be a bilinear form on V . The matrix of b with respect to C is

$$
[b]_C = \begin{pmatrix} b(v_1, v_1) & b(v_1, v_2) & \dots & b(v_1, v_n) \\ b(v_2, v_1) & b(v_2, v_2) & \dots & b(v_2, v_n) \\ \dots & \dots & \dots & \dots \\ b(v_n, v_1) & b(v_n, v_2) & \dots & b(v_n, v_n) \end{pmatrix}.
$$

Lemma 1. Let $C = v_1, \ldots, v_n$ be a basis of **V** and let b be a bilinear form on **V**. For any $x, y \in V$, we have

$$
b(x,y) = [x]_C [b]_C [y]_C^T.
$$

Proof. Let $[x]_C = (\alpha_1, \ldots, \alpha_n)$ and $[y]_C = (\beta_1, \ldots, \beta_n)$. We have

$$
b(x, y) = b(\alpha_1 v_1 + \dots + \alpha_n v_n, \beta_1 v_1 + \dots + \beta_n v_n)
$$

=
$$
\sum_{i=1}^n \sum_{j=1}^n \alpha_i \beta_j b(v_i, v_j)
$$

=
$$
\sum_{i=1}^n \sum_{j=1}^n \alpha_i \beta_j ([b]_C)_{i,j}
$$

=
$$
[x]_C [b]_C [y]_C^T.
$$

Remark: $[b]_C$ is the only matrix with this property. A bilinear form b is symmetric if and only if $[b]_C$ is a symmetric matrix.

Corollary 2. Let **V** be a vector space over a field **F**. Let $C = v_1, \ldots, v_n$ be a basis of **V**. For every $n \times n$ matrix M over **F**, there exists a unique bilinear form $b: \mathbf{V} \times \mathbf{V} \to \mathbf{F}$ such that $b(v_i, v_j) = M_{i,j}$ for $1 \leq i, j \leq n$.

Proof. Define $b(x, y) = [x]_C M[y]_C^T$ and observe that b is bilinear. No other bilinear form with this property exists, since any bilinear form satisfying the assumptions has matrix M , which by Lemma 1 uniquely determines the values of the bilinear form. \Box

Example 1. The bilinear form $b((x_1, y_1), (x_2, y_2)) = x_1x_2 + 2x_1y_2 + 3y_1x_2 +$ $4y_1y_2$ has matrix $\begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}$ with respect to the standard basis;

$$
b((x_1,y_1),(x_2,y_2))=(x_1,y_1)\begin{pmatrix} 1 & 2 \ 3 & 4 \end{pmatrix}\begin{pmatrix} x_2 \ y_2 \end{pmatrix}.
$$

Lemma 3. Let $B = v_1, \ldots, v_n$ and C be two bases of **V** and let b be a bilinear form on **V**. Let $S = [id]_{B,C}$. Then

$$
[b]_B = S^T[b]_C S.
$$

Proof. We have

$$
(ST[b]_{C}S)_{i,j} = e_iTST[b]_{C}Se_j
$$

= $[v_i]_{B}ST[b]_{C}S[v_j]_{B}^{T}$
= $[v_i]_{C}[b]_{C}[v_j]_{C}^{T}$
= $b(v_i, v_j) = ([b]_{B})_{i,j}$.

 \Box

 \Box

2 Quadratic forms

Definition 3. A function $f: V \to F$ is a quadratic form if there exists a bilinear form $b : V \times V \to F$ such that $f(x) = b(x, x)$ for every $x \in V$.

Example 2.

 $f((x,y)) = x^2+5xy+4y^2$ is a quadratic form, since $f((x,y)) = b((x,y),(x,y))$ for the bilinear form $b((x_1, y_1), (x_2, y_2)) = x_1x_2 + 2x_1y_2 + 3y_1x_2 + 4y_1y_2$.

Also, $f((x, y)) = b_1((x, y), (x, y))$ for the symmetric bilinear form $b((x_1, y_1), (x_2, y_2)) =$ $x_1x_2+\frac{5}{2}$ $\frac{5}{2}(x_1y_2+y_1x_2)+4y_1y_2.$

Lemma 4. Let V be a vector space over a field F whose characteristic is not 2. For every quadratic form f , there exists a unique symmetric bilinear form b such that $f(x) = b(x, x)$ for every $x \in V$.

Proof. Since f is quadratic, there exists a bilinear form b_0 such that $f(x) =$ $b_0(x, x)$ for every $x \in \mathbf{V}$. Let $b(x, y) = \frac{1}{2}(b_0(x, y) + b_0(y, x))$. Then b is a symmetric bilinear form and $b(x, x) = b_0(x, x)$ for every $x \in V$. Hence, b is a symmetric bilinear form such that $f(x) = b(x, x)$ for every $x \in V$.

To show that b is unique, it suffices to note that

$$
b(x,y) = \frac{b(x+y,x+y) - b(x,x) - b(y,y)}{2} = \frac{f(x+y) - f(x) - f(y)}{2}
$$

whenever b is a symmetric bilinear form b satisfying $f(x) = b(x, x)$ for every $x \in V$. П

Hence, if f is a quadratic form on V and C is a basis of V, then

$$
f(x) = [x]_C A [x]_C^T
$$

for a unique symmetric matrix A. We write $[f]_C = A$. Also, by Lemma 3, if B is another basis of **V** and $S = [\text{id}]_{B,C}$, then

$$
[f]_B = S^T[f]_C S.
$$

Lemma 5. Let $f : V \to F$ be a quadratic form. Let $B_1 = v_1, \ldots, v_n$ and $B_2 = w_1, \ldots, w_n$ be two bases of **V** such that both $[f]_{B_1}$ and $[f]_{B_2}$ are diagonal matrices. Then $[f]_{B_1}$ and $[f]_{B_2}$ have the same number of positive entries.

Proof. For $i \in \{1,2\}$, let a_i be the number of positive entries of $[f]_{B_i}$, and suppose for a contradiction that $a_1 > a_2$. Let $I = \{i : f(v_i) > 0\}, J = \{i :$ $f(w_i) \leq 0$. Let $\mathbf{U}_1 = \text{span}(\{v_i : i \in I\})$ and $\mathbf{U}_2 = \text{span}(\{w_i : i \in J\})$. Note

that $\dim(U_1) + \dim(U_2) = a_1 + (\dim(V) - a_2) > \dim(V)$, and thus there exists a non-zero vector $v \in U_1 \cap U_2$. However,

$$
f(v) = [v]_{B_1}[f]_{B_1}[v]_{B_1}^T = \sum_{i \in I} ([v]_{B_1})_i^2 f(v_i) > 0
$$

$$
f(v) = [v]_{B_2}[f]_{B_2}[v]_{B_2}^T = \sum_{i \in J} ([v]_{B_2})_i^2 f(w_i) \le 0
$$

This is a contradiction.

For integers a, b, and c, let $D(a, b, c)$ be the diagonal matrix with

$$
D_{i,i} = \begin{cases} +1 & \text{for } i = 1, ..., a, \\ -1 & \text{for } i = a+1, ..., a+b, \\ 0 & \text{for } i = a+b+1, ..., a+b+c. \end{cases}
$$

.

 \Box

Theorem 6 (Sylvester's law of inertia). If f is a quadratic form on a vector $space V$ over real numbers of finite dimension, then there exist unique integers a, b, and c and a basis B of **V** such that $[f]_B = D(a, b, c)$.

Proof. Let A be a matrix of f with respect to any basis C of V. We need to find a regular matrix S (which will serve as the transition matrix from basis B to C) such that $S^TAS = D(a, b, c)$ for some a, b, and c. Perform Gaussian elimination, applying the same operations to the rows and columns of A, until we obtain a diagonal matrix with only $+1$, -1 , or 0 on the diagonal.

For the uniqueness, suppose that $[f]_{B_1} = D(a_1, b_1, c_1)$ and $[f]_{B_2} = D(a_2, b_2, c_2)$ for some bases B_1 and B_2 . Let $S = [\text{id}]_{B_1,B_2}$; hence, $D(a_1, b_1, c_1) = S^T D(a_2, b_2, c_2) S$. Since S is regular, we have rank $(D(a_1, b_1, c_1)) = \text{rank}(D(a_2, b_2, c_2))$, and thus $c_1 = c_2$. Also, by Lemma 5, we have $a_1 = a_2$, and thus $b_1 = b_2$. П

Definition 4. We say that a quadratic form f on a vector space V of finite dimension has signature (a, b, c) if there exists a basis B such that $[f]_B =$ $D(a, b, c)$.

Example 3. Let $A =$ $\sqrt{ }$ $\overline{}$ −1 1 −3 −1 1 7 −1 5 −3 −1 −1 1 −1 5 1 7 \setminus $\Bigg\}$. By performing simultaneous row and column operations, we have

$$
A \rightarrow \begin{pmatrix} -1 & 1 & -3 & -1 \\ 0 & 8 & -4 & 4 \\ -3 & -1 & -1 & 1 \\ -1 & 5 & 1 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & -3 & -1 \\ 0 & 8 & -4 & 4 \\ -3 & -4 & -1 & 1 \\ -1 & 4 & 1 & 7 \end{pmatrix}
$$

\n
$$
\rightarrow \begin{pmatrix} -1 & 0 & -3 & -1 \\ 0 & 8 & -4 & 4 \\ 0 & -4 & 8 & 4 \\ -1 & 4 & 1 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 & -1 \\ 0 & 8 & -4 & 4 \\ 0 & -4 & 8 & 4 \\ -1 & 4 & 4 & 7 \end{pmatrix}
$$

\n
$$
\rightarrow \begin{pmatrix} -1 & 0 & 0 & -1 \\ 0 & 8 & -4 & 4 \\ 0 & -4 & 8 & 4 \\ 0 & 4 & 4 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 8 & -4 & 4 \\ 0 & -4 & 8 & 4 \\ 0 & 2 & 4 & 8 \end{pmatrix}
$$

\n
$$
\rightarrow \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 4 & -2 & 2 \\ 0 & -4 & 8 & 4 \\ 0 & 2 & 4 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & -2 & 2 \\ 0 & -2 & 8 & 4 \\ 0 & 2 & 6 & 8 \end{pmatrix}
$$

\n
$$
\rightarrow \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 6 & 6 \\ 0 & 0 & 6 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 6 & 6 \\ 0 & 0 & 6 & 6 \end{pmatrix}
$$

\n
$$
\rightarrow \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 2 \\ 0 & 0 & 6 & 6 \\ 0 & 0 & 0 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0
$$

Hence, the signature of A is $(2, 1, 1)$.

Corollary 7. Let A be a real symmetric $n \times n$ matrix and let $f(x) = x^T A x$ for $x \in \mathbb{R}^n$. If f has signature (a, b, c) , then the sum of algebraic multiplicities of the positive eigenvalues of A is a, and the sum of algebraic multiplicities of the negative eigenvalues of A is b.

Proof. Recall that since A is real and symmetric, we have $A = Q^{-1}DQ =$ $Q^T D Q$ for a diagonal matrix D and an orthogonal matrix Q, where A and D have the same eigenvalues, equal to the diagonal entries of D. Equivalently, we have $[f]_{B_1} = D$, where B_1 is the basis formed by the columns of Q^T . Since the signature of A is (a, b, c) , there exists a basis B_2 such that $[f]_{B_2} =$ \Box $D(a, b, c)$. The claim follows by Lemma 5.

3 Quadrics and conics

Definition 5. For any $n \times n$ symmetric real matrix A, a real row vector b and a real number γ , the set $\{x \in \mathbb{R}^n : x^T A x + bx + \gamma = 0\}$ is called a quadric. If $n = 2$, it is called a conic.

Example 4. The set $\{(x, y, z) \in \mathbb{R}^3 : x^2 - y^2 - z + 1 = 0\}$:

Consider a quadric $C = \{x \in \mathbb{R}^n : x^T A x + bx + \gamma = 0\}$. We have $A = Q^T D Q$ for an orthogonal matrix Q and a diagonal matrix D. Let $b' = bQ^T$ and $C' = \{y \in \mathbb{R}^n : y^T D y + b' y + \gamma = 0\}$. Observe that $x \in C$ if and only if $Qx \in C'$, and thus thus the sets C' and C only differ by the isometry described by Q. Let (p, n, z) be the signature of A; without loss of generality, the first p entries of D are positive, the next n entries are negative and the last z are zeros. Furthermore, since C' is also equal to $\{y \in \mathbf{R}^n : y^T(-D)y - b'y - \gamma = 0\},\$ we can assume that $p \geq n$.

For any vector d, let $b_d = 2d^T D + b'$, $\gamma_d = d^T Dd + b'd + \gamma$ and $C_d = \{v \in \mathbb{R}^d : d \neq 0\}$ $\mathbf{R}^n : v^T D v + b_d v + \gamma_d$. Note that $v \in C_d$ if and only if $v + d \in C'$, and thus C_d is obtained from C' by shifting it by the vector d (another isometry). Choose the first $p + n$ coordinates of d so that the first $p + n$ coordinates of the vector $2d^T D$ are equal to the first $p+n$ coordinates of $-b'$ (the remaining coordinates of $2d^T D$ are always 0). Furthermore, if $z > 0$ and at least one of the last z entries of b' is not 0, we can choose the last z coordinates of d so that γ_d is 0.

Thus, we get the following.

Lemma 8. Every quadric is up to isometry equal to a quadric $\{x \in \mathbb{R}^n :$ $x^T A x + bx + \gamma = 0$ satisfying the following conditions:

- \bullet A is diagonal with the first p entries positive, the next n entries negative and the last z equal to 0 for some $p \geq n$,
- the first $p + n$ entries of b are equal to 0, and
- either $b = o$ or $\gamma = 0$.

Example 5. *Classification of conics:*

 $\mathbf{p} = 2$: $\alpha_1 x_1^2 + \alpha_2 x_2^2 = \gamma$ for $\alpha_1, \alpha_2 > 0$.

- empty if $\gamma < 0$.
- the point $(0, 0)$ if $\gamma = 0$.
- an ellipse with axes $\sqrt{\gamma/\alpha_1}$ and $\sqrt{\gamma/\alpha_2}$ if $\gamma > 0$.

 $\mathbf{p} = \mathbf{n} = 1$: $\alpha_1 x_1^2 - \alpha_2 x_2^2 = \gamma$ for $\alpha_1, \alpha_2 > 0$.

- Two intersecting lines $|x_1| = \sqrt{\alpha_2/\alpha_1}|x_2|$ if $\gamma = 0$.
- Hyperbola if $\gamma \neq 0$.

 $\mathbf{p} = \mathbf{z} = 1$, $\mathbf{b} = \mathbf{o}: \alpha x_1^2 = \gamma$ for $\alpha > 0$.

• Empty, a line, or two parallel lines depending on γ .

 $\mathbf{p} = \mathbf{z} = \mathbf{1}, \ \mathbf{b} \neq \mathbf{0}, \ \gamma = \mathbf{0}: \ \alpha x_1^2 = \beta x_2 \ \text{for} \ \alpha, \beta \neq 0.$

• A parabola.

 $z = 2, b = o: \gamma = 0.$

• Empty or \mathbb{R}^2 depending on γ .

 $z = 2$, $b \neq o$, $\gamma = 0$: $\beta_1 x_1 + \beta_2 x_2 = 0$.

 \bullet A line.

Similarly, we can classify quadrics in higher dimensions, based on their signatures.