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1 Bilinear forms

Definition 1. Let V be a vector space over a field F. A functionb: VxV —
F is a bilinear form if
b(u+v,w) = blu,w) + b(v, w) b(u, v+ w) = b(u,v) + b(u, w)
b(au,v) = ab(u,v) b(u, av) = ab(u,v)

for all u,v,w €V and a € F.
The bilinear form b is symmetric if b(u,v) = b(v,u) for all u,v € V.

Remark: b(o,v) = b(v,0) = 0.
Examples:

e b(z,y) = (x,y) in R™ is bilinear and symmetric for any scalar product.

o b((x1,11), (T2, y2)) = T122 + 2x1Yy2 + 3y172 + 4y1ys is bilinear, but not
symmetric.

Definition 2. Let C = vy,...,v, be a basis of V and let b be a bilinear form
on V. The matriz of b with respect to C' is

b(vi,v1) b(vi,ve) ... b(v,vy)
| b(vg,v1) b(va,v2) ... b(va,vy)
[b]c o PEETY
b(vn,v1) b(vn,v2) ... b(vg,vp)
Lemma 1. Let C = vy,...,v, be a basis of V and let b be a bilinear form

on V. For any xz,y € V, we have

b(z,y) = [z]cbley]E-



Proof. Let [x]c = (v, ..., ) and [ylc = (b1, ..., Bn). We have

b(x,y) = blanvy + ... + v, f1v1 + ... + Bavn)

=> ) aipib(vi,vy)

= Z Z ;i 3; ([b]c)i,j
= [z]c[blely]E
]

Remark: [b]¢ is the only matrix with this property. A bilinear form b is
symmetric if and only if [b]¢ is a symmetric matrix.

Corollary 2. Let V be a vector space over a field F. Let C' = wvy,...,v, be a
basis of V. For every n x n matriz M over ¥, there exists a unique bilinear
formb:V x V = F such that b(v;,v;) = M, ; for 1 <i,j <n.

Proof. Define b(z,y) = [z]cMy]L and observe that b is bilinear. No other
bilinear form with this property exists, since any bilinear form satisfying
the assumptions has matrix M, which by Lemma 1 uniquely determines the
values of the bilinear form. O

Example 1. The bilinear form b((z1,v1), (x2,y2)) = x129 + 221Y2 + 3y122 +
il)) i) with respect to the standard basis;

b((z1,11), (T2, 92)) = (z1,91) (:1,) i) (ii) .

Lemma 3. Let B =wvy,...,v, and C be two bases of V and let b be a bilinear
form on V. Let S = [id|g,c. Then

411y9 has matriz (

[b]5 = ST[b]cS.
Proof. We have
(S71eS),, = IS eSt,
[vi] ST [be:S[v;]5
[vile[blelvsle
b(vi, v;) = ([b]B), ;-

1,



2 Quadratic forms

Definition 3. A function f : V — F is a quadratic form if there exists a
bilinear form b : V x V — F such that f(z) = b(x,x) for every x € V.

Example 2.

f((z,y)) = 2*+5ay+4y® is a quadratic form, since f((x,y)) = b((z,y), (z,y))
for the bilinear form b((x1,11), (T2,Yy2)) = T1T2 + 221y + 3122 + 4y1Ys.

Also, f((x,y)) = bi((x,y), (z,y)) for the symmetric bilinear form b((x1,y1), (z2,y2)) =
1@ + 2(21Y2 + Y122) + 4y1ya.

Lemma 4. Let 'V be a vector space over a field F whose characteristic is
not 2. For every quadratic form f, there exists a unique symmetric bilinear
form b such that f(x) = b(z,x) for every x € V.

Proof. Since f is quadratic, there exists a bilinear form by such that f(z) =
bo(, x) for every x € V. Let b(z,y) = 1(bo(z,y) + bo(y,z)). Then b is a
symmetric bilinear form and b(x,z) = by(z, x) for every x € V. Hence, b is
a symmetric bilinear form such that f(z) = b(z, x) for every x € V.

To show that b is unique, it suffices to note that

b(z,y) = b(z +y,z+y) —2b(x,x) —bly,y) _ flz+y) —Zf(x) — f(y)

whenever b is a symmetric bilinear form b satisfying f(x) = b(x, x) for every

z€V. ]

Hence, if f is a quadratic form on V and C' is a basis of V, then

f(@) = [z]cAlz]c

for a unique symmetric matrix A. We write [f]c = A. Also, by Lemma 3, if
B is another basis of V and S = [id] 5 ¢, then

[fls = S"[flcS.

Lemma 5. Let f : V — F be a quadratic form. Let By = vy,...,v, and
By = wy, ..., w, be two bases of V such that both [f|g, and [f]p, are diagonal
matrices. Then [f|p, and [f]p, have the same number of positive entries.

Proof. For i € {1,2}, let a; be the number of positive entries of [f]p,, and
suppose for a contradiction that a; > as. Let I = {i: f(v;) > 0}, J = {i:
f(w;) <0}. Let Uy =span({v; : i € I}) and Uy = span({w; : ¢ € J}). Note



that dim(U;) + dim(Usy) = a; + (dim(V) — ay) > dim(V), and thus there
exists a non-zero vector v € U; N Uy. However,

F(0) = [l [fm olE, = Y ([0]s)] flvs) >0

i€l
F@) = Wla.[f1s.0]E, =Y (W]s,)7 fw;) <0
icJ
This is a contradiction. O

For integers a, b, and ¢, let D(a,b,c) be the diagonal matrix with

+1 fori=1,...,a,
Dij=4¢—-1 fori=a+1,...,a+0b,
0 fortr=a4+b+1,...,a+b+c.

Theorem 6 (Sylvester’s law of inertia). If f is a quadratic form on a vector
space V over real numbers of finite dimension, then there exist unique integers
a, b, and ¢ and a basis B of V such that [f]g = D(a,b,c).

Proof. Let A be a matrix of f with respect to any basis C of V. We need to
find a regular matrix S (which will serve as the transition matrix from basis
B to C) such that STAS = D(a,b, ¢) for some a, b, and c. Perform Gaussian
elimination, applying the same operations to the rows and columns of A,
until we obtain a diagonal matrix with only +1, —1, or 0 on the diagonal.

For the uniqueness, suppose that [f|g, = D(a1,b1,c1) and [f]p, = D(az, be, ¢2)
for some bases By and By. Let S = [id] 5, p,; hence, D(ay, by, ¢1) = ST D(ag, ba, c3)S.
Since S is regular, we have rank(D(aq, by, ¢1)) = rank(D(as, by, ¢2)), and thus
¢1 = ¢o. Also, by Lemma 5, we have a; = as, and thus b; = by. O

Definition 4. We say that a quadratic form f on a vector space V of finite
dimension has signature (a,b,c) if there exists a basis B such that [f]p =
D(a,b,c).

-1 1 -3 -1
17 =1 5 . .

Example 3. Let A = 2 1 -1 1 | By performing simultaneous
-1 5 1 7



row and column operations, we have
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Corollary 7. Let A be a real symmetric nxn matriz and let f(x) = 2T Ax for
x € R". If f has signature (a,b,c), then the sum of algebraic multiplicities
of the positive eigenvalues of A is a, and the sum of algebraic multiplicities
of the negative eigenvalues of A is b.

Proof. Recall that since A is real and symmetric, we have A = Q7 'DQ =
QT DQ for a diagonal matrix D and an orthogonal matrix @, where A and D
have the same eigenvalues, equal to the diagonal entries of D. Equivalently,
we have [f]p, = D, where B is the basis formed by the columns of Q7.
Since the signature of A is (a, b, ¢), there exists a basis By such that [f]z, =
D(a,b,c). The claim follows by Lemma 5. O

3 Quadrics and conics

Definition 5. For any n X n symmetric real matriz A, a real row vector
b and a real number vy, the set {x € R™ : 27 Ax + bx + v = 0} is called a
quadric. If n =2, it is called a conic.

Example 4. The set {(x,y,2z) € R®: 22 —y? — 2+ 1= 0}:




Consider a quadric C = {r € R" : 2TAz + bx +~v = 0}. We have
A = QTDQ for an orthogonal matrix @ and a diagonal matrix D. Let
V =bQT and C' = {y € R" : y"' Dy + by + v = 0}. Observe that x € C
if and only if Qx € C’, and thus thus the sets ¢’ and C only differ by the
isometry described by Q. Let (p,n,z) be the signature of A; without loss
of generality, the first p entries of D are positive, the next n entries are
negative and the last z are zeros. Furthermore, since C’ is also equal to
{y e R": yT'(=D)y — b'y — v = 0}, we can assume that p > n.

For any vector d, let by = 2d" D + b, yq = d" Dd+V'd+~ and Cy = {v €
R" : vI'Dv + bgv + v4}. Note that v € Cy if and only if v + d € C’, and
thus Cy is obtained from C” by shifting it by the vector d (another isometry).
Choose the first p + n coordinates of d so that the first p + n coordinates of
the vector 2d” D are equal to the first p+n coordinates of —b' (the remaining
coordinates of 2dT D are always 0). Furthermore, if 2 > 0 and at least one of
the last z entries of ¢’ is not 0, we can choose the last z coordinates of d so
that ~4 is 0.

Thus, we get the following.

Lemma 8. Fvery quadric is up to isometry equal to a quadric {xr € R" :
2T Az + bx + v = 0} satisfying the following conditions:

o A is diagonal with the first p entries positive, the next n entries negative
and the last z equal to 0 for some p > n,

e the first p+ n entries of b are equal to 0, and
e citherb=o0 ory=0.

Example 5. Classification of conics:

P =2: a12? + o =7y for ag, ap > 0.

o empty if v <0,
e the point (0,0) if v =0,

e an ellipse with azes \/7v/ay and \/~v/as if v > 0.



p=n=1: ayz? — apx3 = v for ay,ay > 0.

o Two intersecting lines |x1| = \/aa/ay|za] if v = 0.
e Hyperbola if v # 0.

p=z=1,b=o0: ar? =7 fora>0.
o Empty, a line, or two parallel lines depending on .
p=z=1,b#0,v=0: azr? = S, for a,B #0.

e A parabola.



z=2,b=o0: v=0.
o Empty or R? depending on .
z=2,b#o0,v=0: [z + Poxy = 0.
o A line.

Similarly, we can classify quadrics in higher dimensions, based on their
signatures.



