
Reminders: subspaces

Let V be a vector space over field F.

Definition

A subset U of V is a subspace if it together with the operations
of V forms a vector space.

Lemma

U ⊆ V is a subspace if and only if
o ∈ U, and
for all u, v ∈ U and α ∈ F,

u + v ∈ U, and
αv ∈ U.



Reminders: linear functions

Let U and V be vector spaces over the same field F.

Definition

A function f : U→ V is linear if
for every u1,u2 ∈ U,

f (u1 + u2) = f (u1) + f (u2), and

for every u ∈ U and α ∈ F,

f (αu) = αf (u).



Affine sets: motivation

{(x , y , z) : 3x − 3y + z = 0} is a subspace
{(x , y , z) : 3x − 3y + z = 2} is not a subspace

Observation

The set of solutions to system Ax = b is a subspace if and only
if b = o.



Affine combinations

x

y

u

v

0.8u+ 0.2v
4u/3− v/3

(u+ v)/2

−0.5u+ 1.5v

Definition

A linear combination α1v1 + . . .+ αkvk is affine if
α1 + . . .+ αn = 1.



Affine sets

Let V be a vector space over field F.

Definition

A set U ⊆ V is affine if every affine combination of elements of
U belongs to U.

Any subspace is an affine set.
A line in Euclidean plane is an affine set.



Affine sets as shifted subspaces

Lemma

Let U ⊆ V, U 6= ∅. The following claims are equivalent.
1 U is affine.
2 αx + (1− α)y , x + y − z ∈ U for all x , y , z ∈ U and α ∈ F.
3 The set U − a = {u − a : u ∈ U} is a subspace for all

a ∈ U.
4 There exists a subspace W and b ∈ V such that

U = W + b = {w + b : w ∈W}.

Proof.
1 ⇒ 2 αx + (1− α)y and x + y − z are affine combinations.



Affine sets as shifted subspaces

Lemma

Let U ⊆ V, U 6= ∅. The following claims are equivalent.
2 αx + (1− α)y , x + y − z ∈ U for all x , y , z ∈ U and α ∈ F.
3 The set U − a = {u − a : u ∈ U} is a subspace for all

a ∈ U.

Proof.
2 ⇒ 3 Let r , s ∈ U − a, α ∈ F.

Since a ∈ U, o = a− a ∈ U − a.
Since r , s ∈ U − a, we have r + a, s + a ∈ U, and

r + s + a = (r + a) + (s + a)− a ∈ U
αr + a = α(r + a) + (1− α)a ∈ U,

and thus r + s, αr ∈ U − a.



Affine sets as shifted subspaces

Lemma

Let U ⊆ V, U 6= ∅. The following claims are equivalent.
1 U is affine.
2 αx + (1− α)y , x + y − z ∈ U for all x , y , z ∈ U and α ∈ F.
3 The set U − a = {u − a : u ∈ U} is a subspace for all

a ∈ U.
4 There exists a subspace W and b ∈ V such that

U = W + b = {w + b : w ∈W}.

Proof.
3 ⇒ 4 Choose b ∈ U arbitrarily and let W = U − b.



Affine sets as shifted subspaces

Lemma

Let U ⊆ V, U 6= ∅. The following claims are equivalent.
1 U is affine.
2 αx + (1− α)y , x + y − z ∈ U for all x , y , z ∈ U and α ∈ F.
3 The set U − a = {u − a : u ∈ U} is a subspace for all

a ∈ U.
4 There exists a subspace W and b ∈ V such that

U = W + b = {w + b : w ∈W}.

Proof.
4 ⇒ 1 Suppose that u1, . . . ,uk ∈ U and α1 + . . .+ αk = 1.

Then u1 − b, . . . ,uk − b ∈W, and by linearity,

α1u1 + . . .+ αkuk − b = α1(u1 − b) + . . .+ αk (uk − b) ∈W.

Hence, α1u1 + . . .+ αkuk ∈W + b = U.



Computations and concepts in affine sets

Since affine sets are just shifted subspaces (U = W + b), we
can:

Define the dimension of affine set dim(U) = dim(W).
Describe U by giving b and a basis of W.
Describe elements of U by coordinates in W.



Reminder: characteristic 2

Definition

A field F has characteristic 2 if 1 + 1 = 0.



Simpler affinity test

Let V be a vector space over field F

Lemma

Suppose that F does not have characteristic 2. A non-empty
set U ⊆ V is affine if and only if for all x , y ∈ U and α ∈ F,
αx + (1− α)y ∈ U.

Proof.

⇒ Trivial.



Simpler affinity test

Let V be a vector space over field F

Lemma

Suppose that F does not have characteristic 2. A non-empty
set U ⊆ V is affine if and only if for all x , y ∈ U and α ∈ F,
αx + (1− α)y ∈ U.

Proof.

⇐ It suffices to prove x + y − z ∈ U for all x , y , z ∈ U.
Let w = (1 + 1)−1x + (1 + 1)−1y .

Since (1 + 1)−1 + (1 + 1)−1 = (1 + 1) · (1 + 1)−1 = 1, we
have w ∈ U.
Since (1 + 1) + (−1) = 1, we have (1 + 1)w − z ∈ U.
(1 + 1)w − z = (1 + 1)(1 + 1)−1(x + y)− z = x + y − z.



Affinity of solution sets

Let A be an n ×m matrix with coefficients from field F.

Lemma

The set of solutions to system Ax = b is affine.

Proof.

This is trivial if there is no solution. Let x0 be a solution.
Recall that Ker(A) is the set of solutions of Ax = 0.
If Ax = b, then A(x − x0) = Ax − Ax0 = b − b = 0, hence
x − x0 ∈ Ker(A).
The set of solutions is Ker(A) + x0.

Changing the right-hand side only “shifts” the set of solutions.



Subspaces and kernels

Let V be a vector space over field F.

Lemma

A set U ⊆ V is a subspace if and only if U = Ker(f ) for some
linear function f : V→ Fn.

Proof.
⇐We proved that Ker(f ) is a subspace before.



Subspaces and kernels

Let V be a vector space over field F.

Lemma

A set U ⊆ V is a subspace if and only if U = Ker(f ) for some
linear function f : V→ Fn.

Proof.
⇒ Let k = dim(U), m = dim(V) and n = m − k . Let u1, . . . ,uk
be a basis of U. Extend it to basis u1, . . . ,um of V. We define f
by specifying its values on the basis:

f (ui) =

{
0 for 1 ≤ i ≤ k
ei−k for k + 1 ≤ i ≤ m

U ⊆ Ker(f )
{e1, . . . ,en} ∈ Im(f ), hence dim(Im(f )) = n
dim(Ker(f )) = m − dim(Im(f )) = m − n = dim(U), and thus
U = Ker(f ).



Affine sets as solution sets

Corollary

A set S ⊆ Fm is a subspace if and only if it is the set of
solutions of some system Ax = 0.

Corollary

A set S ⊆ Fm is affine if and only if it is the set of solutions of
some system Ax = b.



Example

Problem

Find the equation of the plane
{(1,1,2) + (1,1,0)s + (1,2,3)t : s, t ∈ R} in R3.



Example

Problem

Find the equation of the plane
{(1,1,2) + (1,1,0)s + (1,2,3)t : s, t ∈ R} in R3.

(1,1,0), (1,2,3) is a basis of U = span(((1,1,0), (1,2,3)).
B = (1,1,0), (1,2,3), (1,0,0) is a basis of R3.
Let f (1,1,0) = f (1,2,3) = (0), f (1,0,0) = (1).
We have Ker(f ) = U.
[f ]B,D = (0,0,1).



Example

Problem

Find the equation of the plane
{(1,1,2) + (1,1,0)s + (1,2,3)t : s, t ∈ R} in R3.

B = (1,1,0), (1,2,3), (1,0,0)
Let C = (1,0,0), (0,1,0), (0,0,1) be the standard basis of
R3, D = (1) the standard basis of R1.

[f ]C,D = [f ]B,D[id]C,B = [f ]B,D[id]−1
B,C

= (0,0,1)

 1 1 1
1 2 0
0 3 0

−1

= (1,−1,1/3)

Hence, span(((1,1,0), (1,2,3)) is the set of solutions to
(1,−1,1/3)v = 0.



Example

Problem

Find the equation of the plane
{(1,1,2) + (1,1,0)s + (1,2,3)t : s, t ∈ R} in R3.

span(((1,1,0), (1,2,3)) is the set of solutions to
x − y + z/3 = 0.
For (x , y , z) = (1,1,2), we have x − y + z/3 = 2/3.

{(1,1,2) + (1,1,0)s + (1,2,3)t : s, t ∈ R}
is the set of solutions to

x − y + z/3 = 2/3.

Faster way: Find coefficients A,B,C,D such that Ax+By+Cz =
D is true for (1,1,2), (1,1,2) + (1,1,0), (1,1,2) + (1,2,3).



Example

Problem

Find the equation of the plane
{(1,1,2) + (1,1,0)s + (1,2,3)t : s, t ∈ R} in R3.

span(((1,1,0), (1,2,3)) is the set of solutions to
x − y + z/3 = 0.
For (x , y , z) = (1,1,2), we have x − y + z/3 = 2/3.

{(1,1,2) + (1,1,0)s + (1,2,3)t : s, t ∈ R}
is the set of solutions to

x − y + z/3 = 2/3.

Faster way: Find coefficients A,B,C,D such that Ax+By+Cz =
D is true for (1,1,2), (1,1,2) + (1,1,0), (1,1,2) + (1,2,3).



Affine functions

Let U,V be vector spaces over field F.

Definition

A function f : U→ V is affine if for every u1, . . . ,uk ∈ U and
α1, . . . , αn such that α1 + . . .+ αn = 1, we have

f (α1u1 + . . .+ αkuk ) = α1f (u1) + . . .+ αk f (uk ).

Every linear function is affine.
The translation f (x) = x + a is affine.
Composition of affine functions is affine.



Affine functions as shifted linear functions

Lemma

For a function f : U→ V, the following claims are equivalent.
f is affine.
The function g : U→ V, g(x) = f (x)− f (o) is linear.
There exists a linear function g : U→ V and a ∈ V such
that f (x) = g(x) + a for every x ∈ U.

Proof.
1 ⇒ 2 For every x , y ∈ V and α ∈ F, we have

g(x + y) = f (x + y − o)− f (o) = (f (x) + f (y)− f (o))− f (o)
= g(x) + g(y)

g(αx) = f (αx + (1− α)o)− f (o)
= (αf (x) + (1− α)f (o))− f (o) = α(f (x)− f (o))
= αg(x)



Affine functions as shifted linear functions

Lemma

For a function f : U→ V, the following claims are equivalent.
f is affine.
The function g : U→ V, g(x) = f (x)− f (o) is linear.
There exists a linear function g : U→ V and a ∈ V such
that f (x) = g(x) + a for every x ∈ U.

Proof.
2 ⇒ 3 Set a = f (o).



Affine functions as shifted linear functions

Lemma

For a function f : U→ V, the following claims are equivalent.
f is affine.
The function g : U→ V, g(x) = f (x)− f (o) is linear.
There exists a linear function g : U→ V and a ∈ V such
that f (x) = g(x) + a for every x ∈ U.

Proof.
3 ⇒ 1 Suppose α1 + . . .+ αk = 1.

f (α1v1 + . . .+ αkvk ) = g(α1v1 + . . .+ αkvk ) + a
= α1g(v1) + . . .+ αkg(vk )

+ (α1 + . . .+ αk )a
= α1f (v1) + . . .+ αk f (vk )



Affine sets and functions

Lemma

For any affine function f : U→ V,
the set Im(f ) = {f (u) : u ∈ U} is affine, and
for every v ∈ V, the set f−1(v) = {u ∈ U : f (u) = v} is
affine.

Proof.

Let f (x) = g(x) + a for linear function g.

Im(f ) = a + Im(g).



Affine sets and functions

Lemma

For any affine function f : U→ V,
the set Im(f ) = {f (u) : u ∈ U} is affine, and
for every v ∈ V, the set f−1(v) = {u ∈ U : f (u) = v} is
affine.

Proof.

Let f (x) = g(x) + a for linear function g.

If f−1(v) is non-empty, choose u0 ∈ f−1(v).
u ∈ f−1(v) iff o = f (u)− f (u0) = g(u)− g(u0) = g(u − u0)

I.e., u − u0 ∈ Ker(g).

f−1(v) = u0 + Ker(g).



Computations with affine functions

Since affine functions are just shifted linear functions
(f (x) = g(x) + a), we can:

Describe f by coordinates of a and the matrix [g].
Evaluate f in coordinates.



Example

Problem

Let f : R2 → R2 be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x , y) mapped by f?

x

y

(2, 1)

(x, y)



Example

Problem

Let f : R2 → R2 be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x , y) mapped by f?

Let r be the rotation by 30 degrees around the point (0,0).
Let t be the translation by (2,1).
f = trt−1

[r(v)]T = [r ][v ]T =

( √
3/2 −1/2

1/2
√

3/2

)
[v ]T

[t(v)]T = [v ]T + (2,1)T

[t−1(v)]T = [v ]T − (2,1)T

[f (v)] = [r ]([v ]T − (2,1)T ) + (2,1)T = [r ][v ]T + (I − [r ])(2,1)T



Example

Problem

Let f : R2 → R2 be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x , y) mapped by f?

[r ] =
( √

3/2 −1/2
1/2

√
3/2

)
[f (v)] = [r ][v ]T + (I − [r ])(2,1)T = [r ][v ]T + (5/2−

√
3,−
√

3/2)

Hence, g(x , y) = (
√

3x/2−y/2+5/2−
√

3, x/2+
√

3y/2−
√

3/2).



A trick

For linear function g and affine function f (x) = g(x) + a, we
have

[f (x)]T = [g][x ]T + [a]T .

Instead of using a matrix [g] and vector [a], we can use
extended matrix

[[f ]] =
(

[g] [a]T

0 1

)
,

and (
[f (x)]T

1

)
=

(
[g][x ]T + [a]T

1

)
= [[f ]]

(
[x ]T

1

)



Example, again

Problem

Let f : R2 → R2 be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x , y) mapped by f?

Let r be the rotation by 30 degrees around the point (0,0).
Let t be the translation by (2,1).
f = trt−1

[[r ]] =


√

3/2 −1/2 0
1/2

√
3/2 0

0 0 1


[[t ]]] =

 1 0 2
0 1 1
0 0 1





Example, again

Problem

Let f : R2 → R2 be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x , y) mapped by f?

[[f ]] = [[t ]][[r ]][[t ]]−1 =


√

3/2 −1/2 5/2−
√

3
1/2

√
3/2 −

√
3/2

0 0 1



Hence, g(x , y) = (
√

3x/2−y/2+5/2−
√

3, x/2+
√

3y/2−
√

3/2).


