Reminders: subspaces

Let V be a vector space over field F.

A subset U of V is a subspace if it together with the operations
of V forms a vector space.

Lemma

U C V is a subspace if and only if
@ oc U, and

@ forallu,v e Uanda €F,

e u+vel, and
e avel.




Reminders: linear functions

Let U and V be vector spaces over the same field F.

A function f : U — Vis linear if

o forevery uy,u, € U,
f(U1 =+ U2) = f(U1) a4 f(UQ), and

o foreveryueUand a € F,

f(au) = af(u).




Affine sets: motivation

@ {(x,y,z):3x -3y +z=0}is asubspace
@ {(x,y,z):3x—3y+z=2}is not a subspace

Observation

The set of solutions to system Ax = b is a subspace if and only
ifb=o.



Affine combinations
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A linear combination aqv4 + ... + axVk is affine if

a1+ ...+ap=1.



Affine sets

Let V be a vector space over field F.

Definition

A set U C V is affine if every affine combination of elements of
U belongs to U.

@ Any subspace is an affine set.
@ Aline in Euclidean plane is an affine set.




Affine sets as shifted subspaces

LetU C V, U # 0. The following claims are equivalent.
Q U is affine.
Q@ ax+(1—a)y,x+y—zeUforallx,y,ze Uanda €F.

© ThesetU—a={u—a:uec U} isasubspace for all
acU.

O There exists a subspace W and b € V such that
U=W+b={w+b:weW}

Q@ = @ ax+ (1 —a)y and x + y — z are affine combinations.




Affine sets as shifted subspaces

LetU C V, U # 0. The following claims are equivalent.
Q@ ax+(1—a)y,x+y—zeUforallx,y,ze Uanda €F.

©Q ThesetU—a={u—a:uec U} isasubspace for all
acU.

@=0Lletr,selU—a acF.
@ SinceacU,o=a—acU-a.
@ Sincer,se U—a,wehaver+a,s+aec U, and

r+s+a=(r+a+(s+a)—acl
ar+a=a(r+a)+(1—-a)ac U,

andthus r + s,ar € U — a.

0
e 4 4444



Affine sets as shifted subspaces

LetU C V, U # 0. The following claims are equivalent.
Q U is affine.
Q@ ax+(1—a)y,x+y—zeUforallx,y,ze Uanda €F.

© ThesetU—a={u—a:uec U} isasubspace for all
acU.

O There exists a subspace W and b € V such that
U=W+b={w+b:weW}

©® = O Choose b € U arbitrarily and let W = U — b.




Affine sets as shifted subspaces

LetU C V, U # 0. The following claims are equivalent.
@ U is affine.
Q@ ax+(1—a)y,x+y—zeUforallx,y,ze Uanda €F.
© ThesetU—a={u—a:uec U} isasubspace for all
acU.
O There exists a subspace W and b € V such that
U=W+b={w+b:weW}

O = O Supposethatuy,...,usc Uand ay +... +a, = 1.
Then u; — b, ..., ux — b e W, and by linearity,

Oé1U1+...+Okuk*b:Oz1(U1*b)+...+ozk(uk*b)EW.

Hence, aqus + ...+ axux € W+ b= U.



Computations and concepts in affine sets

Since affine sets are just shifted subspaces (U = W + b), we
can:

@ Define the dimension of affine set dim(U) = dim(W).

@ Describe U by giving b and a basis of W.

@ Describe elements of U by coordinates in W.




Reminder: characteristic 2

A field F has characteristic2if 1 +1 = 0.




Simpler affinity test

Let V be a vector space over field F

Lemma

Suppose that F does not have characteristic 2. A non-empty
set U C V js affine if and only if for all x,y € U and « € F,
ax+(1—a)y e U.

= Trivial.




Simpler affinity test

Let V be a vector space over field F

Lemma

Suppose that F does not have characteristic 2. A non-empty
set U C V js affine if and only if for all x,y € U and « € F,
ax+(1—a)y e U.

<« It sufficestoprove x +y —z e Uforall x,y,z € U.
Letw=(1+1)"x+(1+1)"y.
@ Since(1T+1)"+(1+1)"=(+1)-(1+1)"=1,we
have w € U.
@ Since(1+1)+(—1)=1,wehave (1 +1)w -2z € U.
o (1+Hw—-z=>1+1)1 4—1)—1(x+y)—z:x+y—z.D




Affinity of solution sets

Let A be an n x m matrix with coefficients from field F.

Lemma

The set of solutions to system Ax = b is affine.

This is trivial if there is no solution. Let xg be a solution.
@ Recall that Ker(A) is the set of solutions of Ax = 0.
@ If Ax = b, then A(x — xp) = Ax — Axp = b— b =0, hence
X — Xp € Ker(A).
@ The set of solutions is Ker(A) + xp.

Ol

Changing the right-hand side only “shifts” the set of solutions.



Subspaces and kernels

Let V be a vector space over field F.

Lemma

A set U CV is a subspace if and only if U = Ker(f) for some
linear function f : V. — F".

< We proved that Ker(f) is a subspace before.




Subspaces and kernels

Let V be a vector space over field F.

Lemma

A set U CV is a subspace if and only if U = Ker(f) for some
linear function f : V. — F".

= Let k = dim(U), m = dim(V) and n = m — k. Let uy,..., ux
be a basis of U. Extend it to basis uy, ..., un of V. We define f
by specifying its values on the basis:

0 for1 <i<k
f(u/-)z{ -

e_x fork+1<i<m

@ U C Ker(f)

@ {e1,...,en} €Im(f), hence dim(Im(f)) = n

@ dim(Ker(f)) = m —dim(Im(f)) = m — n = dim(U), and thus
U = Ker(f).



Affine sets as solution sets

Corollary

A set S C F™ is a subspace if and only if it is the set of
solutions of some system Ax = 0.

Corollary

A set S C F" is affine if and only if it is the set of solutions of
some system Ax = b.




Example

Find the equation of the plane
{(1,1,2)+(1,1,0)s + t:stcR}inRe.




Example

Find the equation of the plane
{(1,1,2)+(1,1,0)s + t:stcR}inRe.

@ (1,1,0),(1,2,3) is a basis of U = span(((1,1,0),(1,2,3)).
e B=(1,1,0),(1,2,3),(1,0,0) is a basis of R3.

@ Let f(1,1,0) =1(1,2,3) =(0), f(1,0,0) = (1).

@ We have Ker(f) = U.

e [flgp =(0,0,1).




Example

Find the equation of the plane
{(1,1,2)+(1,1,0)s + t:stcR}inRe.

@ B=(1,1,0),(1,2,3),(1,0,0)

@ LetC=(1,0,0),(0,1,0),(0,0,1) be the standard basis of
RS, D = (1) the standard basis of R'.

[fle.o = [fls.olidlc.s = [flaolidl5

11 1\
=0,0,1)[ 1 2 0 = (1,-1,1/3)
0 30

@ Hence, span(((1,1,0),(1,2,3)) is the set of solutions to
(1,-1,1/3)v=0.




Example

Find the equation of the plane

{(1,1,2) +(1,1,0)s + t:stcR}inRe.
@ span(((1,1,0),(1,2,3)) is the set of solutions to
xX—y+2z/3=0.

@ For (x,y,z)=(1,1,2), we have x —y +z/3 = 2/3.

{(1,1,2) +(1,1,0)s + (1,2,3)t: s, t € R}

is the set of solutions to

X—y+z/3=2/3.




Example

Find the equation of the plane

{(1,1,2) +(1,1,0)s + t:stcR}inRe.
@ span(((1,1,0),(1,2,3)) is the set of solutions to
xX—y+2z/3=0.

e For(x,y,z)=(1,1,2), we have x — y + z/3 = 2/3.
{(1,1,2)+(1,1,0)s+ (1,2,3)t: s, t € R}
is the set of solutions to
X—y+2z/3=2/3.

Faster way: Find coefficients A, B, C, D such that Ax+By+Cz =
Dis true for (1,1,2), (1,1,2) +(1,1,0), (1,1,2) + (1,2, 3).



Affine functions

Let U, V be vector spaces over field F.

A function f : U — Vis affine if for every uy, ..., ux € U and
aq,...,apsuchthat oy + ...+ a, =1, we have

f(Oé1U1 +...+akuk) :a1f(U1)+...+akf(Uk).

@ Every linear function is affine.
@ The translation f(x) = x + a s affine.
@ Composition of affine functions is affine.




Affine functions as shifted linear functions

For a function f : U — V, the following claims are equivalent.
o f is affine.
@ The functiong : U — V, g(x) = f(x) — f(0) is linear.
@ There exists a linear function g : U — V and a € V such
that f(x) = g(x) + a for every x € U.

Q@ = @ Forevery x,y € Vand a € F, we have
9(x +y) =f(x+y—o0)—f(o) = (f(x) + f(y) — f(0)) — f(0)
=9g(x)+9(y)
g(ax) = flax + (1 — a)o) — f(0)
= (af(x) + (1 — a)f(0)) — f(0) = a(f(x) — f(0))
= ag(x)




Affine functions as shifted linear functions

For a function f : U — V, the following claims are equivalent.
o f is affine.
@ The functiong : U — V, g(x) = f(x) — f(0) is linear.
@ There exists a linear function g : U — V and a € V such
that f(x) = g(x) + a for every x € U.

Q@ = @ Seta= f(0).




Affine functions as shifted linear functions

For a function f : U — V, the following claims are equivalent.
o f is affine.
@ The functiong : U — V, g(x) = f(x) — f(0) is linear.
@ There exists a linear function g : U — V and a € V such
that f(x) = g(x) + a for every x € U.

@ = O Suppose a1 + ... +ax = 1.

flagvi + ... +akvk) = glagvy + ...+ axvk) + a
=arg(v1) + ... + axg(V)
+ (1 +...+ak)a
:a1f(V1)+...+akf(Vk)



Affine sets and functions

For any affine function f : U — V,
@ the set Im(f) = {f(u) : u € U} is affine, and
@ foreveryvcV, thesetf~'(v)={ucU:f(u)=v}is
affine.

Let f(x) = g(x) + afor linear function g.

Im(f) = a+ Im(g).




Affine sets and functions

For any affine function f : U — V,
@ the set Im(f) = {f(u) : u € U} is affine, and
@ foreveryvcV, thesetf~'(v)={ucU:f(u)=v}is
affine.

Let f(x) = g(x) + afor linear function g.

If f~1(v) is non-empty, choose uy € F~1(v).
o ue f-'(v)iff o= f(u) - f(uo) = g(u) — 9(to) = g(u — o)
o le., u—up € Ker(g).

e f~1(v) = up + Ker(g).
[]



Computations with affine functions

Since affine functions are just shifted linear functions
(f(x) = g(x) + a), we can:
@ Describe f by coordinates of a and the matrix [g].

@ Evaluate f in coordinates.




Example

Let f : R?> — R? be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x, y) mapped by f?

Y




Example

Let f : R?> — R? be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x, y) mapped by f?

@ Let r be the rotation by 30 degrees around the point (0, 0).
@ Let t be the translation by (2,1).
o f=trt!

) = = (VR A )

(tWI" ="+ (21)"
[t =M" - (21)]
(VI =[N - @ 1))+ @07 =1V + (= [M2.1)7



Example

Let f : R?> — R? be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x, y) mapped by f?

-9 )

(VI =117 + (=D )T = [1vIT +(5/2 - V3,-V3/2)

Hence, g(x, y) = (V3x/2—y/2+5/2—/3, x/2++/3y/2—/3/2).




For linear function g and affine function f(x) = g(x) + a, we

have
[F01" = [9llX]" +[a].

Instead of using a matrix [g] and vector [a], we can use

extended matrix ;
- (19 =),

and

<mgT>:(wmﬁ+mT>:WH<@T)




Example, again

Let f : R?> — R? be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x, y) mapped by f?

@ Let r be the rotation by 30 degrees around the point (0, 0).
@ Let t be the translation by (2, 1).

o f=trt!
Vv3/2 —1/2 0
[[f]]( 1/2 V3/2 o)
0 0 1

10 2
[[1‘]]](O 1 1)
00 1



Example, again

Let f : R?> — R? be the rotation of the plane by 30 degrees
around the point (2,1). To which point is (x, y) mapped by f?

Vv3/2 —1/2 5/2-/3
(1] = (e ( 1/2 V/3/2 —V3/2 )
0 0 1

Hence, g(x,y) = (vV3x/2—y/2+5/2—/3, x/2+/3y/2—/3/2).




