Reminders: subspaces

Let \mathbf{V} be a vector space over field \mathbf{F}.

Definition

A subset \mathbf{U} of \mathbf{V} is a subspace if it together with the operations of \mathbf{V} forms a vector space.

Lemma

$\mathbf{U} \subseteq \mathbf{V}$ is a subspace if and only if

- $o \in \mathbf{U}$, and
- for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbf{U}$ and $\alpha \in \mathbf{F}$,
- $u+v \in \mathbf{U}$, and
- $\alpha \boldsymbol{v} \in \mathbf{U}$.

Reminders: linear functions

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Definition

A function $f: \mathbf{U} \rightarrow \mathbf{V}$ is linear if

- for every $u_{1}, u_{2} \in \mathbf{U}$,

$$
f\left(u_{1}+u_{2}\right)=f\left(u_{1}\right)+f\left(u_{2}\right), \text { and }
$$

- for every $\boldsymbol{u} \in \mathbf{U}$ and $\alpha \in \mathbf{F}$,

$$
f(\alpha u)=\alpha f(u)
$$

Affine sets: motivation

- $\{(x, y, z): 3 x-3 y+z=0\}$ is a subspace
- $\{(x, y, z): 3 x-3 y+z=2\}$ is not a subspace

Observation
The set of solutions to system $A x=b$ is a subspace if and only if $b=0$.

Affine combinations

Definition

A linear combination $\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}$ is affine if $\alpha_{1}+\ldots+\alpha_{n}=1$.

Affine sets

Let \mathbf{V} be a vector space over field \mathbf{F}.

Definition

A set $U \subseteq \mathbf{V}$ is affine if every affine combination of elements of U belongs to U.

- Any subspace is an affine set.
- A line in Euclidean plane is an affine set.

Affine sets as shifted subspaces

Lemma

Let $U \subseteq \mathbf{V}, U \neq \emptyset$. The following claims are equivalent.
(1) U is affine.
(2) $\alpha x+(1-\alpha) y, x+y-z \in U$ for all $x, y, z \in U$ and $\alpha \in \mathbf{F}$.
(3) The set $U-a=\{u-a: u \in U\}$ is a subspace for all $a \in U$.
(4) There exists a subspace \mathbf{W} and $b \in \mathbf{V}$ such that $U=\mathbf{W}+b=\{w+b: w \in \mathbf{W}\}$.

Proof.

(1) \Rightarrow (2) $\alpha x+(1-\alpha) y$ and $x+y-z$ are affine combinations.

Affine sets as shifted subspaces

Lemma

Let $U \subseteq \mathbf{V}, U \neq \emptyset$. The following claims are equivalent.
(2) $\alpha x+(1-\alpha) y, x+y-z \in U$ for all $x, y, z \in U$ and $\alpha \in \mathbf{F}$.
(3) The set $U-a=\{u-a: u \in U\}$ is a subspace for all $a \in U$.

Proof.

(2) \Rightarrow (3) Let $r, s \in U-a, \alpha \in \mathbf{F}$.

- Since $a \in U, o=a-a \in U-a$.
- Since $r, s \in U-a$, we have $r+a, s+a \in U$, and

$$
\begin{aligned}
r+s+a & =(r+a)+(s+a)-a \in U \\
\alpha r+a & =\alpha(r+a)+(1-\alpha) a \in U
\end{aligned}
$$

and thus $r+s, \alpha r \in U-a$.

Affine sets as shifted subspaces

Lemma

Let $U \subseteq \mathbf{V}, U \neq \emptyset$. The following claims are equivalent.
(1) U is affine.
(2) $\alpha x+(1-\alpha) y, x+y-z \in U$ for all $x, y, z \in U$ and $\alpha \in \mathbf{F}$.
(3) The set $U-a=\{u-a: u \in U\}$ is a subspace for all $a \in U$.
(4) There exists a subspace \mathbf{W} and $b \in \mathbf{V}$ such that $U=\mathbf{W}+b=\{w+b: w \in \mathbf{W}\}$.

Proof.

(3 \Rightarrow (9) Choose $b \in U$ arbitrarily and let $\mathbf{W}=U-b$.

Affine sets as shifted subspaces

Lemma

Let $U \subseteq \mathbf{V}, U \neq \emptyset$. The following claims are equivalent.
(1) U is affine.
(2) $\alpha x+(1-\alpha) y, x+y-z \in U$ for all $x, y, z \in U$ and $\alpha \in \mathbf{F}$.
(3) The set $U-a=\{u-a: u \in U\}$ is a subspace for all $a \in U$.
(4) There exists a subspace \mathbf{W} and $b \in \mathbf{V}$ such that $U=\mathbf{W}+b=\{w+b: w \in \mathbf{W}\}$.

Proof.

(9) \Rightarrow © Suppose that $u_{1}, \ldots, u_{k} \in U$ and $\alpha_{1}+\ldots+\alpha_{k}=1$.

Then $u_{1}-b, \ldots, u_{k}-b \in \mathbf{W}$, and by linearity,

$$
\alpha_{1} u_{1}+\ldots+\alpha_{k} u_{k}-b=\alpha_{1}\left(u_{1}-b\right)+\ldots+\alpha_{k}\left(u_{k}-b\right) \in \mathbf{W}
$$

Hence, $\alpha_{1} u_{1}+\ldots+\alpha_{k} u_{k} \in \mathbf{W}+b=U$.

Computations and concepts in affine sets

Since affine sets are just shifted subspaces $(U=\mathbf{W}+b)$, we can:

- Define the dimension of affine set $\operatorname{dim}(U)=\operatorname{dim}(\mathbf{W})$.
- Describe U by giving b and a basis of W.
- Describe elements of U by coordinates in W.

Reminder: characteristic 2

Definition

A field \mathbf{F} has characteristic 2 if $1+1=0$.

Simpler affinity test

Let \mathbf{V} be a vector space over field \mathbf{F}

Lemma

Suppose that \mathbf{F} does not have characteristic 2. A non-empty set $U \subseteq \mathbf{V}$ is affine if and only if for all $x, y \in U$ and $\alpha \in \mathbf{F}$, $\alpha x+(1-\alpha) y \in U$.

Proof.

\Rightarrow Trivial.

Simpler affinity test

Let \mathbf{V} be a vector space over field \mathbf{F}

Lemma

Suppose that \mathbf{F} does not have characteristic 2. A non-empty set $U \subseteq \mathbf{V}$ is affine if and only if for all $x, y \in U$ and $\alpha \in \mathbf{F}$, $\alpha x+(1-\alpha) y \in U$.

Proof.

\Leftarrow It suffices to prove $x+y-z \in U$ for all $x, y, z \in U$.
Let $w=(1+1)^{-1} x+(1+1)^{-1} y$.

- Since $(1+1)^{-1}+(1+1)^{-1}=(1+1) \cdot(1+1)^{-1}=1$, we have $w \in U$.
- Since $(1+1)+(-1)=1$, we have $(1+1) w-z \in U$.
- $(1+1) w-z=(1+1)(1+1)^{-1}(x+y)-z=x+y-z$.

Affinity of solution sets

Let A be an $n \times m$ matrix with coefficients from field \mathbf{F}.

Lemma

The set of solutions to system $A x=b$ is affine.

Proof.

This is trivial if there is no solution. Let x_{0} be a solution.

- Recall that $\operatorname{Ker}(A)$ is the set of solutions of $A x=0$.
- If $A x=b$, then $A\left(x-x_{0}\right)=A x-A x_{0}=b-b=0$, hence $x-x_{0} \in \operatorname{Ker}(A)$.
- The set of solutions is $\operatorname{Ker}(A)+x_{0}$.

Changing the right-hand side only "shifts" the set of solutions.

Subspaces and kernels

Let \mathbf{V} be a vector space over field \mathbf{F}.

Lemma

A set $U \subseteq \mathbf{V}$ is a subspace if and only if $U=\operatorname{Ker}(f)$ for some linear function $f: \mathbf{V} \rightarrow \mathbf{F}^{n}$.

Proof.

\Leftarrow We proved that $\operatorname{Ker}(f)$ is a subspace before.

Subspaces and kernels

Let \mathbf{V} be a vector space over field \mathbf{F}.

Lemma

A set $U \subseteq \mathbf{V}$ is a subspace if and only if $U=\operatorname{Ker}(f)$ for some linear function $f: \mathbf{V} \rightarrow \mathbf{F}^{n}$.

Proof.

\Rightarrow Let $k=\operatorname{dim}(U), m=\operatorname{dim}(\mathbf{V})$ and $n=m-k$. Let u_{1}, \ldots, u_{k} be a basis of U. Extend it to basis u_{1}, \ldots, u_{m} of \mathbf{V}. We define f by specifying its values on the basis:

$$
f\left(u_{i}\right)= \begin{cases}0 & \text { for } 1 \leq i \leq k \\ e_{i-k} & \text { for } k+1 \leq i \leq m\end{cases}
$$

- $U \subseteq \operatorname{Ker}(f)$
- $\left\{e_{1}, \ldots, e_{n}\right\} \in \operatorname{Im}(f)$, hence $\operatorname{dim}(\operatorname{Im}(f))=n$
- $\operatorname{dim}(\operatorname{Ker}(f))=m-\operatorname{dim}(\operatorname{lm}(f))=m-n=\operatorname{dim}(U)$, and thus $U=\operatorname{Ker}(f)$.

Affine sets as solution sets

Corollary

A set $S \subseteq \mathrm{~F}^{m}$ is a subspace if and only if it is the set of solutions of some system $A x=0$.

Corollary
A set $S \subseteq \mathbf{F}^{m}$ is affine if and only if it is the set of solutions of some system $A x=b$.

Example

Problem

Find the equation of the plane $\{(1,1,2)+(1,1,0) \boldsymbol{s}+(1,2,3) \boldsymbol{t}: \boldsymbol{s}, \boldsymbol{t} \in \mathbf{R}\}$ in \mathbf{R}^{3}.

Example

Problem

Find the equation of the plane
$\{(1,1,2)+(1,1,0) \boldsymbol{s}+(1,2,3) t: s, t \in \mathbf{R}\}$ in \mathbf{R}^{3}.

- (1, 1,0$),(1,2,3)$ is a basis of $U=\operatorname{span}(((1,1,0),(1,2,3))$.
- $B=(1,1,0),(1,2,3),(1,0,0)$ is a basis of \mathbf{R}^{3}.
- Let $f(1,1,0)=f(1,2,3)=(0), f(1,0,0)=(1)$.
- We have $\operatorname{Ker}(f)=U$.
- $[f]_{B, D}=(0,0,1)$.

Example

Problem

Find the equation of the plane
$\{(1,1,2)+(1,1,0) s+(1,2,3) t: s, t \in \mathbf{R}\}$ in \mathbf{R}^{3}.

- $B=(1,1,0),(1,2,3),(1,0,0)$
- Let $C=(1,0,0),(0,1,0),(0,0,1)$ be the standard basis of $\mathbf{R}^{3}, D=(1)$ the standard basis of \mathbf{R}^{1}.

$$
\begin{aligned}
{[f]_{C, D} } & =[f]_{B, D}[\mathrm{id}]_{C, B}=[f]_{B, D}[\mathrm{id}]_{B, C}^{-1} \\
& =(0,0,1)\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 0 \\
0 & 3 & 0
\end{array}\right)^{-1}=(1,-1,1 / 3)
\end{aligned}
$$

- Hence, $\operatorname{span}(((1,1,0),(1,2,3))$ is the set of solutions to $(1,-1,1 / 3) v=0$.

Example

Problem

Find the equation of the plane
$\{(1,1,2)+(1,1,0) s+(1,2,3) t: s, t \in \mathbf{R}\}$ in \mathbf{R}^{3}.

- span $(((1,1,0),(1,2,3))$ is the set of solutions to $x-y+z / 3=0$.
- For $(x, y, z)=(1,1,2)$, we have $x-y+z / 3=2 / 3$.

$$
\{(1,1,2)+(1,1,0) s+(1,2,3) t: s, t \in \mathbf{R}\}
$$

is the set of solutions to

$$
x-y+z / 3=2 / 3
$$

Example

Problem

Find the equation of the plane
$\{(1,1,2)+(1,1,0) s+(1,2,3) t: s, t \in \mathbf{R}\}$ in \mathbf{R}^{3}.

- $\operatorname{span}(((1,1,0),(1,2,3))$ is the set of solutions to $x-y+z / 3=0$.
- For $(x, y, z)=(1,1,2)$, we have $x-y+z / 3=2 / 3$.

$$
\{(1,1,2)+(1,1,0) s+(1,2,3) t: s, t \in \mathbf{R}\}
$$

is the set of solutions to

$$
x-y+z / 3=2 / 3
$$

Faster way: Find coefficients A, B, C, D such that $A x+B y+C z=$
D is true for $(1,1,2),(1,1,2)+(1,1,0),(1,1,2)+(1,2,3)$.

Affine functions

Let \mathbf{U}, \mathbf{V} be vector spaces over field \mathbf{F}.

Definition

A function $f: \mathbf{U} \rightarrow \mathbf{V}$ is affine if for every $u_{1}, \ldots, u_{k} \in \mathbf{U}$ and $\alpha_{1}, \ldots, \alpha_{n}$ such that $\alpha_{1}+\ldots+\alpha_{n}=1$, we have

$$
f\left(\alpha_{1} u_{1}+\ldots+\alpha_{k} u_{k}\right)=\alpha_{1} f\left(u_{1}\right)+\ldots+\alpha_{k} f\left(u_{k}\right) .
$$

- Every linear function is affine.
- The translation $f(x)=x+a$ is affine.
- Composition of affine functions is affine.

Affine functions as shifted linear functions

Lemma

For a function $f: \mathbf{U} \rightarrow \mathbf{V}$, the following claims are equivalent.

- f is affine.
- The function $g: \mathbf{U} \rightarrow \mathbf{V}, g(x)=f(x)-f(0)$ is linear.
- There exists a linear function $g: \mathbf{U} \rightarrow \mathbf{V}$ and $a \in \mathbf{V}$ such that $f(x)=g(x)+$ a for every $x \in \mathbf{U}$.

Proof.

(1) \Rightarrow (2) For every $\boldsymbol{x}, \boldsymbol{y} \in \mathbf{V}$ and $\alpha \in \mathbf{F}$, we have

$$
\begin{aligned}
g(x+y) & =f(x+y-o)-f(o)=(f(x)+f(y)-f(o))-f(o) \\
& =g(x)+g(y) \\
g(\alpha x) & =f(\alpha x+(1-\alpha) o)-f(o) \\
& =(\alpha f(x)+(1-\alpha) f(o))-f(o)=\alpha(f(x)-f(o)) \\
& =\alpha g(x)
\end{aligned}
$$

Affine functions as shifted linear functions

Lemma
For a function $f: \mathbf{U} \rightarrow \mathbf{V}$, the following claims are equivalent.

- f is affine.
- The function $g: \mathbf{U} \rightarrow \mathbf{V}, g(x)=f(x)-f(o)$ is linear.
- There exists a linear function $g: \mathbf{U} \rightarrow \mathbf{V}$ and $a \in \mathbf{V}$ such that $f(x)=g(x)+$ a for every $x \in \mathbf{U}$.

Proof.
 (2) \Rightarrow (Set $a=f(0)$.

Affine functions as shifted linear functions

Lemma

For a function $f: \mathbf{U} \rightarrow \mathbf{V}$, the following claims are equivalent.

- f is affine.
- The function $g: \mathbf{U} \rightarrow \mathbf{V}, g(x)=f(x)-f(0)$ is linear.
- There exists a linear function $g: \mathbf{U} \rightarrow \mathbf{V}$ and $a \in \mathbf{V}$ such that $f(x)=g(x)+$ a for every $x \in \mathbf{U}$.

Proof.

(3) \Rightarrow (1) Suppose $\alpha_{1}+\ldots+\alpha_{k}=1$.

$$
\begin{aligned}
f\left(\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}\right)= & g\left(\alpha_{1} v_{1}+\ldots+\alpha_{k} v_{k}\right)+a \\
= & \alpha_{1} g\left(v_{1}\right)+\ldots+\alpha_{k} g\left(v_{k}\right) \\
& +\left(\alpha_{1}+\ldots+\alpha_{k}\right) a \\
= & \alpha_{1} f\left(v_{1}\right)+\ldots+\alpha_{k} f\left(v_{k}\right)
\end{aligned}
$$

Affine sets and functions

Lemma

For any affine function $f: \mathbf{U} \rightarrow \mathbf{V}$,

- the set $\operatorname{Im}(f)=\{f(u): u \in \mathbf{U}\}$ is affine, and
- for every $v \in \mathbf{V}$, the set $f^{-1}(v)=\{u \in \mathbf{U}: f(u)=v\}$ is affine.

Proof.
Let $f(x)=g(x)+a$ for linear function g.

$$
\operatorname{Im}(f)=a+\operatorname{Im}(g)
$$

Affine sets and functions

Lemma

For any affine function $f: \mathbf{U} \rightarrow \mathbf{V}$,

- the set $\operatorname{Im}(f)=\{f(u): u \in \mathbf{U}\}$ is affine, and
- for every $v \in \mathbf{V}$, the set $f^{-1}(v)=\{u \in \mathbf{U}: f(u)=v\}$ is affine.

Proof.

Let $f(x)=g(x)+a$ for linear function g.
If $f^{-1}(v)$ is non-empty, choose $u_{0} \in f^{-1}(v)$.

- $u \in f^{-1}(v)$ iff $o=f(u)-f\left(u_{0}\right)=g(u)-g\left(u_{0}\right)=g\left(u-u_{0}\right)$
- l.e., $u-u_{0} \in \operatorname{Ker}(g)$.
- $f^{-1}(v)=u_{0}+\operatorname{Ker}(g)$.

Computations with affine functions

Since affine functions are just shifted linear functions $(f(x)=g(x)+a)$, we can:

- Describe f by coordinates of a and the matrix $[g]$.
- Evaluate f in coordinates.

Example

Problem

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation of the plane by 30 degrees around the point $(2,1)$. To which point is (x, y) mapped by f ?

Example

Problem

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation of the plane by 30 degrees around the point $(2,1)$. To which point is (x, y) mapped by f ?

- Let r be the rotation by 30 degrees around the point $(0,0)$.
- Let t be the translation by $(2,1)$.
- $f=t r t^{-1}$

$$
\begin{aligned}
{[r(v)]^{T} } & =[r][v]^{T}=\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)[v]^{T} \\
{[t(v)]^{T} } & =[v]^{T}+(2,1)^{T} \\
{\left[t^{-1}(v)\right]^{T} } & =[v]^{T}-(2,1)^{T} \\
{[f(v)] } & =[r]\left([v]^{T}-(2,1)^{T}\right)+(2,1)^{T}=[r][v]^{T}+(I-[r])(2,1)^{T}
\end{aligned}
$$

Example

Problem

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation of the plane by 30 degrees around the point $(2,1)$. To which point is (x, y) mapped by f ?

$$
\begin{aligned}
{[r] } & =\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right) \\
{[f(v)] } & =[r][v]^{T}+(I-[r])(2,1)^{T}=[r][v]^{T}+(5 / 2-\sqrt{3},-\sqrt{3} / 2)
\end{aligned}
$$

Hence, $g(x, y)=(\sqrt{3} x / 2-y / 2+5 / 2-\sqrt{3}, x / 2+\sqrt{3} y / 2-\sqrt{3} / 2)$.

For linear function g and affine function $f(x)=g(x)+a$, we have

$$
[f(x)]^{T}=[g][x]^{\top}+[a]^{T} .
$$

Instead of using a matrix $[g]$ and vector [a], we can use extended matrix

$$
[[f]]=\left(\begin{array}{cc}
{[g]} & {[a]^{\top}} \\
0 & 1
\end{array}\right),
$$

and

$$
\binom{[f(x)]^{T}}{1}=\binom{[g][x]^{T}+[a]^{T}}{1}=[[f]]\binom{[x]^{T}}{1}
$$

Example, again

Problem

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation of the plane by 30 degrees around the point $(2,1)$. To which point is (x, y) mapped by f ?

- Let r be the rotation by 30 degrees around the point $(0,0)$.
- Let t be the translation by $(2,1)$.
- $f=t r t^{-1}$

$$
\begin{aligned}
& {[[r]]=\left(\begin{array}{ccc}
\sqrt{3} / 2 & -1 / 2 & 0 \\
1 / 2 & \sqrt{3} / 2 & 0 \\
0 & 0 & 1
\end{array}\right)} \\
& [[t]]]=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Example, again

Problem

Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation of the plane by 30 degrees around the point $(2,1)$. To which point is (x, y) mapped by f ?

$$
[[f]]=[[t]][[r]][[t]]^{-1}=\left(\begin{array}{ccc}
\sqrt{3} / 2 & -1 / 2 & 5 / 2-\sqrt{3} \\
1 / 2 & \sqrt{3} / 2 & -\sqrt{3} / 2 \\
0 & 0 & 1
\end{array}\right)
$$

Hence, $g(x, y)=(\sqrt{3} x / 2-y / 2+5 / 2-\sqrt{3}, x / 2+\sqrt{3} y / 2-\sqrt{3} / 2)$.

