Reminders: linear functions

Let U and V be vector spaces over the same field F.

A function f : U — Vis linear if

o forevery uy,u, € U,
f(U1 =+ U2) = f(U1) a4 f(UQ), and

o foreveryueUand a € F,

f(au) = af(u).




Reminders: linear functions

Let B=uy,...,un be abasis of U, let C be a basis of V.

@ Linear function is uniquely determined by its values on a
basis.

@ Columns of the matrix [f]g ¢ of the function are coordinates
(w.r. to C) of f(uy), ..., f(un).

® [flg,clul} = [f(w)&




Reminders: matrices of linear functions

Let U, V, and W be vector spaces over the same field F, with
bases B = uy, ..., un, C, and D, respectively.

Lemma
Foranylinearf:U—Vandg:V—W,

[9f]s,0 = [glc,plflB,C:




Reminders: isomorphism

A linear function f : U — V is an isomorphism if f is bijective
(1-to-1 and onto).

Lemma

Iff : U — V is an isomorphism, then f~! is an isomorphism and

[Flee=flzc:




Example: linear transformations of the plane

Let p be the line in R? through the origin in 30 degrees angle.
To which point is (x, y) mapped by reflection across the p axis?

Y




Example: linear transformations of the plane

Let p be the line in R? through the origin in 30 degrees angle.
To which point is (x, y) mapped by reflection across the p axis?

@ The reflection across the p axis defines an isomorphism
g:R?> = R

@ Let r be the rotation by 30 degrees.

@ Let f be the reflection across the x axis.

@ g=rfr~' hence

@ [g] = [r][f][r]~" with respect to the standard basis.




Example: linear transformations of the plane

Let p be the line in R? through the origin in 30 degrees angle.
To which point is (x, y) mapped by reflection across the p axis?

@ r: the rotation by 30 degrees.
@ f: the reflection across the x axis.

r(1,0) = (v3/2,1/2) f(1,0) = (1,0)
r(0,1) = (-1/2,V/3/2) £(0,1) = (0,-1)

a2 ) (32




Example: linear transformations of the plane

Let p be the line in R? through the origin in 30 degrees angle.
To which point is (x, y) mapped by reflection across the p axis?

V3/2
1/2
1/2

V3/2

[m:mmqu(

g

A2 (6 S)(0r A
f3/2>
—1/2

Hence, g(x,y) = (x/2 +V3y/2,/3x/2 — y/2).




Example: composition of rotations

Let r, : R> — R? be the rotation by angle a.

ro(1,0) = (cos a, sina)
r4(0,1) = (—sina, cos a)

(] = < cosa —sina )

sina  cosa
Note that o, s = rars, and [Fo4] = [ra][ral:

( cos(a + B)  —sin(a + B) ):( cosa  —sina )( cosB —sinB )

sin(a + B) cos(a + B) sin v COoSs o sin B cos 3
_ cos acos B — sinasin 3 — cos asin 8 — sina cos B
- sin ac cos B + cos a sin B — sin acsin B + cos aecos B

Therefore,

cos(a + ) = cosacos f —sinasin
sin(a + 3) = sinacos 3 + cos asin 3



Linear functions and independent sets

Let U and V be vector spaces over the same field F.

Lemma

If a linear function f : U — V is 1-to-1 and {uy,...,ux} C U s
an independent set, then {f(uy), ..., f(ux)} is an independent
setinV.

Proof.

Suppose that a1 f(uq) + ... + axf(ux) = o.
o Letu=aqus + ...+ axl.
o f(u) = flaqus + ...+ akuk) = asf(ur) + ... + axf(uk) = o.
@ Since fis 1-to-1, f(u) = o, and f(0) = o, we have u = o.

@ Since {uy, ..., ux} is linearly independent,
a1 =...=ak=0.
L]



Linear functions and independent sets

Let U and V be vector spaces over the same field F.

If a linear function f : U — V is 1-to-1 and {uy,...,ux} C U s
an independent set, then {f(uy), ..., f(ux)} is an independent
setinV.

Corollary

If a function f : U — V is an isomorphism and uy, ..., ux is a
basis of U, then f(uy), ..., f(ux) is a basis of V.

Proof.

@ f(uy),...,f(ug) is independent
@ f(uy),...,f(uk), vis not independent for any v € V, since
ui,...,ux, f~1(v) is not independent.



Isomorphic spaces

Two spaces U and V are isomorphic if there exists an
isomorphism from U to V (and vice versa).

Examples:
@ P, and R™" are isomorphic via isomorphism mapping
p=ag+arX+...+apx"to (g, a,...,an).

@ P, and R™ are also isomorphic via isomorphism
mapping p to (p(0),p(1),...,p(n)).

Corollary

Any two isomorphic spaces have the same dimension.




Isomorphism and coordinates

Let V be a vector space over the field F.
Let B be a basis of V.
Let coordg : V — FIMV pe defined by coordg(v) = [v]s.

Lemma

coordg is an isomorphism from V to F4mV

Corollary

Vector spaces over the same field are isomorphic if and only if
they have the same dimension.




Spaces associated with linear functions

Let f: U — V be a linear function.

Definition
Image of f consists of all elements of V to that f maps

something.
Im(f) = {f(u) : u e U}

Kernel of f consists of all elements of U that f maps to o.

Ker(f) ={ueU: f(u) = o}




Let f: R® — R?, f(x,y, 2) = (x, X).
@ Im(f) = {(x,x): x € R} =span{(1,1)}
e Ker(f) ={(0,y,2) : y,z € R} =span{(0,1,0),(0,0,1)}




Image and kernel are subspaces

Let U and V be vector spaces over a field F.

Lemma

For any linear function f : U — V, both Im(f) and Ker(f) are
vector spaces.

@ If vi, vo € Im(f), then vy = f(uy) and v» = f(u>) for some
uy, Us € U.

@ vy + Vo = f(uy) + f(u) = f(ug + u2) € Im(f)

@ avy = af(ur) = f(aur) € Im(f)

@ o0 = f(0) € Im(f)




Image and kernel are subspaces

Let U and V be vector spaces over a field F.

Lemma

For any linear function f : U — V, both Im(f) and Ker(f) are
vector spaces.

@ If uy, up € Ker(f), then f(uy) = f(u2) = o.
® f(ur + upx) =f(ur) +f(ux) =0+0=0
o f(au1):af(u1):aO:O

@ flo)=o0




Related matrix spaces

Let F be a field.
Definition

For an n x m matrix A with entries from F, let
Im(A) = {Ax : x e F}

and
Ker(A) = {x e F" : Ax =0}

Note:
@ Im(A) =span(A, 1,A.2,...,A.m} = Col(A)
@ Ker(A) is the set of solutions of the system of linear
equations Ax = 0.
@ For f: F™ — F", f(x) = Ax, we have
e Ker(A) = Ker( )
o Im(A) = Im(f),

hence Ker(A), Im(A) are vector spaces.



Kernel and image of a matrix vs function

@ Let U and V be vector spaces over the same field F.

@ Let B be a basis of U, let C be a basis of V.

@ Let coordg : U — F9MY pe defined by coordg(u) = [u]}.
@ Let coordc : V — FAMV e defined by coordg(v) = [v]L.

Lemma

Im([f]g c) consists of coordinates (with respect to C) of Im(f);
i.e., coordc is an isomorphism from Im(f) to Im([f]g c).

Ker([f]g,c) consists of coordinates (with respect to B) of Ker(f);
i.e., coordp is an isomorphism from Ker(f) to Ker([f]g,c)-



Example(1)

Problem
Letf: R® — R® be defined by f(x,y,2z) = (X — ¥,y — 2,Z — X).
Determine Im(f) and Ker(f).

With respect to the standard bases,

1 0 10 —1
[f]( 0 1 ),RREF([f]) (o 1 1
1 1 00 O

Q {vT cvelm(f)} = {[v]T :velm(f)} =Im([f]) = Col([f])
@ Basis column indices are 1, 2, hence the 1st and 2nd
column of [f] form a basis of Col([f]).

Im(f) = span({(1,0, —1), 1.



Example(1)

Problem

Letf: R® — R® be defined by f(x,y,2z) = (X — ¥,y — 2,Z — X).
Determine Im(f) and Ker(f).

With respect to the standard bases,

1 0 10 —1
[f]( 0 1 ),RREF([f])(O 1 1)
1 1 00 0

o {uT:ucKer(f} ={[u]” : ueKer(f)} = Ker([f]).
@ Ker([f]) is the set of solutions of [f]x =0
@ the same as the set of solutions of RREF([f])x =0

Ker(f) = span({(1,1,1)})



Example(2)

Problem

Let f : P, — R? be defined by f(p) = (p(0), p(2)). Determine
Im(f) and Ker(f).

Let B =1, x, x? be a basis of P,, let C = (1,0),(0,1).

e (15 ) w343

Im([flg,c) = span({(1.1)", ™
hence
Im(f) = span({(1,1), }) = R2



Example(2)

Problem

Let f : P, — R? be defined by f(p) = (p(0), p(2)). Determine
Im(f) and Ker(f).

Let B =1, x, x? be a basis of P,, let C = (1,0),(0,1).

(15 ) w343

@ The set of solutions to [f]g cx = 0 is span({(0,—2,1)7}).
° (07 _23 1) = [X2 - 2X]B
Ker(f) = span({x® — 2x})



Dimensions of kernel and image

Let U and V be vector spaces over the same field F.

Lemma

For any linear function f : U — V,

dim Im(f) + dim Ker(f) = dimU

Let B be a basis of U, let C be a basis of V.
@ It suffices to prove dim Im([f]g ¢c) + dimKer([f]g,c) = |B.
@ dimIm([f]g ¢) = dim Col([f]g ¢) = rank([f]g c)
e number of basis columns of RREF([f]z,¢c)

@ dimKer([f]g ¢) is the dimension of the space of solutions of
[flg.cx =0
e number of non-basis columns of RREF([f]z ¢)

0
e 4 4444



Kernel, image and 1-to-1 functions

Let U and V be vector spaces over the same field F.

Lemma

For a linear function f : U — V, the following are equivalent:
Q Ker(f) = {0}
Q fis 1-to-1
© For every independent set {uy, ..., ux} inU, the set
{f(u1),...,f(ux)} is independent in V.
Q Forabasis B= {uy,...,ux} ofU, the set {f(uy), ..., f(ux)}
is independent in V.

Q = 0@ If f(x) = f(y), then o = f(x) — f(y) = f(x— y), and thus
x —y € Ker(f). Hence, x —y =oand x = y.

Ol



Kernel, image and 1-to-1 functions

Let U and V be vector spaces over the same field F.

Lemma

For a linear function f : U — V, the following are equivalent:
Q Ker(f) = {o}
Q fis 1-to-1
© For every independent set {uy, ..., ux} inU, the set
{f(u1),...,f(ux)} is independent in V.
Q Forabasis B= {uy,...,ux} ofU, the set {f(uy), ..., f(ux)}
is independent in V.

O = O Proved before.

Ol



Kernel, image and 1-to-1 functions

Let U and V be vector spaces over the same field F.

Lemma

For a linear function f : U — V, the following are equivalent:
Q Ker(f) = {o}
Q fis 1-to-1
© For every independent set {uy, ..., ux} inU, the set
{f(u1),...,f(ux)} is independent in V.
Q Forabasis B= {uy,...,ux} ofU, the set {f(uy), ..., f(ux)}
is independent in V.

@ = O Trivial.

Ol



Kernel, image and 1-to-1 functions

Let U and V be vector spaces over the same field F.

Lemma

For a linear function f : U — V, the following are equivalent:
Q Ker(f) = {o}
Q fis 1-to-1
© For every independent set {uy, ..., ux} inU, the set
{f(u1),...,f(ux)} is independent in V.
Q Forabasis B= {uy,...,ux} ofU, the set {f(uy), ..., f(ux)}
is independent in V.

O = O Since f(uy),...,f(ux) is independent, dimIm(f) > k,
and dim Ker(f) < 0.

Ol



