
Reminders: linear functions

Let U and V be vector spaces over the same field F.

Definition

A function f : U→ V is linear if
for every u1,u2 ∈ U,

f (u1 + u2) = f (u1) + f (u2), and

for every u ∈ U and α ∈ F,

f (αu) = αf (u).



Reminders: linear functions

Let B = u1, . . . ,un be a basis of U, let C be a basis of V.

Linear function is uniquely determined by its values on a
basis.
Columns of the matrix [f ]B,C of the function are coordinates
(w.r. to C) of f (u1), . . . , f (un).
[f ]B,C [u]TB = [f (u)]TC



Reminders: matrices of linear functions

Let U, V, and W be vector spaces over the same field F, with
bases B = u1, . . . ,un, C, and D, respectively.

Lemma

For any linear f : U→ V and g : V→W,

[gf ]B,D = [g]C,D[f ]B,C .



Reminders: isomorphism

Definition

A linear function f : U→ V is an isomorphism if f is bijective
(1-to-1 and onto).

Lemma

If f : U→ V is an isomorphism, then f−1 is an isomorphism and

[f−1]C,B = [f ]−1
B,C .



Example: linear transformations of the plane

Problem

Let p be the line in R2 through the origin in 30 degrees angle.
To which point is (x , y) mapped by reflection across the p axis?

x

y

p



Example: linear transformations of the plane

Problem

Let p be the line in R2 through the origin in 30 degrees angle.
To which point is (x , y) mapped by reflection across the p axis?

The reflection across the p axis defines an isomorphism
g : R2 → R2.
Let r be the rotation by 30 degrees.
Let f be the reflection across the x axis.
g = rfr−1, hence
[g] = [r ][f ][r ]−1 with respect to the standard basis.



Example: linear transformations of the plane

Problem

Let p be the line in R2 through the origin in 30 degrees angle.
To which point is (x , y) mapped by reflection across the p axis?

r : the rotation by 30 degrees.
f : the reflection across the x axis.

r(1,0) = (
√

3/2,1/2) f (1,0) = (1,0)

r(0,1) = (−1/2,
√

3/2) f (0,1) = (0,−1)

[r ] =
( √

3/2 −1/2
1/2

√
3/2

)
[f ] =

(
1 0
0 −1

)



Example: linear transformations of the plane

Problem

Let p be the line in R2 through the origin in 30 degrees angle.
To which point is (x , y) mapped by reflection across the p axis?

[g] = [r ][f ][r ]−1 =

( √
3/2 −1/2

1/2
√

3/2

)(
1 0
0 −1

)( √
3/2 −1/2

1/2
√

3/2

)−1

=

(
1/2

√
3/2√

3/2 −1/2

)

Hence, g(x , y) = (x/2 +
√

3y/2,
√

3x/2− y/2).



Example: composition of rotations

Let rα : R2 → R2 be the rotation by angle α.

rα(1,0) = (cosα, sinα)
rα(0,1) = (− sinα, cosα)

[rα] =
(

cosα − sinα
sinα cosα

)
Note that rα+β = rαrβ, and [rα+β] = [rα][rβ]:

(
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

)
=

(
cos α − sin α
sin α cos α

)(
cos β − sin β
sin β cos β

)
=

(
cos α cos β − sin α sin β − cos α sin β − sin α cos β
sin α cos β + cos α sin β − sin α sin β + cos α cos β

)

Therefore,

cos(α+ β) = cosα cosβ − sinα sinβ
sin(α+ β) = sinα cosβ + cosα sinβ



Linear functions and independent sets

Let U and V be vector spaces over the same field F.

Lemma

If a linear function f : U→ V is 1-to-1 and {u1, . . . ,uk} ⊆ U is
an independent set, then {f (u1), . . . , f (uk )} is an independent
set in V.

Proof.

Suppose that α1f (u1) + . . .+ αk f (uk ) = o.
Let u = α1u1 + . . .+ αkuk .
f (u) = f (α1u1 + . . .+ αkuk ) = α1f (u1) + . . .+ αk f (uk ) = o.
Since f is 1-to-1, f (u) = o, and f (o) = o, we have u = o.
Since {u1, . . . ,uk} is linearly independent,
α1 = . . . = αk = 0.



Linear functions and independent sets

Let U and V be vector spaces over the same field F.

Lemma

If a linear function f : U→ V is 1-to-1 and {u1, . . . ,uk} ⊆ U is
an independent set, then {f (u1), . . . , f (uk )} is an independent
set in V.

Corollary

If a function f : U→ V is an isomorphism and u1, . . . ,uk is a
basis of U, then f (u1), . . . , f (uk ) is a basis of V.

Proof.

f (u1), . . . , f (uk ) is independent
f (u1), . . . , f (uk ), v is not independent for any v ∈ V, since
u1, . . . ,uk , f−1(v) is not independent.



Isomorphic spaces

Definition

Two spaces U and V are isomorphic if there exists an
isomorphism from U to V (and vice versa).

Examples:
Pn and Rn+1 are isomorphic via isomorphism mapping
p = α0 + α1x + . . .+ αnxn to (α0, α1, . . . , αn).
Pn and Rn+1 are also isomorphic via isomorphism
mapping p to (p(0),p(1), . . . ,p(n)).

Corollary

Any two isomorphic spaces have the same dimension.



Isomorphism and coordinates

Let V be a vector space over the field F.
Let B be a basis of V.
Let coordB : V→ Fdim V be defined by coordB(v) = [v ]B.

Lemma

coordB is an isomorphism from V to Fdim V

Corollary

Vector spaces over the same field are isomorphic if and only if
they have the same dimension.



Spaces associated with linear functions

Let f : U→ V be a linear function.

Definition

Image of f consists of all elements of V to that f maps
something.

Im(f ) = {f (u) : u ∈ U}

Kernel of f consists of all elements of U that f maps to o.

Ker(f ) = {u ∈ U : f (u) = o}



Example

Let f : R3 → R2, f (x , y , z) = (x , x).

Im(f ) = {(x , x) : x ∈ R} = span{(1,1)}
Ker(f ) = {(0, y , z) : y , z ∈ R} = span{(0,1,0), (0,0,1)}



Image and kernel are subspaces

Let U and V be vector spaces over a field F.

Lemma

For any linear function f : U→ V, both Im(f ) and Ker(f ) are
vector spaces.

Proof.

If v1, v2 ∈ Im(f ), then v1 = f (u1) and v2 = f (u2) for some
u1,u2 ∈ U.
v1 + v2 = f (u1) + f (u2) = f (u1 + u2) ∈ Im(f )
αv1 = αf (u1) = f (αu1) ∈ Im(f )
o = f (o) ∈ Im(f )



Image and kernel are subspaces

Let U and V be vector spaces over a field F.

Lemma

For any linear function f : U→ V, both Im(f ) and Ker(f ) are
vector spaces.

Proof.

If u1,u2 ∈ Ker(f ), then f (u1) = f (u2) = o.
f (u1 + u2) = f (u1) + f (u2) = o + o = o
f (αu1) = αf (u1) = αo = o
f (o) = o



Related matrix spaces

Let F be a field.

Definition

For an n ×m matrix A with entries from F, let

Im(A) = {Ax : x ∈ Fm}

and
Ker(A) = {x ∈ Fm : Ax = 0}

Note:
Im(A) = span(A?,1,A?,2, . . . ,A?,m} = Col(A)
Ker(A) is the set of solutions of the system of linear
equations Ax = 0.
For f : Fm → Fn, f (x) = Ax , we have

Ker(A) = Ker(f )
Im(A) = Im(f ),

hence Ker(A), Im(A) are vector spaces.



Kernel and image of a matrix vs function

Let U and V be vector spaces over the same field F.
Let B be a basis of U, let C be a basis of V.
Let coordB : U→ Fdim U be defined by coordB(u) = [u]TB .
Let coordC : V→ Fdim V be defined by coordC(v) = [v ]TC .

Lemma

Im([f ]B,C) consists of coordinates (with respect to C) of Im(f );
i.e., coordC is an isomorphism from Im(f ) to Im([f ]B,C).

Ker([f ]B,C) consists of coordinates (with respect to B) of Ker(f );
i.e., coordB is an isomorphism from Ker(f ) to Ker([f ]B,C).



Example(1)

Problem

Let f : R3 → R3 be defined by f (x , y , z) = (x − y , y − z, z − x).
Determine Im(f ) and Ker(f ).

With respect to the standard bases,

[f ] =

 1 −1 0
0 1 −1
−1 0 1

 ,RREF([f ]) =

 1 0 −1
0 1 −1
0 0 0


{vT : v ∈ Im(f )} = {[v ]T : v ∈ Im(f )} = Im([f ]) = Col([f ])
Basis column indices are 1, 2, hence the 1st and 2nd
column of [f ] form a basis of Col([f ]).

Im(f ) = span({(1,0,−1), (−1,1,0)}).



Example(1)

Problem

Let f : R3 → R3 be defined by f (x , y , z) = (x − y , y − z, z − x).
Determine Im(f ) and Ker(f ).

With respect to the standard bases,

[f ] =

 1 −1 0
0 1 −1
−1 0 1

 ,RREF([f ]) =

 1 0 −1
0 1 −1
0 0 0


{uT : u ∈ Ker(f )} = {[u]T : u ∈ Ker(f )} = Ker([f ]).
Ker([f ]) is the set of solutions of [f ]x = 0
the same as the set of solutions of RREF([f ])x = 0

Ker(f ) = span({(1,1,1)})



Example(2)

Problem

Let f : P2 → R2 be defined by f (p) = (p(0),p(2)). Determine
Im(f ) and Ker(f ).

Let B = 1, x , x2 be a basis of P2, let C = (1,0), (0,1).

[f ]B,C =

(
1 0 0
1 2 4

)
,RREF([f ]B,C) =

(
1 0 0
0 1 2

)
Im([f ]B,C) = span({(1,1)T , (0,2)T})

hence
Im(f ) = span({(1,1), (0,2)}) = R2.



Example(2)

Problem

Let f : P2 → R2 be defined by f (p) = (p(0),p(2)). Determine
Im(f ) and Ker(f ).

Let B = 1, x , x2 be a basis of P2, let C = (1,0), (0,1).

[f ]B,C =

(
1 0 0
1 2 4

)
,RREF([f ]B,C) =

(
1 0 0
0 1 2

)
The set of solutions to [f ]B,Cx = 0 is span({(0,−2,1)T}).
(0,−2,1) = [x2 − 2x ]B

Ker(f ) = span({x2 − 2x})



Dimensions of kernel and image

Let U and V be vector spaces over the same field F.

Lemma

For any linear function f : U→ V,

dim Im(f ) + dim Ker(f ) = dim U

Proof.

Let B be a basis of U, let C be a basis of V.
It suffices to prove dim Im([f ]B,C) + dim Ker([f ]B,C) = |B|.
dim Im([f ]B,C) = dim Col([f ]B,C) = rank([f ]B,C)

number of basis columns of RREF([f ]B,C)

dim Ker([f ]B,C) is the dimension of the space of solutions of
[f ]B,Cx = 0

number of non-basis columns of RREF([f ]B,C)



Kernel, image and 1-to-1 functions

Let U and V be vector spaces over the same field F.

Lemma

For a linear function f : U→ V, the following are equivalent:
1 Ker(f ) = {o}
2 f is 1-to-1
3 For every independent set {u1, . . . ,uk} in U, the set
{f (u1), . . . , f (uk )} is independent in V.

4 For a basis B = {u1, . . . ,uk} of U, the set {f (u1), . . . , f (uk )}
is independent in V.

Proof.
1 ⇒ 2 If f (x) = f (y), then o = f (x)− f (y) = f (x −y), and thus

x − y ∈ Ker(f ). Hence, x − y = o and x = y .



Kernel, image and 1-to-1 functions

Let U and V be vector spaces over the same field F.

Lemma

For a linear function f : U→ V, the following are equivalent:
1 Ker(f ) = {o}
2 f is 1-to-1
3 For every independent set {u1, . . . ,uk} in U, the set
{f (u1), . . . , f (uk )} is independent in V.

4 For a basis B = {u1, . . . ,uk} of U, the set {f (u1), . . . , f (uk )}
is independent in V.

Proof.
2 ⇒ 3 Proved before.



Kernel, image and 1-to-1 functions

Let U and V be vector spaces over the same field F.

Lemma

For a linear function f : U→ V, the following are equivalent:
1 Ker(f ) = {o}
2 f is 1-to-1
3 For every independent set {u1, . . . ,uk} in U, the set
{f (u1), . . . , f (uk )} is independent in V.

4 For a basis B = {u1, . . . ,uk} of U, the set {f (u1), . . . , f (uk )}
is independent in V.

Proof.
3 ⇒ 4 Trivial.



Kernel, image and 1-to-1 functions

Let U and V be vector spaces over the same field F.

Lemma

For a linear function f : U→ V, the following are equivalent:
1 Ker(f ) = {o}
2 f is 1-to-1
3 For every independent set {u1, . . . ,uk} in U, the set
{f (u1), . . . , f (uk )} is independent in V.

4 For a basis B = {u1, . . . ,uk} of U, the set {f (u1), . . . , f (uk )}
is independent in V.

Proof.
4 ⇒ 1 Since f (u1), . . . , f (uk ) is independent, dim Im(f ) ≥ k ,

and dim Ker(f ) ≤ 0.


