Reminders: linear functions

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Definition

A function $f: \mathbf{U} \rightarrow \mathbf{V}$ is linear if

- for every $u_{1}, u_{2} \in \mathbf{U}$,

$$
f\left(u_{1}+u_{2}\right)=f\left(u_{1}\right)+f\left(u_{2}\right), \text { and }
$$

- for every $\boldsymbol{u} \in \mathbf{U}$ and $\alpha \in \mathbf{F}$,

$$
f(\alpha u)=\alpha f(u)
$$

Let $B=u_{1}, \ldots, u_{n}$ be a basis of \mathbf{U}, let C be a basis of \mathbf{V}.

- Linear function is uniquely determined by its values on a basis.
- Columns of the matrix $[f]_{B, C}$ of the function are coordinates (w.r. to C) of $f\left(u_{1}\right), \ldots, f\left(u_{n}\right)$.
- $[f]_{B, C}[u]_{B}^{T}=[f(u)]_{C}^{T}$

Reminders: matrices of linear functions

Let \mathbf{U}, \mathbf{V}, and \mathbf{W} be vector spaces over the same field \mathbf{F}, with bases $B=u_{1}, \ldots, u_{n}, C$, and D, respectively.

Lemma

For any linear $f: \mathbf{U} \rightarrow \mathbf{V}$ and $g: \mathbf{V} \rightarrow \mathbf{W}$,

$$
[g f]_{B, D}=[g]_{C, D}[f]_{B, C} .
$$

Reminders: isomorphism

Definition
A linear function $f: \mathbf{U} \rightarrow \mathbf{V}$ is an isomorphism if f is bijective (1-to-1 and onto).

Lemma
If $f: \mathbf{U} \rightarrow \mathbf{V}$ is an isomorphism, then f^{-1} is an isomorphism and

$$
\left[f^{-1}\right]_{C, B}=[f]_{B, C}^{-1}
$$

Example: linear transformations of the plane

Problem

Let p be the line in \mathbf{R}^{2} through the origin in 30 degrees angle. To which point is (x, y) mapped by reflection across the p axis?

Example: linear transformations of the plane

Problem

Let p be the line in \mathbf{R}^{2} through the origin in 30 degrees angle. To which point is (x, y) mapped by reflection across the p axis?

- The reflection across the p axis defines an isomorphism $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$.
- Let r be the rotation by 30 degrees.
- Let f be the reflection across the x axis.
- $g=r f r^{-1}$, hence
- $[g]=[r][f][r]^{-1}$ with respect to the standard basis.

Example: linear transformations of the plane

Problem

Let p be the line in \mathbf{R}^{2} through the origin in 30 degrees angle. To which point is (x, y) mapped by reflection across the p axis?

- r : the rotation by 30 degrees.
- f : the reflection across the x axis.

$$
\begin{aligned}
r(1,0) & =(\sqrt{3} / 2,1 / 2) \\
r(0,1) & =(-1 / 2, \sqrt{3} / 2) \\
{[r] } & =\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
f(1,0) & =(1,0) \\
f(0,1) & =(0,-1) \\
{[f] } & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Example: linear transformations of the plane

Problem

Let p be the line in \mathbf{R}^{2} through the origin in 30 degrees angle. To which point is (x, y) mapped by reflection across the p axis?

$$
\begin{aligned}
{[g]=[r][f][r]^{-1} } & =\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
\sqrt{3} / 2 & -1 / 2 \\
1 / 2 & \sqrt{3} / 2
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right)
\end{aligned}
$$

Hence, $g(x, y)=(x / 2+\sqrt{3} y / 2, \sqrt{3} x / 2-y / 2)$.

Example: composition of rotations

Let $r_{\alpha}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation by angle α.

$$
\begin{aligned}
r_{\alpha}(1,0) & =(\cos \alpha, \sin \alpha) \\
r_{\alpha}(0,1) & =(-\sin \alpha, \cos \alpha) \\
{\left[r_{\alpha}\right] } & =\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
\end{aligned}
$$

Note that $r_{\alpha+\beta}=r_{\alpha} r_{\beta}$, and $\left[r_{\alpha+\beta}\right]=\left[r_{\alpha}\right]\left[r_{\beta}\right]$:

$$
\begin{aligned}
\left(\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right) & =\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \alpha \cos \beta-\sin \alpha \sin \beta & -\cos \alpha \sin \beta-\sin \alpha \cos \beta \\
\sin \alpha \cos \beta+\cos \alpha \sin \beta & -\sin \alpha \sin \beta+\cos \alpha \cos \beta
\end{array}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta) & =\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

Linear functions and independent sets

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Lemma

If a linear function $f: \mathbf{U} \rightarrow \mathbf{V}$ is 1-to-1 and $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq \mathbf{U}$ is an independent set, then $\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is an independent set in V.

Proof.

Suppose that $\alpha_{1} f\left(u_{1}\right)+\ldots+\alpha_{k} f\left(u_{k}\right)=0$.

- Let $u=\alpha_{1} u_{1}+\ldots+\alpha_{k} u_{k}$.
- $f(u)=f\left(\alpha_{1} u_{1}+\ldots+\alpha_{k} u_{k}\right)=\alpha_{1} f\left(u_{1}\right)+\ldots+\alpha_{k} f\left(u_{k}\right)=0$.
- Since f is 1-to-1, $f(u)=0$, and $f(0)=0$, we have $u=0$.
- Since $\left\{u_{1}, \ldots, u_{k}\right\}$ is linearly independent, $\alpha_{1}=\ldots=\alpha_{k}=0$.

Linear functions and independent sets

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Lemma

If a linear function $f: \mathbf{U} \rightarrow \mathbf{V}$ is 1-to-1 and $\left\{u_{1}, \ldots, u_{k}\right\} \subseteq \mathbf{U}$ is an independent set, then $\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is an independent set in V.

Corollary

If a function $f: \mathbf{U} \rightarrow \mathbf{V}$ is an isomorphism and u_{1}, \ldots, u_{k} is a basis of \mathbf{U}, then $f\left(u_{1}\right), \ldots, f\left(u_{k}\right)$ is a basis of \mathbf{V}.

Proof.

- $f\left(u_{1}\right), \ldots, f\left(u_{k}\right)$ is independent
- $f\left(u_{1}\right), \ldots, f\left(u_{k}\right), v$ is not independent for any $v \in \mathbf{V}$, since $u_{1}, \ldots, u_{k}, f^{-1}(v)$ is not independent.

Isomorphic spaces

Definition

Two spaces \mathbf{U} and \mathbf{V} are isomorphic if there exists an isomorphism from \mathbf{U} to \mathbf{V} (and vice versa).

Examples:

- \mathcal{P}_{n} and \mathbf{R}^{n+1} are isomorphic via isomorphism mapping

$$
p=\alpha_{0}+\alpha_{1} x+\ldots+\alpha_{n} x^{n} \text { to }\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) .
$$

- \mathcal{P}_{n} and \mathbf{R}^{n+1} are also isomorphic via isomorphism mapping p to $(p(0), p(1), \ldots, p(n))$.

Corollary

Any two isomorphic spaces have the same dimension.

Isomorphism and coordinates

Let \mathbf{V} be a vector space over the field \mathbf{F}.
Let B be a basis of \mathbf{V}.
Let $\operatorname{coord}_{B}: \mathbf{V} \rightarrow \mathbf{F}^{\operatorname{dim} \mathbf{V}}$ be defined by $\operatorname{coord}_{B}(v)=[v]_{B}$.
Lemma
coord_{B} is an isomorphism from \mathbf{V} to $\mathbf{F}^{\operatorname{dim} \mathbf{V}}$

Corollary

Vector spaces over the same field are isomorphic if and only if they have the same dimension.

Spaces associated with linear functions

Let $f: \mathbf{U} \rightarrow \mathbf{V}$ be a linear function.

Definition

Image of f consists of all elements of \mathbf{V} to that f maps something.

$$
\operatorname{Im}(f)=\{f(u): u \in \mathbf{U}\}
$$

Kernel of f consists of all elements of \mathbf{U} that f maps to o.

$$
\operatorname{Ker}(f)=\{u \in \mathbf{U}: f(u)=0\}
$$

Example

Let $f: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}^{\mathbf{2}}, f(x, y, z)=(x, x)$.

- $\operatorname{Im}(f)=\{(x, x): x \in \mathbf{R}\}=\operatorname{span}\{(1,1)\}$
- $\operatorname{Ker}(f)=\{(0, y, z): y, z \in \mathbf{R}\}=\operatorname{span}\{(0,1,0),(0,0,1)\}$

Image and kernel are subspaces

Let \mathbf{U} and \mathbf{V} be vector spaces over a field \mathbf{F}.
Lemma
For any linear function $f: \mathbf{U} \rightarrow \mathbf{V}$, both $\operatorname{Im}(f)$ and $\operatorname{Ker}(f)$ are vector spaces.

Proof.

- If $v_{1}, v_{2} \in \operatorname{Im}(f)$, then $v_{1}=f\left(u_{1}\right)$ and $v_{2}=f\left(u_{2}\right)$ for some $u_{1}, u_{2} \in \mathbf{U}$.
- $v_{1}+v_{2}=f\left(u_{1}\right)+f\left(u_{2}\right)=f\left(u_{1}+u_{2}\right) \in \operatorname{Im}(f)$
- $\alpha v_{1}=\alpha f\left(u_{1}\right)=f\left(\alpha u_{1}\right) \in \operatorname{Im}(f)$
- $o=f(o) \in \operatorname{Im}(f)$

Image and kernel are subspaces

Let \mathbf{U} and \mathbf{V} be vector spaces over a field \mathbf{F}.
Lemma
For any linear function $f: \mathbf{U} \rightarrow \mathbf{V}$, both $\operatorname{Im}(f)$ and $\operatorname{Ker}(f)$ are vector spaces.

Proof.

- If $u_{1}, u_{2} \in \operatorname{Ker}(f)$, then $f\left(u_{1}\right)=f\left(u_{2}\right)=0$.
- $f\left(u_{1}+u_{2}\right)=f\left(u_{1}\right)+f\left(u_{2}\right)=0+0=0$
- $f\left(\alpha u_{1}\right)=\alpha f\left(u_{1}\right)=\alpha 0=0$
- $f(0)=0$

Related matrix spaces

Let \mathbf{F} be a field.

Definition

For an $n \times m$ matrix A with entries from \mathbf{F}, let

$$
\operatorname{Im}(A)=\left\{A x: x \in \mathbf{F}^{m}\right\}
$$

and

$$
\operatorname{Ker}(A)=\left\{x \in \mathbf{F}^{m}: A x=0\right\}
$$

Note:

- $\operatorname{Im}(A)=\operatorname{span}\left(A_{\star, 1}, A_{\star, 2}, \ldots, A_{\star, m}\right\}=\operatorname{Col}(A)$
- $\operatorname{Ker}(A)$ is the set of solutions of the system of linear equations $A x=0$.
- For $f: \mathbf{F}^{m} \rightarrow \mathbf{F}^{n}, f(x)=A x$, we have
- $\operatorname{Ker}(A)=\operatorname{Ker}(f)$
- $\operatorname{Im}(A)=\operatorname{Im}(f)$,
hence $\operatorname{Ker}(A), \operatorname{Im}(A)$ are vector spaces.

Kernel and image of a matrix vs function

- Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.
- Let B be a basis of \mathbf{U}, let C be a basis of \mathbf{V}.
- Let $\operatorname{coord}_{B}: \mathbf{U} \rightarrow \mathbf{F}^{\text {dim } \mathbf{U}}$ be defined by $\operatorname{coord}_{B}(u)=[u]_{B}^{T}$.
- Let $\operatorname{coord}_{C}: \mathbf{V} \rightarrow \mathbf{F}^{\mathrm{dim}} \mathbf{V}$ be defined by $\operatorname{coord}_{C}(v)=[v]_{C}^{T}$.

Lemma

$\operatorname{Im}\left([f]_{B, C}\right)$ consists of coordinates (with respect to C) of $\operatorname{Im}(f)$; i.e., coord ${ }_{C}$ is an isomorphism from $\operatorname{Im}(f)$ to $\operatorname{Im}\left([f]_{B, C}\right)$.
$\operatorname{Ker}\left([f]_{B, C}\right)$ consists of coordinates (with respect to B) of $\operatorname{Ker}(f)$; i.e., coord_{B} is an isomorphism from $\operatorname{Ker}(f)$ to $\operatorname{Ker}\left([f]_{B, C}\right)$.

Example(1)

Problem

Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be defined by $f(x, y, z)=(x-y, y-z, z-x)$. Determine $\operatorname{Im}(f)$ and $\operatorname{Ker}(f)$.

With respect to the standard bases,

$$
[f]=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right), \operatorname{RREF}([f])=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

- $\left\{v^{T}: v \in \operatorname{Im}(f)\right\}=\left\{[v]^{T}: v \in \operatorname{Im}(f)\right\}=\operatorname{Im}([f])=\operatorname{Col}([f])$
- Basis column indices are 1, 2, hence the 1 st and $2 n d$ column of $[f]$ form a basis of $\operatorname{Col}([f])$.

$$
\operatorname{lm}(f)=\operatorname{span}(\{(1,0,-1),(-1,1,0)\})
$$

Example(1)

Problem

Let $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be defined by $f(x, y, z)=(x-y, y-z, z-x)$. Determine $\operatorname{Im}(f)$ and $\operatorname{Ker}(f)$.

With respect to the standard bases,

$$
[f]=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right), \operatorname{RREF}([f])=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

- $\left\{u^{T}: u \in \operatorname{Ker}(f)\right\}=\left\{[u]^{T}: u \in \operatorname{Ker}(f)\right\}=\operatorname{Ker}([f])$.
- $\operatorname{Ker}([f])$ is the set of solutions of $[f] x=0$
- the same as the set of solutions of $\operatorname{RREF}([f]) x=0$

$$
\operatorname{Ker}(f)=\operatorname{span}(\{(1,1,1)\})
$$

Example(2)

Problem

Let $f: \mathcal{P}_{2} \rightarrow \mathbf{R}^{2}$ be defined by $f(p)=(p(0), p(2))$. Determine $\operatorname{Im}(f)$ and $\operatorname{Ker}(f)$.

Let $B=1, x, x^{2}$ be a basis of \mathcal{P}_{2}, let $C=(1,0),(0,1)$.

$$
\begin{gathered}
{[f]_{B, C}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 4
\end{array}\right), \operatorname{RREF}\left([f]_{B, C}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right)} \\
\\
\\
\end{gathered}
$$

hence

$$
\operatorname{Im}(f)=\operatorname{span}(\{(1,1),(0,2)\})=\mathbf{R}^{2}
$$

Example(2)

Problem

Let $f: \mathcal{P}_{2} \rightarrow \mathbf{R}^{2}$ be defined by $f(p)=(p(0), p(2))$. Determine $\operatorname{Im}(f)$ and $\operatorname{Ker}(f)$.

Let $B=1, x, x^{2}$ be a basis of \mathcal{P}_{2}, let $C=(1,0),(0,1)$.

$$
[f]_{B, C}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 4
\end{array}\right), \operatorname{RREF}\left([f]_{B, C}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right)
$$

- The set of solutions to $[f]_{B, C} X=0$ is $\operatorname{span}\left(\left\{(0,-2,1)^{T}\right\}\right)$.
- $(0,-2,1)=\left[x^{2}-2 x\right]_{B}$

$$
\operatorname{Ker}(f)=\operatorname{span}\left(\left\{x^{2}-2 x\right\}\right)
$$

Dimensions of kernel and image

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Lemma

For any linear function $f: \mathbf{U} \rightarrow \mathbf{V}$,

$$
\operatorname{dim} I m(f)+\operatorname{dim} \operatorname{Ker}(f)=\operatorname{dim} \mathbf{U}
$$

Proof.

Let B be a basis of \mathbf{U}, let C be a basis of \mathbf{V}.

- It suffices to prove $\operatorname{dim} \operatorname{Im}\left([f]_{B, C}\right)+\operatorname{dim} \operatorname{Ker}\left([f]_{B, C}\right)=|B|$.
- $\operatorname{dim} \operatorname{Im}\left([f]_{B, C}\right)=\operatorname{dim} \operatorname{Col}\left([f]_{B, C}\right)=\operatorname{rank}\left([f]_{B, C}\right)$
- number of basis columns of $\operatorname{RREF}\left([f]_{B, C}\right)$
- dim $\operatorname{Ker}\left([f]_{B, C}\right)$ is the dimension of the space of solutions of $[f]_{B, C} X=0$
- number of non-basis columns of $\operatorname{RREF}\left([f]_{B, C}\right)$

Kernel, image and 1-to-1 functions

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Lemma

For a linear function $f: \mathbf{U} \rightarrow \mathbf{V}$, the following are equivalent:
(1) $\operatorname{Ker}(f)=\{0\}$
(2) f is 1-to- 1
(3) For every independent set $\left\{u_{1}, \ldots, u_{k}\right\}$ in \mathbf{U}, the set $\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is independent in \mathbf{V}.
(4) For a basis $B=\left\{u_{1}, \ldots, u_{k}\right\}$ of \mathbf{U}, the $\operatorname{set}\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is independent in V .

Proof.

(1) \Rightarrow (2) If $f(x)=f(y)$, then $0=f(x)-f(y)=f(x-y)$, and thus $x-y \in \operatorname{Ker}(f)$. Hence, $x-y=0$ and $x=y$.

Kernel, image and 1-to-1 functions

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Lemma

For a linear function $f: \mathbf{U} \rightarrow \mathbf{V}$, the following are equivalent:
(1) $\operatorname{Ker}(f)=\{0\}$
(2) f is 1-to-1
(3) For every independent set $\left\{u_{1}, \ldots, u_{k}\right\}$ in \mathbf{U}, the set $\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is independent in \mathbf{V}.
(4) For a basis $B=\left\{u_{1}, \ldots, u_{k}\right\}$ of \mathbf{U}, the set $\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is independent in V .

Proof.

(2) \Rightarrow (3) Proved before.

Kernel, image and 1-to-1 functions

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Lemma

For a linear function $f: \mathbf{U} \rightarrow \mathbf{V}$, the following are equivalent:
(1) $\operatorname{Ker}(f)=\{0\}$
(2) f is 1-to-1
(3) For every independent set $\left\{u_{1}, \ldots, u_{k}\right\}$ in \mathbf{U}, the set $\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is independent in \mathbf{V}.
(4) For a basis $B=\left\{u_{1}, \ldots, u_{k}\right\}$ of \mathbf{U}, the set $\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is independent in V .

Proof.

(3) \Rightarrow (9) Trivial.

Kernel, image and 1-to-1 functions

Let \mathbf{U} and \mathbf{V} be vector spaces over the same field \mathbf{F}.

Lemma

For a linear function $f: \mathbf{U} \rightarrow \mathbf{V}$, the following are equivalent:
(1) $\operatorname{Ker}(f)=\{0\}$
(2) f is 1-to-1
(3) For every independent set $\left\{u_{1}, \ldots, u_{k}\right\}$ in \mathbf{U}, the set $\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is independent in \mathbf{V}.
(4) For a basis $B=\left\{u_{1}, \ldots, u_{k}\right\}$ of \mathbf{U}, the $\operatorname{set}\left\{f\left(u_{1}\right), \ldots, f\left(u_{k}\right)\right\}$ is independent in V .

Proof.

(4) \Rightarrow © Since $f\left(u_{1}\right), \ldots, f\left(u_{k}\right)$ is independent, $\operatorname{dim} \operatorname{Im}(f) \geq k$, and $\operatorname{dim} \operatorname{Ker}(f) \leq 0$.

