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Linear Algebra I: basic information

Grading:
a “pass” grade (zápočet) from tutorials required before final
exam

Morteza Monemizadeh is in charge of the tutorials and will
give you more information

a combined written + oral final exam
a sample exam will be available in December



Linear Algebra I: basic information

Study materials:
lecture notes or slides posted at
http://atrey.karlin.mff.cuni.cz/~rakdver/tea_lai_z15.html
A First Course in Linear Algebra
Matoušek: Thirty-three Miniatures: Mathematical and
Algorithmic Applications of Linear Algebra

http://atrey.karlin.mff.cuni.cz/~rakdver/tea_lai_z15.html
http://linear.ups.edu/
http://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf
http://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf


Why study linear algebra

Useful tool for many other branches of mathematics

in physics: linear differential equations, Hilbert spaces,
eigenvalues, . . .
in combinatorics: linear recurrences, proofs using rank,
linear independence, . . .
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Why study linear algebra

In graphics and sound processing (Fourier transformation, . . . )



Why study linear algebra

In computer graphics



Data fitting

Measured values:

x -2 -1.5 -1.0 -0.5 0.0 0.5 1 1.5
y 9.2 4.6 1.8 0.9 1.1 2.6 6 1.8
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Data fitting

Measured values:
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y ≈ 3.03x2 + 2.01x + 0.96



Easier example

Find the equation of quadratic function through points

(−2,9), (−1,2), and (1,6)
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Easier example

Find the equation of quadratic function through points

(−2,9), (−1,2), and (1,6)

General equation:

y = ax2 + bx + c

9 = 4a− 2b + c
2 = a− b + c
6 = a + b + c

6− 2 = (a + b + c)− (a− b + c) = 2b ⇒ b = 2

Hence, c = 6− a− b = 4− a, and

9 = 4a− 2b + c = 4a− 4 + (4− a) = 3a

Consequently, a = 3 and c = 4− a = 1.
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Easier example

Find the equation of quadratic function through points

(−2,9), (−1,2), and (1,6)
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Systems of linear equations: notation

A linear equation is an expression

α1x1 + α2x2 + . . .+ αnxn = β,

where
α1, . . . , αn, β are real numbers
x1, . . . , xn are variables

A system of linear equations is a sequence of one or more
linear equations.

An n-tuple (ε1, . . . , εn) of real numbers is a solution to the
system if substituting x1 := ε1, . . . , xn := εn to each linear
equation gives a true statement.

The set of solutions is a set containing all n-tuples that are
solutions.



Notation example

System of equations

4a− 2b + c = 9

a− b + c = 2

a + b + c = 6

with variables a, b, c.

(3,2,1) is a solution

4 · 3− 2 · 2 + 1 = 9
3− 2 + 1 = 2
3 + 2 + 1 = 6

(1,1,7) is not a solution, since

1− 1 + 7 6= 2



Systems of linear equations: number of solutions

one solution, or
no solution, or
infinitely many solutions



Systems of linear equations: number of solutions

one solution, or
no solution, or
infinitely many solutions

4a− 2b + c = 9

a− b + c = 2

a + b + c = 6

Set of solutions: {(3,2,1)}



Systems of linear equations: number of solutions

one solution, or
no solution, or
infinitely many solutions

a + b = 1

b + c = 1

a + 2b + c = 3

In any solution to first two equations:

a + 2b + c = (a + b) + (b + c) = 2,

which is incompatible with the third equation.

Set of solutions: ∅



Systems of linear equations: number of solutions

one solution, or
no solution, or
infinitely many solutions

a + b = 1

b + c = 1

For any real t , (t ,1− t , t) is a solution:

t + (1− t) = 1
(1− t) + t = 1

Set of solutions: {(t ,1− t , t) : t ∈ R}.



Operations preserving set of solutions

Theorem

Suppose S1 is a system of equations and let S2 be obtained
from S1 by the following operations

adding one equation to another,
multiplying an equation by a non-zero real number,
swapping two equations,

or their combinations, including
substracting an equation from another, or
adding a multiple of an equation to another.

Then S1 and S2 have the same sets of solutions.



Adding one equation to another

S1:
α1x1 + α2x2 + . . .+ αnxn = α
β1x1 + β2x2 + . . .+ βnxn = β
γ1x1 + γ2x2 + . . .+ γnxn = γ

. . .

S2:

α1x1 + α2x2 + . . . + αnxn = α
β1x1 + β2x2 + . . . + βnxn = β

(γ1 + α1)x1 + (γ2 + α2)x2 + . . . + (γn + αn)xn = γ + α
. . .



Adding one equation to another

Example:

S1:
x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 2
x1 − x2 + 2x3 = 6

S2:
x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 2

2x1 + 3x3 = 7



Adding one equation to another

We want: every solution to S2 is a solution to S1, and vice versa.

If (e1, . . . ,en) is a solution to S2, then

α1e1 + α2e2 + . . .+ αnen = α

(γ1 + α1)e1 + (γ2 + α2)e2 + . . .+ (γn + αn)en = γ + α.

Hence,

γ1e1 + γ2e2 + . . .+ γnen =

[(γ1 + α1)e1 + (γ2 + α2)e2 + . . .+ (γn + αn)en]−
[α1e1 + α2e2 + . . .+ αnen] =

(γ + α)− α = γ,

and thus (e1, . . . ,en) is a solution to S1 as well.



Multiplying by non-zero number

S1:
α1x1 + α2x2 + . . .+ αnxn = α
β1x1 + β2x2 + . . .+ βnxn = β (×k)
γ1x1 + γ2x2 + . . .+ γnxn = γ

. . .

S2:

α1x1 + α2x2 + . . . + αnxn = α
(kβ1)x1 + (kβ2)x2 + . . . + (kβn)xn = kβ

γ1x1 + γ2x2 + . . . + γnxn = γ
. . .



Multiplying by non-zero number

Example:

S1:
x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 2 (×3)
x1 − x2 + 2x3 = 6

S2:
x1 + x2 + x3 = 1

3x1 + 6x2 + 9x3 = 6
x1 − x2 + 2x3 = 6



Swapping two equations

S1:
α1x1 + α2x2 + . . .+ αnxn = α
β1x1 + β2x2 + . . .+ βnxn = β
γ1x1 + γ2x2 + . . .+ γnxn = γ

. . .

S2:
γ1x1 + γ2x2 + . . .+ γnxn = γ
β1x1 + β2x2 + . . .+ βnxn = β
α1x1 + α2x2 + . . .+ αnxn = α

. . .



Swapping two equations

Example:

S1:
x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 2
x1 − x2 + 2x3 = 6

S2:
x1 − x2 + 2x3 = 6
x1 + 2x2 + 3x3 = 2
x1 + x2 + x3 = 1



Combinations: adding a multiple of an equation

Add k× the first equation to the third one:

α1x1 + . . . + αnxn = α
β1x1 + . . . + βnxn = β
γ1x1 + . . . + γnxn = γ

Subtracting an equation ≡ adding (−1×) the equation
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Combinations: adding a multiple of an equation

Add k× the first equation to the third one:

kα1x1 + . . . + kαnxn = kα (×1/k)
β1x1 + . . . + βnxn = β

(γ1 + kα1)x1 + . . . + (γn + kαn)xn = (γ + kα)

Subtracting an equation ≡ adding (−1×) the equation



Combinations: adding a multiple of an equation

Add k× the first equation to the third one:

α1x1 + . . . + αnxn = α
β1x1 + . . . + βnxn = β

(γ1 + kα1)x1 + . . . + (γn + kαn)xn = (γ + kα)

Subtracting an equation ≡ adding (−1×) the equation



Combinations: adding a multiple of an equation

Add k× the first equation to the third one:

α1x1 + . . . + αnxn = α
β1x1 + . . . + βnxn = β

(γ1 + kα1)x1 + . . . + (γn + kαn)xn = (γ + kα)

Subtracting an equation ≡ adding (−1×) the equation



Gaussian elimination: example

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

Swap equations so that the
second has non-zero
coefficient at x2:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x2 − x5 = 1

Eliminate x1 by subtracting the
first equation from others:

x1 + x2 + x3 + x4 + x5 = 5

2x4 − x5 = 1

x2 − x4 − x5 = −1

2x2 − x5 = 1

Eliminate x2 by subtracting 2×
the second equation from 4th:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x4 + x5 = 3
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Gaussian elimination: example continued

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

After eliminating x1 and x2:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x4 + x5 = 3

Eliminate x4 by subtracting the
3rd equation from the 4th:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2



Gaussian elimination: example continued

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

After eliminating x1 and x2:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x4 + x5 = 3

Eliminate x4 by subtracting the
3rd equation from the 4th:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2



Gaussian elimination: example solution

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

After Gaussian elimination:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2

Backward substitution:

4th equation: x5 = 1
3rd equation:
x4 = (1 + x5)/2 = 1
2nd equation:

x3 can be arbitrary; x3 = t
for any t ∈ R
x2 = −1 + x4 + x5 = 1

1st equation:
x1 = 5−x2−x3−x4−x5 = 2− t

Set of solutions:

{(2− t ,1, t ,1,1) : t ∈ R}



Gaussian elimination: example solution

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

After Gaussian elimination:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2

Backward substitution:

4th equation: x5 = 1
3rd equation:
x4 = (1 + x5)/2 = 1
2nd equation:

x3 can be arbitrary; x3 = t
for any t ∈ R
x2 = −1 + x4 + x5 = 1

1st equation:
x1 = 5−x2−x3−x4−x5 = 2− t

Set of solutions:

{(2− t ,1, t ,1,1) : t ∈ R}



Gaussian elimination: example solution

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

After Gaussian elimination:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2

Backward substitution:

4th equation: x5 = 1
3rd equation:
x4 = (1 + x5)/2 = 1
2nd equation:

x3 can be arbitrary; x3 = t
for any t ∈ R
x2 = −1 + x4 + x5 = 1

1st equation:
x1 = 5−x2−x3−x4−x5 = 2− t

Set of solutions:

{(2− t ,1, t ,1,1) : t ∈ R}



Gaussian elimination: example solution

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

After Gaussian elimination:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2

Backward substitution:

4th equation: x5 = 1
3rd equation:
x4 = (1 + x5)/2 = 1
2nd equation:

x3 can be arbitrary; x3 = t
for any t ∈ R
x2 = −1 + x4 + x5 = 1

1st equation:
x1 = 5−x2−x3−x4−x5 = 2− t

Set of solutions:

{(2− t ,1, t ,1,1) : t ∈ R}



Gaussian elimination: example solution

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

After Gaussian elimination:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2

Backward substitution:

4th equation: x5 = 1
3rd equation:
x4 = (1 + x5)/2 = 1
2nd equation:

x3 can be arbitrary; x3 = t
for any t ∈ R
x2 = −1 + x4 + x5 = 1

1st equation:
x1 = 5−x2−x3−x4−x5 = 2− t

Set of solutions:

{(2− t ,1, t ,1,1) : t ∈ R}



Gaussian elimination: example solution

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

After Gaussian elimination:

x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2

Backward substitution:

4th equation: x5 = 1
3rd equation:
x4 = (1 + x5)/2 = 1
2nd equation:

x3 can be arbitrary; x3 = t
for any t ∈ R
x2 = −1 + x4 + x5 = 1

1st equation:
x1 = 5−x2−x3−x4−x5 = 2− t

Set of solutions:

{(2− t ,1, t ,1,1) : t ∈ R}



Matrix notation

Instead of

α1,1x1 + α1,2x2 + . . .+ α1,nxn = β1
α2,1x1 + α2,2x2 + . . .+ α2,nxn = β2

. . .
αm,1x1 + αm,2x2 + . . .+ αm,nxn = βm,

we write
α1,1 α1,2 . . . α1,n
α2,1 α2,2 . . . α2,n

. . .
αm,1 αm,2 . . . αm,n




x1
x2
. . .
xn

 =


β1
β2
. . .
βm





Matrix notation: example

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

is the same as


1 1 1 1 1
1 1 1 3 0
1 2 1 0 0
1 3 1 1 0




x1
x2
x3
x4
x5

 =


5
6
4
5





Matrix notation

A =


α1,1 α1,2 . . . α1,n
α2,1 α2,2 . . . α2,n

. . .
αm,1 αm,2 . . . αm,n

 ,

where α1,1, . . . , αm,n are real numbers, is an m × n matrix
m = number of rows, n = number of columns. Matrix is
square if m = n.
Ai,j denotes the element (αi,j ) in the i-th row and j-th
column.
Ai,? = (αi,1, αi,2, . . . , αi,n) denotes the i-th row of A.

A?,j =


α1,j
α2,j
. . .
αm,j

 denotes the j-th column of A.



Example

A =

 1 2 3 4
5 6 7 8
9 10 11 12


is a 3× 4 matrix.

3 rows, 4 columns
A2,3 = 7
the second row: A2,? = (5,6,7,8)

the third column: A?,3 =

 3
7
11





More notation

From now on, we will (generally) use
uppercase letters A, B, . . . for matrices
lowercase letters a, b, x , y , . . . for matrices with one
column (~vectors)
lowercase letters m, n, p, . . . for integers
greek alphabet letters α, β, . . . and lowercase letters s, t ,
. . . for real numbers



More matrix notation

For matrices A =

 α1,1 α1,2 . . . α1,n
. . .

αm,1 αm,2 . . . αm,n

 and

B =

 β1,1 β1,2 . . . β1,p
. . .

βm,1 βm,2 . . . βm,p

 with the same number of rows,

let

(A|B) =

 α1,1 α1,2 . . . α1,n β1,1 β1,2 . . . β1,p
. . .

αm,1 αm,2 . . . αm,n βm,1 βm,2 . . . βm,p


be the m× (n + p) matrix obtained by putting B to the right of A.



Even more matrix notation

For system of equations Ax = b,
A is the matrix of the system
(A|b) is the extended matrix of the system

Example: System

4x1 − 2x2 + x3 = 9

x1 − x2 + x3 = 2

x1 + x2 + x3 = 6

has

matrix

 4 −2 1
1 −1 1
1 1 1


extended matrix

 4 −2 1 9
1 −1 1 2
1 1 1 6





Gaussian elimination on matrices

We can
add a row to another
multiply a row by a non-zero real number
swap rows
subtract a row from another
add a multiple of a row to another

We call these operations elementary row operations. Two
matrices A and B are row-equivalent (we write A ∼ B) if B can
be obtained from A by a sequence of elementary row
operations.

Observation

If A ∼ B, then B ∼ A. That is, elementary row operations are
invertible and A can also be obtained from B by a sequence of
elementary row operations.



Gaussian elimination on matrices: example

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

extended matrix:
1 1 1 1 1 5
1 1 1 3 0 6
1 2 1 0 0 4
1 3 1 1 0 6

 ∼


1 1 1 1 1 5
0 0 0 2 −1 1
0 1 0 −1 −1 −1
0 2 0 0 −1 1

 ∼


1 1 1 1 1 5
0 1 0 −1 −1 −1
0 0 0 2 −1 1
0 2 0 0 −1 1

 ∼


1 1 1 1 1 5
0 1 0 −1 −1 −1
0 0 0 2 −1 1
0 0 0 2 1 3

 ∼


1 1 1 1 1 5
0 1 0 −1 −1 −1
0 0 0 2 −1 1
0 0 0 0 2 2





Gaussian elimination on matrices: example

x1 + x2 + x3 + x4 + x5 = 5

x1 + x2 + x3 + 3x4 = 6

x1 + 2x2 + x3 = 4

x1 + 3x2 + x3 + x4 = 6

extended matrix:
1 1 1 1 1 5
1 1 1 3 0 6
1 2 1 0 0 4
1 3 1 1 0 6

 ∼


1 1 1 1 1 5
0 1 0 −1 −1 −1
0 0 0 2 −1 1
0 0 0 0 2 2

→
x1 + x2 + x3 + x4 + x5 = 5

x2 − x4 − x5 = −1

2x4 − x5 = 1

2x5 = 2



Row Echelon Form

Definition

Let A be an m × n matrix. For 1 ≤ i ≤ m, let
pi = min{j : Ai,j 6= ∅} denote the index of the first non-zero
element in the i-th row. We say that A is in Row Echelon Form
(REF) if for some r ≤ m,

each of first r rows of A contains a non-zero element,
the rows r + 1, . . . , m are zero, and
p1 < p2 < . . . < pr .

Integers p1, . . . , pr are called basis column indices.

Example: 
1 1 1 1 1 5
0 1 0 −1 −1 −1
0 0 0 2 −1 1
0 0 0 0 2 2
0 0 0 0 0 0


p1 = 1
p2 = 2
p3 = 4
p4 = 5



Gaussian elimination: formal description

For an m × n matrix A:

1 r := 1, c := 1
2 If Ai,j = 0 for all i ≥ r and j ≥ c, then end.
3 Let c := min{j ≥ c : Ai,j 6= 0 for some i ≥ r}.

Find first column after current position with non-zero entry
in row ≥ r .

4 Choose arbitrary i ≥ r such that Ai,c 6= 0, and swap i-th
and r -th row.

So now Ar ,c 6= ∅.
5 For every i > r , subtract Ai,c

Ar,c
-times the r -th row from the

i-th row.
So that all entries in the column below Ar ,c are zero.

6 Let r := r + 1, c := c + 1 and repeat from step 2.



Properties of Row Echelon Form

Theorem

Gaussian elimination applied to matrix B returns a
row-equivalent matrix A in REF.

There may exist many different matrices in REF that are
row-equivalent to B. However:

Theorem (for now without proof)

If A and A′ are any matrices in REF and A ∼ A′, then A and A′

have the same basis column indices. In particular, they have
the same number of non-zero rows.

This motivates the following definition.

Definition

The rank of a matrix B (denoted by rank(B)) is the number of
non-zero rows of a row-equivalent matrix in REF.



Rank: example

Problem

Determine the rank of A =


1 1 1
1 1 0
2 2 1
0 0 1

.

A ∼


1 1 1
0 0 −1
0 0 −1
0 0 1

 ∼


1 1 1
0 0 −1
0 0 0
0 0 0

 .

The last matrix is in REF and has 2 non-zero rows, hence

rank(A) = 2.



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and n variables x1, . . . , xn.

Let (A′|b′) be the result of Gaussian elimination of (A|b).
(A′|b′) is in REF, with basis column indices p1 < . . . < pr .



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and n variables x1, . . . , xn.

Let (A′|b′) be the result of Gaussian elimination of (A|b).
(A′|b′) is in REF, with basis column indices p1 < . . . < pr .

If pr = n + 1, then the system has no solution. Example:

x1 + x2 = 1

x2 + x3 = 1

x1 + 2x2 + x3 = 3

→

 1 1 0 1
0 1 1 1
1 2 1 3

 ∼
 1 1 0 1

0 1 1 1
0 0 0 1

→
x1 + x2 = 1

x2 + x3 = 1

0x1 + 0x2 + 0x3 = 1

The last equation cannot be satisfied.



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and n variables x1, . . . , xn.

Let (A′|b′) be the result of Gaussian elimination of (A|b).
(A′|b′) is in REF, with basis column indices p1 < . . . < pr .

If r = n and p1 = 1, p2 = 2, . . . , pn = n, then the system has
one solution, obtained by backward substitution.

xn = b′n
A′n,n

xn−1 =
b′n−1−A′n−1,nxn

A′n−1,n−1

xn−2 =
b′n−2−A′n−2,n−1xn−1−A′n−2,nxn

A′n−2,n−2

. . .

x1 =
b′1−A′1,2x2−A′1,3x3−...−A′1,nxn

A′1,1



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and n variables x1, . . . , xn.

Let (A′|b′) be the result of Gaussian elimination of (A|b).
(A′|b′) is in REF, with basis column indices p1 < . . . < pr .

If r = n and p1 = 1, p2 = 2, . . . , pn = n, then the system has
one solution, obtained by backward substitution.
Example:

x1 + x2 = 1

x2 + x3 = 1

x1 + x2 + x3 = 3

→

 1 1 0 1
0 1 1 1
1 1 1 3

 ∼
 1 1 0 1

0 1 1 1
0 0 1 2

→
x1 + x2 = 1

x2 + x3 = 1

x3 = 2

→
x3 = 2
x2 = 1− x3 = −1
x1 = 1− x2 = 2



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and n variables x1, . . . , xn.

Let (A′|b′) be the result of Gaussian elimination of (A|b).
(A′|b′) is in REF, with basis column indices p1 < . . . < pr .

If r < n and pr ≤ n, then the system has infinitely many solu-
tions. The values of basis column variables xp1 , . . . xpr can be
obtained by backward substitution, with the other variables act-
ing as parameters. Example:

x1 + x2 + x4 = 1
x2 + x3 + x4 = 1

x1 + 2x2 + x3 + 2x4 = 2
→

 1 1 0 1 1
0 1 1 1 1
1 2 1 2 2

 ∼
 1 1 0 1 1

0 1 1 1 1
0 0 0 0 0



→ x1 + x2 + x4 = 1
x2 + x3 + x4 = 1

→
x4 = α
x3 = β
x2 = 1− x3 − x4 = 1− α− β
x1 = 1− x2 − x4 = β

for any α, β ∈ R.



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and n variables x1, . . . , xn.

Let (A′|b′) be the result of Gaussian elimination of (A|b).
(A′|b′) is in REF, with basis column indices p1 < . . . < pr .

Summary:
If pr = n + 1, then the system has no solution.
If r = pr = n, then the system has one solution.
Otherwise, the system has infinitely many solutions.

Note that A ∼ A′ and A′ is in REF. If pr = n+1, then A′ has r −1
non-zero rows, otherwise A′ has r non-zero rows.

Theorem

The system Ax = b has no solution if and only of
rank(A|b) > rank(A). If rank(A|b) = rank(A) = n, then the
system has one solution, while if rank(A|b) = rank(A) < n, then
the system has infinitely many solutions.
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