Linear Algebra |: basic information

Lecturer:
@ Zdenék Dvorak
@ rakdver@iuuk.mff.cuni.cz
@ office 323 (3rd floor, right side)
@ office hours: by appointment



mailto:rakdver@iuuk.mff.cuni.cz

Linear Algebra |: basic information

Grading:
@ a “pass” grade (zapocet) from tutorials required before final
exam

e Morteza Monemizadeh is in charge of the tutorials and will
give you more information

@ a combined written + oral final exam

e a sample exam will be available in December




Linear Algebra |: basic information

Study materials:

@ lecture notes or slides posted at
http://atrey.karlin.mff.cuni.cz/~rakdver/tea_lai_z15.html

@ A First Course in Linear Algebra

@ MatouSek: Thirty-three Miniatures: Mathematical and
Algorithmic Applications of Linear Algebra



http://atrey.karlin.mff.cuni.cz/~rakdver/tea_lai_z15.html
http://linear.ups.edu/
http://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf
http://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf

Why study linear algebra

Useful tool for many other branches of mathematics

@ in physics: linear differential equations, Hilbert spaces,
eigenvalues, . ..

@ in combinatorics: linear recurrences, proofs using rank,
linear independence, ...




Why study linear algebra
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Why study linear algebra

In graphics and sound processing (Fourier transformation, .. .)
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Why study linear algebra

In computer graphics
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Easier example

Find the equation of quadratic function through points
(—2,9), ,and (1,6)
Yy
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Find the equation of quadratic function through points

(—2,9), ,and (1,6)

General equation:

9 = 4a-2b+c
y=ax*+bx+c =
6 = at+b+c




Easier example

Find the equation of quadratic function through points
(—2,9), ,and (1,6)
General equation: 9 — 4a-2bic
y=ax*+bx+c =
6 = at+b+c

6-2=(a+b+c)— =2b=b=2




Easier example

Find the equation of quadratic function through points
(—2,9), ,and (1,6)
General equation: 9 — 4a-2bic
y=ax*+bx+c =
6 = at+b+c

6-2=(a+b+c)— =2b=b=2
Hence,c=6-a—-—b=4— g, and

9=4a-2b+c=4a—-4+(4—a)=3a
Consequently, a=3andc=4—-a=1.



Easier example

Find the equation of quadratic function through points
(—2,9), ,and (1,6)
Yy

y =3x%4+2x+1



Systems of linear equations: notation

A linear equation is an expression

a1Xy + aoXo + ...+ anxp = 5,

where
@ «ay, ..., apn, B are real numbers
@ X, ..., Xp are variables

A system of linear equations is a sequence of one or more
linear equations.

An n-tuple (&4, ...,ep) of real numbers is a solution to the
system if substituting x4 := &4, ..., X, := e, t0 €ach linear
equation gives a true statement.

The set of solutions is a set containing all n-tuples that are
solutions.



Notation example

System of equations

da—-2b+c=9
a—- b+c=2
at+ b+c=6

with variables a, b, c.

@ (3,2,1) is a solution

4.3-2.241 = 9
3-2+1 = 2
3+2+1 = 6

@ (1,1,7) is not a solution, since
1-14+7#£2
e 4 4444



Systems of linear equations: number of solutions

@ one solution, or
@ no solution, or

@ infinitely many solutions




Systems of linear equations: number of solutions

@ one solution, or
@ no solution, or
@ infinitely many solutions

da—-2b+c=9
a- b+c=2
at+ b+c=6

Set of solutions: {(3,2,1)}




Systems of linear equations: number of solutions

@ one solution, or
@ no solution, or
@ infinitely many solutions

a+ b =1
b+c=1
a+2b+c=3

In any solution to first two equations:
a+2b+c=(a+b)+(b+c)=2,

which is incompatible with the third equation.

Set of solutions: 0



Systems of linear equations: number of solutions

@ one solution, or
@ no solution, or
@ infinitely many solutions

a+b =1
b+c=1

Forany real t, (t,1 — t, t) is a solution:

Set of solutions: {(t,1 —t,t) : t € R}.



Operations preserving set of solutions

Suppose S, is a system of equations and let S, be obtained
from Sy by the following operations

@ adding one equation to another,
@ multiplying an equation by a non-zero real number,

@ swapping two equations,

or their combinations, including
@ substracting an equation from another, or
@ adding a multiple of an equation to another.

Then Sy and S»> have the same sets of solutions.




Adding one equation to another

811
a1X4 +aoXo+ ... +apXp = «
BiXi+ PaXo+ ...+ BnXn = B
82:
a1Xy + o Xo + ... + anXp = «

I
=

B1x1  + BoXo + ...+ BnXn




Adding one equation to another

Example:
S1Z
Xy + X 4+ Xz = 1
Xy + 2% + 38x3 = 2
SgZ

Xy + X + x3 = 1
Xy + 2% 4+ 3x3 = 2




Adding one equation to another

We want: every solution to Ss is a solution to Sy, and vice versa.

If (e1,...,en)is asolution to Sy, then
161 + b +...+app = «
(m+ar)er+(2+a)ex+...+(m+an)en = v+a.
Hence,

7161+ 7282+ ...+ nbn =

[(v1 + aq)es + (v2 + a2)€ + ... + (yn + an)en]—
[04161—1—04262—1—...4-&”6”] =
(y+a)—a = 7,

and thus (eqy, ..., ep) is a solution to S; as well.



Multiplying by non-zero number

812
B1X1 + BoXo + ...+ BnXn
Y1X1 +y2Xe + ...+ YnXn
SQZ

a1Xy + Qo Xo +
(kB1)x1 + (KB2)xa +
MmXy o eXe

Oéan ==
(kﬁn)xn =
YnXn =



Multiplying by non-zero number

Example:

81 .
X4
X1
X4

SgZ

+

+ 2Xx

X1
3X4

X2

X2

+ X3
+ 3X3

-+ 2X3

Xo
6xo +
X2

+

X3
9x3
2X3




Swapping two equations

S1Z
a1X4 +aoXo+...+apXp = «
BiX1 + BoXo+ ...+ Bpxn = B
82:
Bi1X1 + BaXo + ...+ BpXn = S

a1Xy FagXo+ ... +FapnXn = «




Swapping two equations

Example:
S1Z
X + Xo + Xg = 1
X1—|—2X2—|—3X3:2
SQZ
X1 + 2X2 + 3X3 = 2

¥ + X 4+ x3 = 1




Combinations: adding a multiple of an equation

Add kx the first equation to the third one:

Bixi + ... + BnXn =

= 9
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Add kx the first equation to the third one:

Bixy + ...+ BnXn = p




Combinations: adding a multiple of an equation

Add kx the first equation to the third one:

kayxy + ... + Kanxn = ko (x1/k)
Bixy + ...+ BnXn =




Combinations: adding a multiple of an equation

Add kx the first equation to the third one:

Bixi + ... + BnXn =

= 9




Combinations: adding a multiple of an equation

Add kx the first equation to the third one:

Bixi + ... + BnXn =

= 9

Subtracting an equation = adding (—1x) the equation




Gaussian elimination: example

X1+ Xo+X3+ X4+X5=5
X1+ Xo+ X3+ 3x4 =6
X{ + 2Xo + X3 =4
X1+3X+ X3+ X4 =6




Gaussian elimination: example

Eliminate xy by subtracting the

Xi+ Xo+ X3+ Xe+Xs=5 first equation from others:

X1+ Xo+ X3+ 3X4 =6 X1+ Xo+X3+ X4+X5=5
X{ + 2Xo + X3 =4 2X4 — x5 =1
X1 +3Xo+ X3+ Xq =6 Xo — X4 — X5 = —1

2Xo — x5 =1




Gaussian elimination: example

X1+ Xo+X3+ X4+X5=5

X{ + 2Xo + X3

Eliminate xy by subtracting the
first equation from others:

X1+ Xo+ X3+ 3X4 =6 X1+ Xo+X3+ X4+X5=5
=4 2X4 — X5 = 1

X1 +3Xo+ X3+ Xq =6 Xo — X4 —X5=—1
2Xo — x5 =1

Swap equations so that the

second has non-zero

coefficient at xo:

X{+ Xo+X3+ X4+ Xs=25

X4 — X5 = —1
2X4 — X5 =1
— x5 =1



Gaussian elimination: example

Eliminate xy by subtracting the

Xi+ Xo+ X3+ Xe+Xs=5 first equation from others:

X1+ Xo+ X3+ 3X4 =6 X1+ Xo+X3+ X4+X5=5
Xy 4 2Xo + X3 =4 2X4 — X5 = 1
X1 +3Xo+ X3+ Xq =6 Xo — X4 —X5=—1

2Xo — x5 =1

Swap equations so that the
second has non-zero

e Eliminate xo by subtracting 2 x
coefficient at x»:

the second equation from 4th:

X+ XetXg+ X+ X =5 Xt + Xo + Xa + Xa+ X6 =5

Xo — X4 — X5 = —1

Xo — X4 —X5=—1
X4 — X5 = 1 2X4 — X5 = 1



Gaussian elimination: example continued

X1+ Xo+X3+ X4+X5=5

X1+ Xo+ X3+ 3x4 =6
X1+2X2+X3 =4
X1 +3X+ X3+ Xq =6

After eliminating x; and x»:

X1 +Xo+ X3+ Xa+ X5 =5

Xo — X4 — X5 = —1
2X4 — X5 =1
2X4 + X5 =3



Gaussian elimination: example continued

X1+ Xo+X3+ X4+X5=5

X1+ Xo+ X3+ 3x4 =6
X1+2X2+X3 =4
X1 +3X+ X3+ Xq =6

After eliminating x; and x»:

X1 +Xo+ X3+ Xa+ X5 =5

Xo — X4 — X5 = —1
2X4 — X5 =1
2X4 + X5 =3

Eliminate x4 by subtracting the
3rd equation from the 4th:

X{1+Xo+X3+ X4+ Xs=5
Xo — X4 — X5 =—1
2X4 — x5 =1

2x5 = 2



Gaussian elimination: example solution

X{+ Xo+X3+ X4+X5=5

X1+ Xo+ X3+ 3Xx4 =6
X1+2X2+X3 =4
X1+ 3Xo + X3+ Xy =6

After Gaussian elimination:
X{+Xo+Xs+ Xg+ X5=95
Xo — Xg— X5 =—1
2X4 — x5 =1
2X5 =2



Gaussian elimination: example solution

Backward substitution:
4th equation: x5 = 1
X{+ Xo+X3+ X4+X5=5

X1+ Xo+ X3+ 3Xx4 =6
X1+2X2+X3 =4
X1+ 3Xo + X3+ Xy =6

After Gaussian elimination:
X{+Xo+Xs+ Xg+ X5=95
Xo — Xg— X5 =—1
2X4 — x5 =1
2X5 =2



Gaussian elimination: example solution

Backward substitution:

4th equation: x5 = 1

Xi+ Xo+Xs+ Xg+X5=5 3rd equation:
it xeixtay = e (Tix)/2=1
X1 + 2Xo + X3 =4

Xy +3Xo+ X3+ Xq =6

After Gaussian elimination:
X{+Xo+Xs+ Xg+ X5=95
Xo — Xg— X5 =—1
2X4 — x5 =1
2X5 =2



Gaussian elimination: example solution

Backward substitution:

4th equation: x5 = 1
3rd equation:

X{+ Xo+X3+ X4+X5=5
X4:(1 +X5)/2:1

X1+ Xo+ X3+ 3X =6 2nd equation:
X1 +2X2 + X3 =4 @ X3 can be arbitrary; x3 = t
X1+3X2+ X3+ X =6 forany t € R

After Gaussian elimination: @ X =—-1+X4+x =1

X{+Xo+X3+ X4+ X5 =05
Xo — Xg— X5 =—1
2X4 — x5 =1

2X5:2



Gaussian elimination: example solution

Backward substitution:

4th equation: x5 = 1
3rd equation:

X{+ Xo+X3+ X4+X5=5
Xg=(1+x5)/2=1

X1+ X+ X3+ 3X =6 2nd equation:
X1 +2X + X3 =4 @ x3 can be arbitrary; x3 = t
Xt +3X2+ X3+ Xq =6 forany t € R
After Gaussian elimination: O xp=—T+X+x=1
1st equation:
X1+X+X3+ Xa+ X5 =05 X1 =5—Xo—X3—X4— X5 =21t

Xo — Xg— X5 =—1
2X4 — x5 =1
2X5:2



Gaussian elimination: example solution

X{+ Xo+X3+ X4+X5=5

X1+ Xo+ X3+ 3Xx4 =6
X1+2X2+X3 =4
X1+ 3Xo + X3+ Xy =6

After Gaussian elimination:

X{+Xo+X3+ X4+ X5=5
X2 - X4— X5=—1
2X4 — x5 =1

2X5:2

Backward substitution:

4th equation: x5 = 1
3rd equation:
Xg=(1+x5)/2=1
2nd equation:

@ X3 can be arbitrary; x3 =t
forany t € R

0 xo=—-1+X4+ X5 =1

1st equation:
X{=5—Xo—Xg—X4— X5 =2—1

Set of solutions:

{2-t1,t,1,1):te R}



Matrix notation

Instead of
a11X1 Fag2Xo+ ... FaipXn = Py
a2 1X1 +ooXo+ ...+ appXnp = [
amiX1 +amoXo + ...+ amnXn = Bm,
we write
asy g2 ... Qqp X1 Bi
apq Q2 ... Q2p X2 B2

ami1 Qm2 ... Qmnp Xn Bm




Matrix notation: example

X1+ Xo+X3+ X4+X5=5
X1+ Xo+ X3+ 3x4 =

X1 4 2Xo + X3 =

X1+ 3Xo + X3+ Xy =6
is the same as

1111 1 i‘ 5

11130 X2 | e

12100 X3 | 4

13110 4 5




Matrix notation

11 2 ... Qqp
A— | @21 22 ... Qzp 7
Omi1 Gm2 ... CGmn
where a4 1,...,amn are real numbers, is an m x n matrix

@ m = number of rows, n = number of columns. Matrix is
square if m=n.
@ A, denotes the element («; ;) in the i-th row and j-th
column.
@A, = (Oé,‘,1 s 2y ,a,-m) denotes the i-th row of A.
041,1'

o A= | “® | denotes the j-th column of A.

Am,j



o o1 =

is a 3 x 4 matrix.
@ 3 rows, 4 columns
@ Az =7
@ the second row: A, , = (5,6,7,8)

3
@ the third column: A, 3 = ( 7 )
11



From now on, we will (generally) use
@ uppercase letters A, B, ... for matrices

@ lowercase letters a, b, x, y, ... for matrices with one
column (~vectors)

@ lowercase letters m, n, p, ... for integers

@ greek alphabet letters «, 3, ...and lowercase letters s, f,
... for real numbers




More matrix notation

a1 Q12 ... OQqp
For matrices A = ... and
am1 Qm2 ... Omn
B11 Bip B1,p
B = .. with the same number of rows,
/Bm,1 ﬁm,Z /Bm7p
let
aty a1 ... oaqpn Bra Pz oo Bip
(AB) =
ami1 Cm2 ... Omn ﬁmj ﬁm,z 5m,p

be the m x (n+ p) matrix obtained by putting B to the right of A.



Even more matrix notation

For system of equations Ax = b,

@ Ais the matrix of the system

@ (A|b) is the extended matrix of the system
Example: System

4x1 —2Xo + X3 =9
Xy — Xo+Xx3=2
X{+ Xo+XxX3=06

has

4 -2 1
@ matrix 1 -1 1
1 1 1

4 -2 119
@ extended matrix 1 -1 1]2
1 6

11
e 4 4444



Gaussian elimination on matrices

We can
@ add a row to another
@ multiply a row by a non-zero real number
@ swap rows
@ subtract a row from another
@ add a multiple of a row to another

We call these operations elementary row operations. Two
matrices A and B are row-equivalent (we write A ~ B) if B can
be obtained from A by a sequence of elementary row
operations.

Observation

If A~ B, then B ~ A. That is, elementary row operations are
invertible and A can also be obtained from B by a sequence of
elementary row operations.



Gaussian elimination on matrices: example

X1+ Xo+X3+ X4+X5=5
X1+ Xo+ X3+ 3xy4 =6
X{ + 2Xo + X3 =4
X1 +3Xo+ X3+ Xq =6

1
0
1
2

11
0 1
00
00

O OO =

extended matrix:

.1

1
1
1

oo =

O OO =

1

NO = —
wn =

OO = =

1

1
1
1

O OO =

1

3
0
1

D~ OO

1
0
0
0




Gaussian elimination on matrices: example

X1+ Xo+X3+ X4+X5=5

X1+ Xo+ X3+ 3xy4 =6

X1+2X2+X3 =4

X1 +3Xo+ X3+ Xq =6
11 1 1 1 5
010 -1 —1]-1
0002 -1]|1
0000 2 |2

extended matrix:

.1

— — —,

1

wn =

1

1
1
1

1
3
0
1

D~ OO

1
0
0
0

X{+Xo+Xs+ X4+ X5=05

X2

- X4— X5=-—1

2X4 — x5 =1
2x5 =2




Row Echelon Form

Definition

Let Abe an m x nmatrix. For 1 </ < m, let

pi = min{j : A;; # 0} denote the index of the first non-zero
element in the /-th row. We say that A is in Row Echelon Form
(REF) if for some r < m,

@ each of first r rows of A contains a non-zero element,
@ therows r+1, ..., mare zero, and
@ PI<pP2<...<pr

Integers py, ..., pr are called basis column indices.

Example:




Gaussian elimination: formal description

For an m x n matrix A:

Q@r=1,¢c=1
Q IfAj=0foralli>randj> c, then end.
© Letc:=min{j>c:A;; #0forsome > r}.

e Find first column after current position with non-zero entry
inrow > r.

@ Choose arbitrary i > r such that A; ; # 0, and swap i-th
and r-th row.
e Sonow A, # 0.

© Forevery i > r, subtract Af‘fi-times the r-th row from the

I-th row.
e So that all entries in the column below A, . are zero.

O Letr:=r+1,c:=c+1and repeat from step 2.




Properties of Row Echelon Form

Theorem
Gaussian elimination applied to matrix B returns a
row-equivalent matrix A in REF.

There may exist many different matrices in REF that are
row-equivalent to B. However:

Theorem (for now without proof)

If A and A" are any matrices in REF and A ~ A’, then A and A/
have the same basis column indices. In particular, they have
the same number of non-zero rows.

This motivates the following definition.

Definition
The rank of a matrix B (denoted by rank(B)) is the number of
non-zero rows of a row-equivalent matrix in REF.



Rank: example

1 1 1
Determine the rank of A = o
2 2 1
0 0 1

1 1 1 1 1 1

A~ 0 0 —1 N 0 0 -1
0 0 —1 0 0O
0 0 1 0 0O

The last matrix is in REF and has 2 non-zero rows, hence

rank(A) = 2.



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and nvariables xq, ..., X,.
@ Let (A'|t') be the result of Gaussian elimination of (A|b).
e (A'|b')is in REF, with basis column indices py < ... < pr.




Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and nvariables xq, ..., X,.
@ Let (A'|t') be the result of Gaussian elimination of (A|b).
e (A'|b')is in REF, with basis column indices py < ... < pr.
If o = n+ 1, then the system has no solution. Example:

Xt x =1 11 0]1 11 0|1
X+x3=1—-1011{1 |~ 01 1|1 | =

X1+ Xo =1
Xo + X3:1
Ox1 +0x2 +0x3 =1

The last equation cannot be satisfied.



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and nvariables xq, ..., X,.
@ Let (A'|t') be the result of Gaussian elimination of (A|b).
e (A'|b')is in REF, with basis column indices py < ... < pr.
fr=nandpy =1, p =2, ..., pp = n, then the system has
one solution, obtained by backward substitution.

/
Xn — 7?"

Aln,n ’
X1 _ bn717An71 nXn
n— =

, An 1/n71
X _ bn 2 An 2,n— 1 Xn— 1_An 2nX”
n-2 = A

n—2,n—2

/ / / ’
b1 7A1 ’2X2 7A1 ’3X37...7A

1,n%n

X- =
1 A




Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and nvariables xq, ..., X,.
@ Let (A'|t') be the result of Gaussian elimination of (A|b).

e (A'|b')is in REF, with basis column indices py < ... < pr.
fr=nandpy =1, p =2, ..., pp = n, then the system has
one solution, obtained by backward substitution.

Example:

X1 + X2 =1 11 0|1 11 01
Xo+x=1=1011/1|~|011/1]|=
Xt X+ X5 = 3 1113 00 1|2

X{ + Xo =1 X3 =2
X2+X3:1—>X2:1—X3:—1
X3:2 X1:1—X2:2



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and nvariables xq, ..., X,.

@ Let (A'|t') be the result of Gaussian elimination of (A|b).

e (A'|b')is in REF, with basis column indices py < ... < pr.

If r < nand p, < n, then the system has infinitely many solu-
tions. The values of basis column variables xp,, ... X, can be
obtained by backward substitution, with the other variables act-
ing as parameters. Example:

X1+ X + X =1 110 11 110 11
Xo+Xs+ Xa=1—>[ 01 1 11 |~[0 11 1]1
X1+2X2+X3—|—2X4:2 1 2 1 2|2 0 0 0 0|0

X4 = v

X- X x1 =1 _

1+ X2 + Xa R X3 =p3

X2:1—X3—X4:1—OL—B
xi=1-x—Xx=p

for any «, 5 € R.

Xo+ X3+ X4 = 1



Gaussian elimination: determining the set of solutions

Consider a system of linear equations Ax = b with m equations
and nvariables xq, ..., X,.

@ Let (A'|t') be the result of Gaussian elimination of (A|b).

e (A'|b')is in REF, with basis column indices py < ... < pr.

Summary:

@ If p, = n+ 1, then the system has no solution.

@ If r = p, = n, then the system has one solution.

@ Otherwise, the system has infinitely many solutions.
Note that A~ A" and A'isin REF. If p, = n+ 1, then A’ has r — 1
non-zero rows, otherwise A’ has r non-zero rows.

Theorem

The system Ax = b has no solution if and only of

rank(A|b) > rank(A). If rank(A|b) = rank(A) = n, then the
system has one solution, while if rank(A|b) = rank(A) < n, then
the system has infinitely many solutions.



	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	0.58: 
	0.59: 
	0.60: 
	0.61: 
	0.62: 
	0.63: 
	0.64: 
	0.65: 
	0.66: 
	0.67: 
	0.68: 
	0.69: 
	0.70: 
	0.71: 
	0.72: 
	0.73: 
	0.74: 
	0.75: 
	0.76: 
	0.77: 
	0.78: 
	0.79: 
	0.80: 
	0.81: 
	0.82: 
	0.83: 
	0.84: 
	0.85: 
	0.86: 
	0.87: 
	0.88: 
	0.89: 
	0.90: 
	0.91: 
	0.92: 
	0.93: 
	0.94: 
	0.95: 
	0.96: 
	0.97: 
	0.98: 
	0.99: 
	0.100: 
	0.101: 
	0.102: 
	0.103: 
	0.104: 
	0.105: 
	0.106: 
	0.107: 
	0.108: 
	0.109: 
	0.110: 
	0.111: 
	0.112: 
	0.113: 
	0.114: 
	0.115: 
	0.116: 
	0.117: 
	0.118: 
	0.119: 
	0.120: 
	0.121: 
	0.122: 
	0.123: 
	0.124: 
	0.125: 
	0.126: 
	0.127: 
	0.128: 
	0.129: 
	0.130: 
	0.131: 
	0.132: 
	0.133: 
	0.134: 
	0.135: 
	0.136: 
	0.137: 
	0.138: 
	0.139: 
	0.140: 
	0.141: 
	0.142: 
	0.143: 
	0.144: 
	0.145: 
	0.146: 
	0.147: 
	0.148: 
	0.149: 
	0.150: 
	0.151: 
	0.152: 
	0.153: 
	0.154: 
	0.155: 
	0.156: 
	0.157: 
	0.158: 
	0.159: 
	0.160: 
	0.161: 
	0.162: 
	0.163: 
	0.164: 
	0.165: 
	0.166: 
	0.167: 
	0.168: 
	0.169: 
	0.170: 
	0.171: 
	0.172: 
	0.173: 
	0.174: 
	0.175: 
	0.176: 
	0.177: 
	0.178: 
	0.179: 
	0.180: 
	0.181: 
	0.182: 
	0.183: 
	0.184: 
	0.185: 
	0.186: 
	0.187: 
	0.188: 
	0.189: 
	0.190: 
	0.191: 
	0.192: 
	0.193: 
	0.194: 
	0.195: 
	0.196: 
	0.197: 
	0.198: 
	0.199: 
	0.200: 
	0.201: 
	0.202: 
	0.203: 
	0.204: 
	0.205: 
	0.206: 
	0.207: 
	0.208: 
	0.209: 
	0.210: 
	0.211: 
	0.212: 
	0.213: 
	0.214: 
	0.215: 
	0.216: 
	0.217: 
	0.218: 
	0.219: 
	0.220: 
	0.221: 
	0.222: 
	0.223: 
	0.224: 
	0.225: 
	0.226: 
	0.227: 
	0.228: 
	0.229: 
	0.230: 
	0.231: 
	0.232: 
	0.233: 
	0.234: 
	0.235: 
	0.236: 
	0.237: 
	0.238: 
	0.239: 
	0.240: 
	0.241: 
	0.242: 
	0.243: 
	0.244: 
	0.245: 
	0.246: 
	0.247: 
	0.248: 
	anm0: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	1.38: 
	1.39: 
	1.40: 
	1.41: 
	1.42: 
	1.43: 
	1.44: 
	1.45: 
	1.46: 
	1.47: 
	1.48: 
	1.49: 
	1.50: 
	1.51: 
	1.52: 
	1.53: 
	1.54: 
	1.55: 
	1.56: 
	1.57: 
	1.58: 
	1.59: 
	1.60: 
	1.61: 
	1.62: 
	1.63: 
	1.64: 
	1.65: 
	1.66: 
	1.67: 
	1.68: 
	1.69: 
	1.70: 
	1.71: 
	1.72: 
	1.73: 
	1.74: 
	1.75: 
	1.76: 
	1.77: 
	1.78: 
	1.79: 
	1.80: 
	1.81: 
	1.82: 
	anm1: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	2.27: 
	2.28: 
	2.29: 
	2.30: 
	2.31: 
	2.32: 
	2.33: 
	2.34: 
	2.35: 
	2.36: 
	2.37: 
	2.38: 
	2.39: 
	2.40: 
	2.41: 
	2.42: 
	2.43: 
	2.44: 
	2.45: 
	2.46: 
	2.47: 
	2.48: 
	2.49: 
	2.50: 
	2.51: 
	2.52: 
	2.53: 
	2.54: 
	2.55: 
	2.56: 
	2.57: 
	2.58: 
	2.59: 
	2.60: 
	2.61: 
	2.62: 
	2.63: 
	2.64: 
	2.65: 
	2.66: 
	2.67: 
	2.68: 
	2.69: 
	2.70: 
	2.71: 
	2.72: 
	2.73: 
	2.74: 
	2.75: 
	2.76: 
	2.77: 
	2.78: 
	2.79: 
	2.80: 
	2.81: 
	2.82: 
	2.83: 
	2.84: 
	2.85: 
	2.86: 
	2.87: 
	2.88: 
	2.89: 
	2.90: 
	2.91: 
	2.92: 
	2.93: 
	2.94: 
	2.95: 
	2.96: 
	2.97: 
	2.98: 
	anm2: 
	2.EndLeft: 
	2.StepLeft: 
	2.PlayPauseLeft: 
	2.PlayPauseRight: 
	2.StepRight: 
	2.EndRight: 
	2.Minus: 
	2.Reset: 
	2.Plus: 


