Linear Algebra I: basic information

Lecturer:

- Zdeněk Dvořák
- rakdver@iuuk.mff.cuni.cz
- office 323 (3rd floor, right side)
- office hours: by appointment

Linear Algebra I: basic information

Grading:

- a "pass" grade (zápočet) from tutorials required before final exam
- Morteza Monemizadeh is in charge of the tutorials and will give you more information
- a combined written + oral final exam
- a sample exam will be available in December

Linear Algebra I: basic information

Study materials:

- lecture notes or slides posted at http://atrey.karlin.mff.cuni.cz/~rakdver/tea_lai_z15.html
- A First Course in Linear Algebra
- Matoušek: Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Algebra

Why study linear algebra

Useful tool for many other branches of mathematics

- in physics: linear differential equations, Hilbert spaces, eigenvalues, ...
- in combinatorics: linear recurrences, proofs using rank, linear independence, ...

Why study linear algebra

寿

$$
\begin{aligned}
& y_{1}^{\prime \prime}=-\frac{k_{1}+k_{2}}{m_{1}} y_{1}+\frac{k_{2}}{m_{1}} y_{2} \\
& y_{2}^{\prime \prime}=\frac{k_{2}}{m_{2}} y_{1}-\frac{k_{2}}{m_{2}} y_{2}
\end{aligned}
$$

Why study linear algebra

i
 者
 1

Why study linear algebra

In graphics and sound processing (Fourier transformation, ...)

Why study linear algebra

In graphics and sound processing (Fourier transformation, ...)

Why study linear algebra

In graphics and sound processing (Fourier transformation, ...)

Why study linear algebra

In graphics and sound processing (Fourier transformation, ...)

Why study linear algebra

In graphics and sound processing (Fourier transformation, ...)

Why study linear algebra

In graphics and sound processing (Fourier transformation, ...)

再

Why study linear algebra

In graphics and sound processing (Fourier transformation, ...)

Why study linear algebra

In graphics and sound processing (Fourier transformation, ...)

Why study linear algebra

In computer graphics

Data fitting

Measured values:

$$
\begin{array}{l|llllllll}
x & -2 & -1.5 & -1.0 & -0.5 & 0.0 & 0.5 & 1 & 1.5 \\
\hline y & 9.2 & 4.6 & 1.8 & 0.9 & 1.1 & 2.6 & 6 & 1.8
\end{array}
$$

Data fitting

Measured values:

x	-2	-1.5	-1.0	-0.5	0.0	0.5	1	1.5
y	9.2	4.6	1.8	0.9	1.1	2.6	6	1.8

Data fitting

Measured values:

x	-2	-1.5	-1.0	-0.5	0.0	0.5	1	1.5
y	9.2	4.6	1.8	0.9	1.1	2.6	6	1.8

$$
y \approx 3.03 x^{2}+2.01 x+0.96
$$

Easier example

Find the equation of quadratic function through points

$$
(-2,9),(-1,2), \text { and }(1,6)
$$

Easier example

Find the equation of quadratic function through points

$$
(-2,9),(-1,2), \text { and }(1,6)
$$

General equation:

$$
y=a x^{2}+b x+c
$$

$$
\begin{aligned}
& 9=4 a-2 b+c \\
& 2=a-b+c \\
& 6=a+b+c
\end{aligned}
$$

Hence, $c=6-a-b=4-a$, and

$$
9=4 a-2 b+c=4 a-4+(4-a)=3 a
$$

Consequently, $a=3$ and $c=4-a=1$.

Easier example

Find the equation of quadratic function through points

$$
(-2,9),(-1,2), \text { and }(1,6)
$$

General equation:

$$
9=4 a-2 b+c
$$

$$
\begin{array}{rl}
y=a x^{2}+b x+c & 2 \\
6 & =a-b+c \\
6 & \\
6-2=(a+b+c)-(a-b+c)= & 2 b \Rightarrow b=2
\end{array}
$$

Hence, $c=6-a-b=4-a$, and

$$
9=4 a-2 b+c=4 a-4+(4-a)=3 a
$$

Consequently, $a=3$ and $c=4-a=1$.

Easier example

Find the equation of quadratic function through points

$$
(-2,9),(-1,2), \text { and }(1,6)
$$

General equation:

$$
9=4 a-2 b+c
$$

$$
\begin{array}{rl}
y=a x^{2}+b x+c & 2 \\
6 & =a-b+c \\
6 & a+b+c \\
6-2=(a+b+c)-(a-b+c)= & 2 b \Rightarrow b=2
\end{array}
$$

Hence, $c=6-a-b=4-a$, and

$$
9=4 a-2 b+c=4 a-4+(4-a)=3 a
$$

Consequently, $a=3$ and $c=4-a=1$.

Easier example

Find the equation of quadratic function through points

$$
(-2,9),(-1,2), \text { and }(1,6)
$$

Systems of linear equations: notation

A linear equation is an expression

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}=\beta
$$

where

- $\alpha_{1}, \ldots, \alpha_{n}, \beta$ are real numbers
- x_{1}, \ldots, x_{n} are variables

A system of linear equations is a sequence of one or more linear equations.

An n-tuple $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ of real numbers is a solution to the system if substituting $x_{1}:=\varepsilon_{1}, \ldots, x_{n}:=\varepsilon_{n}$ to each linear equation gives a true statement.
The set of solutions is a set containing all n-tuples that are solutions.

Notation example

System of equations

$$
\begin{array}{r}
4 a-2 b+c=9 \\
a-b+c=2 \\
a+b+c=6
\end{array}
$$

with variables a, b, c.

- $(3,2,1)$ is a solution

$$
\begin{array}{r}
4 \cdot 3-2 \cdot 2+1=9 \\
3-2+1=2 \\
3+2+1=6
\end{array}
$$

- $(1,1,7)$ is not a solution, since

$$
1-1+7 \neq 2
$$

- one solution, or
- no solution, or
- infinitely many solutions

Systems of linear equations: number of solutions

- one solution, or
- no solution, or
- infinitely many solutions

$$
\begin{array}{r}
4 a-2 b+c=9 \\
a-b+c=2 \\
a+b+c=6
\end{array}
$$

Set of solutions: $\{(3,2,1)\}$

Systems of linear equations: number of solutions

- one solution, or
- no solution, or
- infinitely many solutions

$$
\begin{aligned}
a+b & =1 \\
b+c & =1 \\
a+2 b+c & =3
\end{aligned}
$$

In any solution to first two equations:

$$
a+2 b+c=(a+b)+(b+c)=2
$$

which is incompatible with the third equation.
Set of solutions: \emptyset

Systems of linear equations: number of solutions

- one solution, or
- no solution, or
- infinitely many solutions

$$
\begin{array}{r}
a+b=1 \\
b+c=1
\end{array}
$$

For any real $t,(t, 1-t, t)$ is a solution:

$$
\begin{aligned}
t+(1-t) & =1 \\
(1-t)+t & =1
\end{aligned}
$$

Set of solutions: $\{(t, 1-t, t): t \in \mathbf{R}\}$.

Operations preserving set of solutions

Theorem

Suppose S_{1} is a system of equations and let S_{2} be obtained from S_{1} by the following operations

- adding one equation to another,
- multiplying an equation by a non-zero real number,
- swapping two equations, or their combinations, including
- substracting an equation from another, or
- adding a multiple of an equation to another.

Then S_{1} and S_{2} have the same sets of solutions.

Adding one equation to another

$S_{1}:$

$$
\begin{aligned}
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n} & =\alpha \\
\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n} & =\beta \\
\gamma_{1} x_{1}+\gamma_{2} x_{2}+\ldots+\gamma_{n} x_{n} & =\gamma
\end{aligned}
$$

S_{2} :

$$
\begin{array}{rlcccccc}
\alpha_{1} x_{1} & + & \alpha_{2} x_{2} & + & \ldots & + & \alpha_{n} x_{n} & =\alpha \\
\beta_{1} x_{1} & + & \beta_{2} x_{2} & + & \ldots & + & \beta_{n} x_{n} & =\beta \\
\left(\gamma_{1}+\alpha_{1}\right) x_{1} & + & \left(\gamma_{2}+\alpha_{2}\right) x_{2} & + & \ldots & + & \left(\gamma_{n}+\alpha_{n}\right) x_{n} & =\gamma+\alpha
\end{array}
$$

Adding one equation to another

Example:
S_{1} :

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+2 x_{2}+3 x_{3}=2 \\
& x_{1}-x_{2}+2 x_{3}=6
\end{aligned}
$$

S_{2} :

$$
\begin{aligned}
x_{1}+x_{2} & +x_{3}
\end{aligned}=12 子 \begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=2 \\
& 2 x_{1}
\end{aligned}
$$

Adding one equation to another

We want: every solution to S_{2} is a solution to S_{1}, and vice versa.
If $\left(e_{1}, \ldots, e_{n}\right)$ is a solution to S_{2}, then

$$
\begin{aligned}
\alpha_{1} e_{1}+\alpha_{2} e_{2}+\ldots+\alpha_{n} e_{n} & =\alpha \\
\left(\gamma_{1}+\alpha_{1}\right) e_{1}+\left(\gamma_{2}+\alpha_{2}\right) e_{2}+\ldots+\left(\gamma_{n}+\alpha_{n}\right) e_{n} & =\gamma+\alpha .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\gamma_{1} e_{1}+\gamma_{2} e_{2}+\ldots+\gamma_{n} e_{n} & = \\
{\left[\left(\gamma_{1}+\alpha_{1}\right) e_{1}+\left(\gamma_{2}+\alpha_{2}\right) e_{2}+\ldots+\left(\gamma_{n}+\alpha_{n}\right) e_{n}\right]-} & \\
{\left[\alpha_{1} e_{1}+\alpha_{2} e_{2}+\ldots+\alpha_{n} e_{n}\right] } & = \\
(\gamma+\alpha)-\alpha & =\gamma,
\end{aligned}
$$

and thus $\left(e_{1}, \ldots, e_{n}\right)$ is a solution to S_{1} as well.

Multiplying by non-zero number

$S_{1}:$

$$
\begin{array}{rlr}
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n} & =\alpha & \\
\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n} & =\beta & (\times k) \\
\gamma_{1} x_{1}+\gamma_{2} x_{2}+\ldots+\gamma_{n} x_{n} & =\gamma &
\end{array}
$$

S_{2} :

$$
\begin{aligned}
& \begin{aligned}
\alpha_{1} x_{1} & +\alpha_{2} x_{2}
\end{aligned}+\ldots+\alpha_{n} x_{n}=\alpha,{ }_{2}=\alpha \\
& \gamma_{1} x_{1}+\gamma_{2} x_{2}+\ldots+\gamma_{n} x_{n}=\gamma
\end{aligned}
$$

Multiplying by non-zero number

Example:
S_{1} :

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+2 x_{2}+3 x_{3}=2 \\
& x_{1}-x_{2}+2 x_{3}=6
\end{aligned}(\times 3)
$$

S_{2} :

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}=1 \\
3 x_{1}+6 x_{2}+9 x_{3}=6 \\
x_{1}-x_{2}+2 x_{3}=6
\end{array}
$$

Swapping two equations

$S_{1}:$

$$
\begin{aligned}
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n} & =\alpha \\
\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n} & =\beta \\
\gamma_{1} x_{1}+\gamma_{2} x_{2}+\ldots+\gamma_{n} x_{n} & =\gamma
\end{aligned}
$$

S_{2} :

$$
\begin{aligned}
\gamma_{1} x_{1}+\gamma_{2} x_{2}+\ldots+\gamma_{n} x_{n} & =\gamma \\
\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{n} x_{n} & =\beta \\
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n} & =\alpha
\end{aligned}
$$

Swapping two equations

Example:
S_{1} :

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+2 x_{2}+3 x_{3}=2 \\
& x_{1}-x_{2}+2 x_{3}=6
\end{aligned}
$$

S_{2} :

$$
\begin{aligned}
& x_{1}-x_{2}+2 x_{3}=6 \\
& x_{1}+2 x_{2}+3 x_{3}=2 \\
& x_{1}+x_{2}+x_{3}=1
\end{aligned}
$$

Combinations: adding a multiple of an equation

Add $k \times$ the first equation to the third one:

$\alpha_{1} x_{1}$	$+\ldots$	+	$\alpha_{n} x_{n}$
$\beta_{1} x_{1}$	$+\ldots$	$=\alpha$	
$\gamma_{1} x_{1}$	$+\ldots$	$\beta_{n} x_{n}$	$=\beta$
			$\gamma_{n} x_{n}$

Combinations: adding a multiple of an equation

Add $k \times$ the first equation to the third one:

$\alpha_{1} x_{1}+\ldots$	$+\ldots$	$\alpha_{n} x_{n}$	$=\alpha$
$\beta_{1} x_{1}+\ldots+$	$+\ldots$	$\beta_{n} x_{n}$	$=\beta$
$\gamma_{1} x_{1}+\ldots$	$+\ldots$	$\gamma_{n} x_{n}$	$=\gamma$

Combinations: adding a multiple of an equation

Add $k \times$ the first equation to the third one:

$$
\begin{array}{rlll}
k \alpha_{1} x_{1} & +\ldots+ & k \alpha_{n} x_{n} & =k \alpha \\
\beta_{1} x_{1} & +\ldots+\beta_{n} x_{n} & =\beta \\
\gamma_{1} x_{1}+\ldots & + & \gamma_{n} x_{n} & =\gamma
\end{array}
$$

Combinations: adding a multiple of an equation

Add $k \times$ the first equation to the third one:

Combinations: adding a multiple of an equation

Add $k \times$ the first equation to the third one:

Combinations: adding a multiple of an equation

Add $k \times$ the first equation to the third one:

Combinations: adding a multiple of an equation

Add $k \times$ the first equation to the third one:

Subtracting an equation \equiv adding $(-1 \times)$ the equation

Gaussian elimination: example

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{aligned}
$$

Swap equations so that the

second has non-zero

coefficient at x_{2} :
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5$

Eliminate x_{2} by subtracting 2 the second equation from 4th:
Eliminate x_{1} by subtracting the first equation from others:
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5$
$2 x_{4}-x_{5}=1$
$x_{4}-x_{5}=-1$
$2 x_{2} \quad-x_{5}=1$

$x_{2} \quad-x_{4}-x_{5}=-1$
$2 x_{4}-x_{5}=1$
$2 x_{4}+x_{5}=3$

Gaussian elimination: example

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{aligned}
$$

Swap equations so that the
Eliminate x_{1} by subtracting the first equation from others:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
2 x_{4}-x_{5} & =1 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{2}-x_{5} & =1
\end{aligned}
$$

Eliminate x_{2} by subtracting 2 the second equation from 4th:
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5$

Gaussian elimination: example

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{aligned}
$$

Swap equations so that the second has non-zero coefficient at x_{2} :

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{2}-x_{5} & =1
\end{aligned}
$$

Eliminate x_{1} by subtracting the first equation from others:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
2 x_{4}-x_{5} & =1 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{2}-x_{5} & =1
\end{aligned}
$$

Eliminate x_{2} by subtracting 2 the second equation from 4th:

Gaussian elimination: example

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{array}
$$

Swap equations so that the second has non-zero coefficient at x_{2} :

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{2} & -x_{5}
\end{aligned}=1
$$

Eliminate x_{1} by subtracting the first equation from others:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
2 x_{4}-x_{5} & =1 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{2}-x_{5} & =1
\end{aligned}
$$

Eliminate x_{2} by subtracting $2 \times$ the second equation from 4th:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{4}+x_{5} & =3
\end{aligned}
$$

Gaussian elimination: example continued

$$
\begin{align*}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \tag{4}\\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{align*}
$$3rd equation from the 4th:

After eliminating x_{1} and x_{2} :

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{4}+x_{5} & =3
\end{aligned}
$$

Gaussian elimination: example continued

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{aligned}
$$

Eliminate x_{4} by subtracting the 3 rd equation from the 4th:

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5
$$

After eliminating x_{1} and x_{2} :
$x_{2} \quad-x_{4}-x_{5}=-1$

$$
\begin{aligned}
2 x_{4}-x_{5} & =1 \\
2 x_{5} & =2
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{4}+x_{5} & =3
\end{aligned}
$$

Gaussian elimination: example solution

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{array}
$$

After Gaussian elimination:

$$
\begin{align*}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{5} & =2 \tag{2-t,1,t,1,1}
\end{align*}
$$

4th equation: $x_{5}=1$
3rd equation:
x_{3} can be arbitrary; $x_{3}=t$ for any $t \in \mathbf{R}$

Gaussian elimination: example solution

Backward substitution:

4th equation: $x_{5}=1$

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{array}
$$

After Gaussian elimination:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{5} & =2
\end{aligned}
$$

1st equation:

Gaussian elimination: example solution

Backward substitution:
4th equation: $x_{5}=1$
3rd equation:

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{array}
$$

After Gaussian elimination:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{5} & =2
\end{aligned}
$$

$$
x_{4}=\left(1+x_{5}\right) / 2=1
$$

2nd equation:

$$
x_{3} \text { can be arbitrary; } x_{3}=t
$$

$$
\text { for any } t \in \mathbf{R}
$$

1st equation:

Gaussian elimination: example solution

Backward substitution:

4th equation: $x_{5}=1$

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{array}
$$

After Gaussian elimination:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{5} & =2
\end{aligned}
$$

3rd equation:
$x_{4}=\left(1+x_{5}\right) / 2=1$
2nd equation:

- x_{3} can be arbitrary; $x_{3}=t$ for any $t \in \mathbf{R}$
- $x_{2}=-1+x_{4}+x_{5}=1$

1 st equation:
$x_{1}=5-x_{2}-x_{3}-x_{4}-x_{5}=2-t$

Set of solutions:

Gaussian elimination: example solution

Backward substitution:
4th equation: $x_{5}=1$
3rd equation:

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{array}
$$

After Gaussian elimination:

$$
x_{4}=\left(1+x_{5}\right) / 2=1
$$

2nd equation:

- x_{3} can be arbitrary; $x_{3}=t$ for any $t \in \mathbf{R}$
- $x_{2}=-1+x_{4}+x_{5}=1$

1st equation:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{5} & =2
\end{aligned}
$$

$x_{1}=5-x_{2}-x_{3}-x_{4}-x_{5}=2-t$
Set of solutions:

Gaussian elimination: example solution

Backward substitution:
4th equation: $x_{5}=1$
3rd equation:

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{array}
$$

After Gaussian elimination:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{5} & =2
\end{aligned}
$$

$x_{4}=\left(1+x_{5}\right) / 2=1$
2nd equation:

- x_{3} can be arbitrary; $x_{3}=t$ for any $t \in \mathbf{R}$
- $x_{2}=-1+x_{4}+x_{5}=1$

1st equation:
$x_{1}=5-x_{2}-x_{3}-x_{4}-x_{5}=2-t$
Set of solutions:

$$
\{(2-t, 1, t, 1,1): t \in \mathbf{R}\}
$$

Matrix notation

Instead of

$$
\begin{aligned}
\alpha_{1,1} x_{1}+\alpha_{1,2} x_{2}+\ldots+\alpha_{1, n} x_{n} & =\beta_{1} \\
\alpha_{2,1} x_{1}+\alpha_{2,2} x_{2}+\ldots+\alpha_{2, n} x_{n} & =\beta_{2} \\
\ldots & \\
\alpha_{m, 1} x_{1}+\alpha_{m, 2} x_{2}+\ldots+\alpha_{m, n} x_{n} & =\beta_{m},
\end{aligned}
$$

we write

$$
\left(\begin{array}{cccc}
\alpha_{1,1} & \alpha_{1,2} & \ldots & \alpha_{1, n} \\
\alpha_{2,1} & \alpha_{2,2} & \ldots & \alpha_{2, n} \\
& \ldots & \\
\alpha_{m, 1} & \alpha_{m, 2} & \ldots & \alpha_{m, n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\ldots \\
\beta_{m}
\end{array}\right)
$$

Matrix notation: example

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{1}+x_{2}+x_{3}+3 x_{4} & =6 \\
x_{1}+2 x_{2}+x_{3} & =4 \\
x_{1}+3 x_{2}+x_{3}+x_{4} & =6
\end{array}
$$

is the same as

$$
\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 3 & 0 \\
1 & 2 & 1 & 0 & 0 \\
1 & 3 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{l}
5 \\
6 \\
4 \\
5
\end{array}\right)
$$

Matrix notation

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
\alpha_{1,1} & \alpha_{1,2} & \ldots & \alpha_{1, n} \\
\alpha_{2,1} & \alpha_{2,2} & \ldots & \alpha_{2, n} \\
& \ldots & \\
\alpha_{m, 1} & \alpha_{m, 2} & \ldots & \alpha_{m, n}
\end{array}\right)
$$

where $\alpha_{1,1}, \ldots, \alpha_{m, n}$ are real numbers, is an $m \times n$ matrix

- $m=$ number of rows, $n=$ number of columns. Matrix is square if $m=n$.
- $A_{i, j}$ denotes the element $\left(\alpha_{i, j}\right)$ in the i-th row and j-th column.
- $A_{i, \star}=\left(\alpha_{i, 1}, \alpha_{i, 2}, \ldots, \alpha_{i, n}\right)$ denotes the i-th row of A.
- $A_{\star, j}=\left(\begin{array}{l}\alpha_{1, j} \\ \alpha_{2, j} \\ \ldots \\ \alpha_{m, j}\end{array}\right)$ denotes the j-th column of A.

Example

$$
A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right)
$$

is a 3×4 matrix.

- 3 rows, 4 columns
- $A_{2,3}=7$
- the second row: $A_{2, \star}=(5,6,7,8)$
- the third column: $A_{\star, 3}=\left(\begin{array}{l}3 \\ 7 \\ 11\end{array}\right)$

More notation

From now on, we will (generally) use

- uppercase letters A, B, \ldots for matrices
- lowercase letters a, b, x, y, \ldots for matrices with one column (~vectors)
- lowercase letters m, n, p, \ldots for integers
- greek alphabet letters α, β, \ldots and lowercase letters s, t, ... for real numbers

More matrix notation

For matrices $\boldsymbol{A}=\left(\begin{array}{cccc}\alpha_{1,1} & \alpha_{1,2} & \ldots & \alpha_{1, n} \\ & \ldots & & \\ \alpha_{m, 1} & \alpha_{m, 2} & \ldots & \alpha_{m, n}\end{array}\right)$ and
$\boldsymbol{B}=\left(\begin{array}{cccc}\beta_{1,1} & \beta_{1,2} & \ldots & \beta_{1, p} \\ \beta_{m, 1} & \beta_{m, 2} & \ldots & \beta_{m, p}\end{array}\right)$ with the same number of rows,
let

$$
(A \mid B)=\left(\right)
$$

be the $m \times(n+p)$ matrix obtained by putting B to the right of A.

Even more matrix notation

For system of equations $A x=b$,

- A is the matrix of the system
- $(A \mid b)$ is the extended matrix of the system

Example: System

$$
\begin{array}{r}
4 x_{1}-2 x_{2}+x_{3}=9 \\
x_{1}-x_{2}+x_{3}=2 \\
x_{1}+x_{2}+x_{3}=6
\end{array}
$$

has

- matrix $\left(\begin{array}{lll}4 & -2 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1\end{array}\right)$
- extended matrix $\left(\begin{array}{ccc|c}4 & -2 & 1 & 9 \\ 1 & -1 & 1 & 2 \\ 1 & 1 & 1 & 6\end{array}\right)$

Gaussian elimination on matrices

We can

- add a row to another
- multiply a row by a non-zero real number
- swap rows
- subtract a row from another
- add a multiple of a row to another

We call these operations elementary row operations. Two matrices A and B are row-equivalent (we write $A \sim B$) if B can be obtained from A by a sequence of elementary row operations.

Observation

If $A \sim B$, then $B \sim A$. That is, elementary row operations are invertible and A can also be obtained from B by a sequence of elementary row operations.

Gaussian elimination on matrices: example

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5 \\
& x_{1}+x_{2}+x_{3}+3 x_{4}=6 \\
& x_{1}+2 x_{2}+x_{3}=4 \\
& x_{1}+3 x_{2}+x_{3}+x_{4}=6 \\
& \text { extended matrix: } \\
& \left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 5 \\
1 & 1 & 1 & 3 & 0 & 6 \\
1 & 2 & 1 & 0 & 0 & 4 \\
1 & 3 & 1 & 1 & 0 & 6
\end{array}\right) \sim \\
& \left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 5 \\
0 & 0 & 0 & 2 & -1 & 1 \\
0 & 1 & 0 & -1 & -1 & -1 \\
0 & 2 & 0 & 0 & -1 & 1
\end{array}\right) \sim\left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 5 \\
0 & 1 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 2 & -1 & 1 \\
0 & 2 & 0 & 0 & -1 & 1
\end{array}\right) \sim \\
& \left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 5 \\
0 & 1 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 2 & -1 & 1 \\
0 & 0 & 0 & 2 & 1 & 3
\end{array}\right) \sim\left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 5 \\
0 & 1 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 2 & -1 & 1 \\
0 & 0 & 0 & 0 & 2 & 2
\end{array}\right)
\end{aligned}
$$

Gaussian elimination on matrices: example

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5 \\
& x_{1}+x_{2}+x_{3}+3 x_{4}=6 \\
& x_{1}+2 x_{2}+x_{3}=4 \\
& x_{1}+3 x_{2}+x_{3}+x_{4}=6 \\
& \text { extended matrix: } \\
& \left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 5 \\
1 & 1 & 1 & 3 & 0 & 6 \\
1 & 2 & 1 & 0 & 0 & 4 \\
1 & 3 & 1 & 1 & 0 & 6
\end{array}\right) \sim \\
& \left(\begin{array}{lllll|l}
1 & 1 & 1 & 1 & 1 & 5 \\
0 & 1 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 2 & -1 & 1 \\
0 & 0 & 0 & 0 & 2 & 2
\end{array}\right) \rightarrow \\
& \begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =5 \\
x_{2}-x_{4}-x_{5} & =-1 \\
2 x_{4}-x_{5} & =1 \\
2 x_{5} & =2
\end{aligned}
\end{aligned}
$$

Row Echelon Form

Definition

Let A be an $m \times n$ matrix. For $1 \leq i \leq m$, let $p_{i}=\min \left\{j: A_{i, j} \neq \emptyset\right\}$ denote the index of the first non-zero element in the i-th row. We say that A is in Row Echelon Form (REF) if for some $r \leq m$,

- each of first r rows of A contains a non-zero element,
- the rows $r+1, \ldots, m$ are zero, and
- $p_{1}<p_{2}<\ldots<p_{r}$.

Integers p_{1}, \ldots, p_{r} are called basis column indices.
Example:

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 5 \\
0 & 1 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 2 & -1 & 1 \\
0 & 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& p_{1}=1 \\
& p_{2}=2 \\
& p_{3}=4 \\
& p_{4}=5
\end{aligned}
$$

Gaussian elimination: formal description

For an $m \times n$ matrix A :
(1) $r:=1, c:=1$
(2) If $A_{i, j}=0$ for all $i \geq r$ and $j \geq c$, then end.
(3) Let $c:=\min \left\{j \geq c: A_{i, j} \neq 0\right.$ for some $\left.i \geq r\right\}$.

- Find first column after current position with non-zero entry in row $\geq r$.
(4) Choose arbitrary $i \geq r$ such that $A_{i, c} \neq 0$, and swap i-th and r-th row.
- So now $A_{r, c} \neq \emptyset$.
(5) For every $i>r$, subtract $\frac{A_{i, c}}{A_{r, c}}$-times the r-th row from the i-th row.
- So that all entries in the column below $A_{r, c}$ are zero.
(6) Let $r:=r+1, c:=c+1$ and repeat from step 2.

Properties of Row Echelon Form

Theorem

Gaussian elimination applied to matrix B returns a row-equivalent matrix A in REF.

There may exist many different matrices in REF that are row-equivalent to B. However:

Theorem (for now without proof)

If A and A^{\prime} are any matrices in REF and $A \sim A^{\prime}$, then A and A^{\prime} have the same basis column indices. In particular, they have the same number of non-zero rows.

This motivates the following definition.

Definition

The rank of a matrix B (denoted by $\operatorname{rank}(B)$) is the number of non-zero rows of a row-equivalent matrix in REF.

Rank: example

Problem

Determine the rank of $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$.

$$
A \sim\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The last matrix is in REF and has 2 non-zero rows, hence

$$
\operatorname{rank}(A)=2
$$

Gaussian elimination: determining the set of solutions

Consider a system of linear equations $A x=b$ with m equations and n variables x_{1}, \ldots, x_{n}.

- Let $\left(A^{\prime} \mid b^{\prime}\right)$ be the result of Gaussian elimination of $(A \mid b)$.
- $\left(A^{\prime} \mid b^{\prime}\right)$ is in REF, with basis column indices $p_{1}<\ldots<p_{r}$.

Gaussian elimination: determining the set of solutions

Consider a system of linear equations $A x=b$ with m equations and n variables x_{1}, \ldots, x_{n}.

- Let $\left(A^{\prime} \mid b^{\prime}\right)$ be the result of Gaussian elimination of $(A \mid b)$.
- $\left(A^{\prime} \mid b^{\prime}\right)$ is in REF, with basis column indices $p_{1}<\ldots<p_{r}$. If $p_{r}=n+1$, then the system has no solution. Example:

$$
\begin{aligned}
& x_{1}+\begin{array}{c}
x_{2}
\end{array}=1 \\
& x_{2}+x_{3}=1 \\
& x_{1}+2 x_{2}+x_{3}= \rightarrow\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 2 & 1 & 3
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \rightarrow \\
& x_{1}+x_{2}=1 \\
& x_{2}+x_{3}=1 \\
& 0 x_{1}+0 x_{2}+0 x_{3}=1
\end{aligned}
$$

The last equation cannot be satisfied.

Gaussian elimination: determining the set of solutions

Consider a system of linear equations $A x=b$ with m equations and n variables x_{1}, \ldots, x_{n}.

- Let $\left(A^{\prime} \mid b^{\prime}\right)$ be the result of Gaussian elimination of $(A \mid b)$.
- $\left(A^{\prime} \mid b^{\prime}\right)$ is in REF, with basis column indices $p_{1}<\ldots<p_{r}$.

If $r=n$ and $p_{1}=1, p_{2}=2, \ldots, p_{n}=n$, then the system has one solution, obtained by backward substitution.

$$
\begin{aligned}
x_{n} & =\frac{b_{n}^{\prime}}{A_{n, n}} \\
x_{n-1} & =\frac{b_{n-1}^{n}-A_{n-1, n}^{\prime} x_{n}}{A_{n}^{\prime}} \\
x_{n-2} & =\frac{b_{n-2}^{\prime}-A_{n-2, n-1-1} x_{n-1}-A_{n-2, n}^{\prime} x_{n}}{A_{n-2, n-2}^{\prime}} \\
x_{1} & =\frac{b_{1}^{\prime}-A_{1,2}^{\prime} x_{2} x_{1}^{\prime}-A_{1,3}^{\prime} x_{3}-\ldots-A_{1, n}^{\prime} x_{n}}{A_{1,1}^{\prime}}
\end{aligned}
$$

Gaussian elimination: determining the set of solutions

Consider a system of linear equations $A x=b$ with m equations and n variables x_{1}, \ldots, x_{n}.

- Let $\left(A^{\prime} \mid b^{\prime}\right)$ be the result of Gaussian elimination of $(A \mid b)$.
- $\left(A^{\prime} \mid b^{\prime}\right)$ is in REF, with basis column indices $p_{1}<\ldots<p_{r}$.

If $r=n$ and $p_{1}=1, p_{2}=2, \ldots, p_{n}=n$, then the system has one solution, obtained by backward substitution. Example:

$$
\begin{aligned}
x_{1}+x_{2} \quad & =1 \\
x_{2}+x_{3} & =1 \\
x_{1}+x_{2}+x_{3} & =3
\end{aligned} \rightarrow\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 3
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right) \rightarrow
$$

Gaussian elimination: determining the set of solutions

Consider a system of linear equations $A x=b$ with m equations and n variables x_{1}, \ldots, x_{n}.

- Let $\left(A^{\prime} \mid b^{\prime}\right)$ be the result of Gaussian elimination of $(A \mid b)$.
- $\left(A^{\prime} \mid b^{\prime}\right)$ is in REF, with basis column indices $p_{1}<\ldots<p_{r}$. If $r<n$ and $p_{r} \leq n$, then the system has infinitely many solutions. The values of basis column variables $x_{p_{1}}, \ldots x_{p_{r}}$ can be obtained by backward substitution, with the other variables acting as parameters. Example:

$$
\begin{array}{r}
x_{1}+\begin{array}{l}
x_{2} \quad x_{4}=1 \\
x_{2}+x_{3}+x_{4}
\end{array}=1 \\
x_{1}+2 x_{2}+x_{3}+2 x_{4}=2
\end{array} \rightarrow\left(\begin{array}{llll|l}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
1 & 2 & 1 & 2 & 2
\end{array}\right) \sim\left(\begin{array}{llll|l}
1 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) ~\left(\begin{array}{l}
x_{4}=\alpha \\
x_{3}=\beta \\
x_{2}=1-x_{3}-x_{4}=1-\alpha-\beta \\
x_{1}=1-x_{2}-x_{4}=\beta \\
x_{1}+x_{2}+x_{3}+x_{4}=1
\end{array} \quad \begin{array}{l}
\text { for any } \alpha, \beta \in \mathbf{R} .
\end{array}\right.
$$

Gaussian elimination: determining the set of solutions

Consider a system of linear equations $A x=b$ with m equations and n variables x_{1}, \ldots, x_{n}.

- Let $\left(A^{\prime} \mid b^{\prime}\right)$ be the result of Gaussian elimination of $(A \mid b)$.
- $\left(A^{\prime} \mid b^{\prime}\right)$ is in REF, with basis column indices $p_{1}<\ldots<p_{r}$. Summary:
- If $p_{r}=n+1$, then the system has no solution.
- If $r=p_{r}=n$, then the system has one solution.
- Otherwise, the system has infinitely many solutions.

Note that $A \sim A^{\prime}$ and A^{\prime} is in REF. If $p_{r}=n+1$, then A^{\prime} has $r-1$ non-zero rows, otherwise A^{\prime} has r non-zero rows.

Theorem

The system $A x=b$ has no solution if and only of $\operatorname{rank}(A \mid b)>\operatorname{rank}(A)$. If $\operatorname{rank}(A \mid b)=\operatorname{rank}(A)=n$, then the system has one solution, while if $\operatorname{rank}(A \mid b)=\operatorname{rank}(A)<n$, then the system has infinitely many solutions.

