VC-dimension

Zdeněk Dvořák

November 30, 2023

Definition 1. Let \mathcal{F} be a set system. For a set X, we define $X \cap \mathcal{F}=$ $\{F \cap X: F \in \mathcal{F}\}$. We say X is broken by \mathcal{F} if $X \cap \mathcal{F}$ consists of all subsets of X. Vapnik-Chervonenkis dimension (VC-dimension) of the system \mathcal{F} is the maximum integer k such that some set of size k is broken by \mathcal{F}.

Examples:

- The system of all half-planes in \mathbb{R}^{2} has VC-dimension 3. On one hand, there exists a 3 -element broken set (in fact, any set of 3 points in general position is broken). On the other hand, consider any 4 -element set X. If some $x \in X$ is contained in the convex hull of $X \backslash\{x\}$, then no halfplane intersects X in exactly $X \backslash\{x\}$. Otherwise, the points of X are in convex position, say in cyclic order $x_{1}, x_{2}, x_{3}, x_{4}$ in the boundary of the convex hull of X. Then no half-plane intersects X in exactly $\left\{x_{1}, x_{3}\right\}$.
- The system of all axis-aligned rectangles in the plane has VC-dimension at most 5: Consider any 6 -element set X, and let x_{1} be a leftmost point of X. Without loss of generality, at least three of the remaining five points in X have the y-coordinate at least as large as x_{1}; let X^{\prime} be the set of these points. Let x_{2} be a point in X^{\prime} with the largest y-coordinate and let x_{3} be the rightmost point of X^{\prime}. Then every axisaligned rectangle containing $\left\{x_{1}, x_{2}, x_{3}\right\}$ contains the whole X^{\prime}, and thus X is not broken.
- The system of all convex polygons in the plane has an infinite VCdimension, since every set of points in convex position is broken.

Lemma 1. Every set system \mathcal{F} breaks at least $|\mathcal{F}|$ subsets of $\bigcup \mathcal{F}$.
Proof. By induction on $|\mathcal{F}|$. The claim is trivial if $|\mathcal{F}|=0$, and \mathcal{F} breaks the empty set in $\mathcal{F}=1$. Hence, we can assume $|\mathcal{F}| \geq 2$, and thus there exists an
element $c \in \bigcup \mathcal{F}$ that does not belong to all sets of \mathcal{F}. Let $\mathcal{F}_{1}=\{F \in \mathcal{F}$: $c \in F\}$ and $\mathcal{F}_{2}=\{F \in \mathcal{F}: c \notin F\}$. By the choice of c we have $\left|\mathcal{F}_{1}\right|<|\mathcal{F}|$ and $\left|\mathcal{F}_{2}\right|<|\mathcal{F}|$. Observe that for any set X, if $c \in X$, then neither \mathcal{F}_{1} nor \mathcal{F}_{2} breaks X.

For $i=1,2$ let \mathcal{R}_{i} be the system of subsets of $\bigcup \mathcal{F}_{i}$ that are broken by \mathcal{F}_{i}; by the induction hypothesis, we have $\left|\mathcal{R}_{i}\right| \geq\left|\mathcal{F}_{i}\right|$. Let $\mathcal{R}_{3}=\{X \cup\{c\}: X \in$ $\left.\mathcal{R}_{1} \cap \mathcal{R}_{2}\right\}$. By the observation at the end of the last paragraph, the sets in \mathcal{R}_{3} are broken neither by \mathcal{F}_{1} nor by \mathcal{F}_{2}, and thus $\mathcal{R}_{3} \cap \mathcal{R}_{1}=\emptyset, \mathcal{R}_{3} \cap \mathcal{R}_{2}=\emptyset$, and $\left|\mathcal{R}_{3}\right|=\left|\mathcal{R}_{1} \cap \mathcal{R}_{2}\right|$. Furthermore, for each $X^{\prime} \in \mathcal{R}_{3}$, the system $X^{\prime} \cap \mathcal{F}_{1}$ consists of all subsets of X^{\prime} containing c and $X^{\prime} \cap \mathcal{F}_{2}$ consists of all subsets of X^{\prime} not containing c, and thus X^{\prime} is broken by \mathcal{F}. Every set broken by \mathcal{F}_{1} or \mathcal{F}_{2} is also broken by \mathcal{F}, and thus the number of sets broken by \mathcal{F} is at least $\left|\mathcal{R}_{1} \cup \mathcal{R}_{2}\right|+\left|\mathcal{R}_{3}\right|=\left(\left|\mathcal{R}_{1}\right|+\left|\mathcal{R}_{2}\right|-\left|\mathcal{R}_{1} \cap \mathcal{R}_{2}\right|\right)+\left|\mathcal{R}_{1} \cap \mathcal{R}_{2}\right| \geq\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|=|\mathcal{F}|$.
Corollary 2. Let \mathcal{F} be a set system of $V C$-dimension at most k. Every set X satisfies

$$
|X \cap \mathcal{F}| \leq \sum_{i=0}^{k}\binom{|X|}{i}
$$

and thus if $k,|X| \geq 2$, then $|X \cap \mathcal{F}| \leq|X|^{k}$.
Proof. The VC-dimension of the system $X \cap \mathcal{F}$ is at most as large as the VC-dimension of \mathcal{F}, and thus it is at most k. So $X \cap \mathcal{F}$ can only break the subsets of X of size at most k, and there are $\sum_{i=0}^{k}\binom{|X|}{i}$ of them. Lemma 1 gives the required bound on $|X \cap \mathcal{F}|$.

Definition 2. Let μ be a measure, let Y be a measurable set with $\mu(F)$ finite, and let \mathcal{F} be a system of measurable sets. Let $\varepsilon>0$ be a real number. Then $N \subseteq Y$ is an ε-net if every set $F \in \mathcal{F}$ such that $\mu(F \cap Y) \geq \varepsilon \mu(Y)$ satisfies $F \cap N \neq \emptyset$.

Example: Let Y be an axis-aligned rectangle with sides of length 1 and let \mathcal{F} be the system of all axis-aligned rectangles contained in Y. A set $N \subseteq Y$ is an ε-net iff N intersects every axis-aligned rectangle $D \subseteq Y$ of area at least ε. Note that every such rectangle has both sides of length at least ε. Hence, N can be chosen as the regular ε-spaced grid of points; then $|N|=\varepsilon^{-2}$. As we will see next, there exist asymptotically smaller ε-nets.

Theorem 3. Let μ be a measure, let Y be a measurable set with $\mu(F)$ finite, and let \mathcal{F} be a system of measurable sets of $V C$-dimension $k \geq 2$. Let $0<$ $\varepsilon \leq 1$ be a real number such that $k / \varepsilon \geq 15000$. Let N be a set of $\left\lceil 3 \frac{k}{\varepsilon} \log \frac{k}{\varepsilon}\right\rceil$ points chosen independently from the probability distribution π on Y defined by $\pi(X)=\mu(X) / \mu(Y)$ for every measurable $X \subseteq Y$. Then N is an ε-net with a non-zero probability.

Proof. Omitted; uses Corollary 2 in a tricky way.
For a set system \mathcal{F}, let $\tau(\mathcal{F})$ denote the minumum size of a set $X \subseteq \bigcup \mathcal{F}$ intersecting all sets in \mathcal{F} (for example, if the sets in \mathcal{F} are edges of a graph, then $\tau(\mathcal{F})$ is the minimum size of a vertex cover). Let $\tau^{\star}(\mathcal{F})$ denote the fractional relaxation defined as the minimum of

$$
\sum_{v \in \bigcup \mathcal{F}} x_{v}
$$

subject to $x_{v} \geq 0$ for all $v \in \bigcup \mathcal{F}$ and

$$
\sum_{v \in F} x_{v} \geq 1
$$

for every $F \in \mathcal{F}$.
Corollary 4. Let \mathcal{F} be a set system with a finite union. If \mathcal{F} has VCdimension at most $k \geq 2$, then $\tau(\mathcal{F})=O\left(k \tau^{\star}(\mathcal{F}) \log \left(k \tau^{\star}(\mathcal{F})\right)\right.$.

Proof. Let $Y=\bigcup \mathcal{F}$ and $\tau^{\star}=\tau^{\star}(\mathcal{F})$. Let x_{v} for $v \in Y$ are the values in an optimal solution to the linear program defining $\tau^{\star}(\mathcal{F})$. For $X \subseteq Y$, we let $\mu(X)=\sum_{v \in X} x_{v}$. Then μ is a measure on Y and $\mu(Y)=\tau^{\star}$. Furthermore, $\mu(F) \geq 1$ for every $F \in \mathcal{F}$. By Theorem 3, there exists a $1 / \tau^{\star}$-net N of size $O\left(k \tau^{\star} \log \left(k \tau^{\star}\right)\right)$; then N intersects all sets from \mathcal{F}, and $\tau(F) \leq|N|$.

Example: For a given set \mathcal{F} of axis-aligned rectangles in the plane and a finite set Y of points intersecting all of them, we want to find a smallest subset $S_{\text {opt }} \subseteq Y$ that intersects all rectangles in \mathcal{F}. By solving the linear program and using Corollary 4 (for the system $Y \cap \mathcal{F}$)), we can at least find such a subset of size $O\left(\left|S_{\text {opt }}\right| \log \left|S_{\text {opt }}\right|\right)$.

Let G be a graph. For a vertex $v \in V(G)$ and a non-negative integer r, let $B_{G}(v, r)$ denote the set of vertices of G at distance at most r from v, and let $\mathcal{B}_{G}=\left\{B_{G}(v, r): v \in V(G), 0 \leq r \leq|V(G)|\right\}$.

Lemma 5. If G does not contain K_{t} as a minor, then \mathcal{B}_{G} has $V C$-dimension at most $t-1$.

Proof. Suppose for a contradiction that some set $X=\left\{v_{1}, \ldots, v_{t}\right\} \subseteq V(G)$ is broken by \mathcal{B}_{G}. Hence, for $1 \leq i<j \leq t$ there exist vertices $v_{i j} \in V(G)$ and integers $r_{i j} \in\{1, \ldots,|V(G)|\}$ such that. $B_{G}\left(v_{i j}, r_{i j}\right) \cap X=\left\{v_{i}, v_{j}\right\}$. Choose such vertices $v_{i j}$ so that the integers $r_{i j}$ are minimum. Note that G contains shortest paths $P_{i j, 1}$ and $P_{i j, 2}$ from $v_{i j}$ to v_{i} and v_{j}, and both of them have length at most $r_{i j}$. The minimality of $r_{i j}$ implies that $P_{i j, 1}$ and $P_{i j, 2}$ intersect
only in $v_{i j}$; their union $P_{i j}$ consequently is a path from v_{i} to v_{j} containing $v_{i j}$. For $i>j$, let us set $P_{i j}=P_{j i}, v_{i j}=v_{j i}$, and $r_{i j}=r_{j i}$.

Suppose $y \neq v_{i j}$ appears on $P_{i j}$ between v_{i} and $v_{i j}$. We claim that $d\left(v_{i}, y\right)<d\left(v_{j}, y\right)$: otherwise, if $d\left(v_{j}, y\right) \leq d\left(v_{i}, y\right)=r$, then note that $r<r_{i j}$, since the path $P_{i j, 1}$ from $v_{i j}$ to v_{i} has length at most $r_{i j}$. But $B_{G}(y, r) \cap X=\left\{v_{i}, v_{j}\right\}$, contradicting the minimality of $r_{i j}$. It follows that
(\star) all vertices of $P_{i j}$ before $v_{i j}$ are strictly closer to v_{i} than to v_{j}, and symmetrically, all those after $v_{i j}$ are closer to v_{j} than to v_{i}.

Suppose x is a vertex belonging to the intersection of paths $P_{i_{1} j_{1}}$ a $P_{i_{2} j_{2}}$ for some $\left\{i_{1}, j_{1}\right\} \neq\left\{i_{2}, j_{2}\right\}$. By symmetry, we can assume that $d\left(x, v_{i_{s}}\right) \leq$ $d\left(x, v_{j_{s}}\right)$ for $s \in\{1,2\}$, and (\star) implies that x lies on a shortest path from $v_{i_{s} j_{s}}$ to $v_{i_{s}}$; therefore, $d\left(v_{i_{s} j_{s}}, x\right)+d\left(x, v_{i_{s}}\right)=d\left(v_{i_{s} j_{s}}, v_{i_{s}}\right)$. By symmetry, we can also assume that $d\left(x, v_{i_{1}}\right) \leq d\left(x, v_{i_{2}}\right)$. Using the triangle inequality, we have
$d\left(v_{i_{2} j_{2}}, v_{i_{1}}\right) \leq d\left(v_{i_{2} j_{2}}, x\right)+d\left(x, v_{i_{1}}\right) \leq d\left(v_{i_{2} j_{2}}, x\right)+d\left(x, v_{i_{2}}\right)=d\left(v_{i_{2} j_{2}}, v_{i_{2}}\right) \leq r_{i_{2} j_{2}}$.
Therefore $v_{i_{1}} \in B_{G}\left(v_{i_{2} j_{2}}, r_{i_{2} j_{2}}\right) \cap X=\left\{v_{i_{2}}, v_{j_{2}}\right\}$. If $d\left(x, v_{i_{2}}\right)<d\left(x, v_{j_{2}}\right)$, then $d\left(x, v_{i_{1}}\right)<d\left(x, v_{j_{2}}\right)$, and thus $i_{1} \neq j_{2}$; it follows that $i_{1}=i_{2}$. If $d\left(x, v_{i_{2}}\right)=$ $d\left(x, v_{j_{2}}\right)$, then we can assume $i_{1}=i_{2}$ by symmetry. Let $i=i_{1}=i_{2}$. If $d\left(x, v_{i}\right)=d\left(x, v_{j_{s}}\right)$ for some $s \in\{1,2\}$, then
$d\left(v_{i j_{3-s}}, v_{j_{s}}\right) \leq d\left(v_{i j_{3-s}}, x\right)+d\left(x, v_{j_{s}}\right)=d\left(v_{i j_{3-s}}, x\right)+d\left(x, v_{i}\right)=d\left(v_{i j_{3-s}}, v_{i}\right) \leq r_{i j_{3-s}}$, implying that $v_{j_{s}} \in B_{G}\left(v_{i j_{3-s}}, r_{i j_{3-s}}\right) \cap X$, which is a contradiction. Therefore,
($\star \star)$ if $x \in V\left(P_{i_{1} j_{1}}\right) \cap V\left(P_{i_{2} j_{2}}\right)$, then the labels can be chosen so that $i_{1}=i_{2}$ and $d\left(x, v_{i_{s}}\right)<d\left(x, v_{j_{s}}\right)$ for $s \in\{1,2\}$.
For $i=1, \ldots, t$, let
$X_{i}=\left\{x \in V\left(P_{i j}\right): j \in[t] \backslash\{i\}, d\left(x, v_{i}\right) \leq d\left(x, v_{j}\right)\right.$, and if $d\left(x, v_{i}\right)=d\left(x, v_{j}\right)$, then $\left.i<j\right\}$.
By (\star), the sets X_{i} induce connected subgraphs of G, and by ($\star \star$) the sets X_{i} are pairwise disjoint. By contracting them we obtain a minor of K_{t} in G, which is a contradiction.

Let us consider the following generalization of the dominating set. For any function $r: V(G) \rightarrow \mathbf{Z}_{0}^{+}$, let $\operatorname{dom}_{r}(G)$ denote the minimum size of a set $X \subseteq V(G)$ such that $d(v, X) \leq r(v)$ for every $v \in V(G)$.

Corollary 6. For every positive integer t, there exists a polynomial-time algorithm that for every K_{t}-minor-free graph G and every function $r: V(G) \rightarrow$ \mathbf{Z}_{0}^{+}returns a real number d satisfying $d \leq \operatorname{dom}_{r}(G)=O(t d \log (t d))$.

Proof. Consider the set system $\mathcal{F}=\left\{B_{G}(v, r(v)): v \in V(G)\right\}$. Since $\mathcal{F} \subseteq$ \mathcal{B}_{G}, Lemma 5 implies that \mathcal{F} has VC -dimension at most $t-1$. Note also that $\operatorname{dom}_{r}(G)=\tau(\mathcal{F})$. By Corollary 4 we can let $d=\tau^{\star}(\mathcal{F})$ (the number d can be determined in polynomial time by solving the linear program).

