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November 30, 2023

Definition 1. Let F be a set system. For a set X, we define X ∩ F =
{F ∩X : F ∈ F}. We say X is broken by F if X ∩F consists of all subsets
of X. Vapnik-Chervonenkis dimension ( VC-dimension) of the system F is
the maximum integer k such that some set of size k is broken by F .

Examples:

• The system of all half-planes in R2 has VC-dimension 3. On one hand,
there exists a 3-element broken set (in fact, any set of 3 points in general
position is broken). On the other hand, consider any 4-element set X.
If some x ∈ X is contained in the convex hull of X \ {x}, then no half-
plane intersects X in exactly X \ {x}. Otherwise, the points of X are
in convex position, say in cyclic order x1, x2, x3, x4 in the boundary
of the convex hull of X. Then no half-plane intersects X in exactly
{x1, x3}.

• The system of all axis-aligned rectangles in the plane has VC-dimension
at most 5: Consider any 6-element set X, and let x1 be a leftmost
point of X. Without loss of generality, at least three of the remaining
five points in X have the y-coordinate at least as large as x1; let X ′

be the set of these points. Let x2 be a point in X ′ with the largest
y-coordinate and let x3 be the rightmost point of X ′. Then every axis-
aligned rectangle containing {x1, x2, x3} contains the whole X ′, and
thus X is not broken.

• The system of all convex polygons in the plane has an infinite VC-
dimension, since every set of points in convex position is broken.

Lemma 1. Every set system F breaks at least |F| subsets of
⋃
F .

Proof. By induction on |F|. The claim is trivial if |F| = 0, and F breaks the
empty set in F = 1. Hence, we can assume |F| ≥ 2, and thus there exists an
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element c ∈
⋃
F that does not belong to all sets of F . Let F1 = {F ∈ F :

c ∈ F} and F2 = {F ∈ F : c 6∈ F}. By the choice of c we have |F1| < |F|
and |F2| < |F|. Observe that for any set X, if c ∈ X, then neither F1 nor
F2 breaks X.

For i = 1, 2 let Ri be the system of subsets of
⋃
Fi that are broken by Fi;

by the induction hypothesis, we have |Ri| ≥ |Fi|. Let R3 = {X ∪ {c} : X ∈
R1 ∩ R2}. By the observation at the end of the last paragraph, the sets in
R3 are broken neither by F1 nor by F2, and thus R3 ∩R1 = ∅, R3 ∩R2 = ∅,
and |R3| = |R1 ∩ R2|. Furthermore, for each X ′ ∈ R3, the system X ′ ∩ F1

consists of all subsets of X ′ containing c and X ′∩F2 consists of all subsets of
X ′ not containing c, and thus X ′ is broken by F . Every set broken by F1 or
F2 is also broken by F , and thus the number of sets broken by F is at least
|R1∪R2|+|R3| = (|R1|+|R2|−|R1∩R2|)+|R1∩R2| ≥ |F1|+|F2| = |F|.

Corollary 2. Let F be a set system of VC-dimension at most k. Every set
X satisfies

|X ∩ F| ≤
k∑

i=0

(
|X|
i

)
,

and thus if k, |X| ≥ 2, then |X ∩ F| ≤ |X|k.

Proof. The VC-dimension of the system X ∩ F is at most as large as the
VC-dimension of F , and thus it is at most k. So X ∩ F can only break the
subsets of X of size at most k, and there are

∑k
i=0

(|X|
i

)
of them. Lemma 1

gives the required bound on |X ∩ F|.

Definition 2. Let µ be a measure, let Y be a measurable set with µ(F ) finite,
and let F be a system of measurable sets. Let ε > 0 be a real number. Then
N ⊆ Y is an ε-net if every set F ∈ F such that µ(F ∩ Y ) ≥ εµ(Y ) satisfies
F ∩N 6= ∅.

Example: Let Y be an axis-aligned rectangle with sides of length 1 and let
F be the system of all axis-aligned rectangles contained in Y . A set N ⊆ Y
is an ε-net iff N intersects every axis-aligned rectangle D ⊆ Y of area at least
ε. Note that every such rectangle has both sides of length at least ε. Hence,
N can be chosen as the regular ε-spaced grid of points; then |N | = ε−2. As
we will see next, there exist asymptotically smaller ε-nets.

Theorem 3. Let µ be a measure, let Y be a measurable set with µ(F ) finite,
and let F be a system of measurable sets of VC-dimension k ≥ 2. Let 0 <
ε ≤ 1 be a real number such that k/ε ≥ 15000. Let N be a set of d3k

ε
log k

ε
e

points chosen independently from the probability distribution π on Y defined
by π(X) = µ(X)/µ(Y ) for every measurable X ⊆ Y . Then N is an ε-net
with a non-zero probability.
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Proof. Omitted; uses Corollary 2 in a tricky way.

For a set system F , let τ(F) denote the minumum size of a set X ⊆
⋃
F

intersecting all sets in F (for example, if the sets in F are edges of a graph,
then τ(F) is the minimum size of a vertex cover). Let τ ?(F) denote the
fractional relaxation defined as the minimum of∑

v∈
⋃
F

xv

subject to xv ≥ 0 for all v ∈
⋃
F and∑

v∈F

xv ≥ 1

for every F ∈ F .

Corollary 4. Let F be a set system with a finite union. If F has VC-
dimension at most k ≥ 2, then τ(F) = O(kτ ?(F) log(kτ ?(F)).

Proof. Let Y =
⋃
F and τ ? = τ ?(F). Let xv for v ∈ Y are the values in an

optimal solution to the linear program defining τ ?(F). For X ⊆ Y , we let
µ(X) =

∑
v∈X xv. Then µ is a measure on Y and µ(Y ) = τ ?. Furthermore,

µ(F ) ≥ 1 for every F ∈ F . By Theorem 3, there exists a 1/τ ?-net N of size
O(kτ ? log(kτ ?)); then N intersects all sets from F , and τ(F ) ≤ |N |.

Example: For a given set F of axis-aligned rectangles in the plane and
a finite set Y of points intersecting all of them, we want to find a smallest
subset Sopt ⊆ Y that intersects all rectangles in F . By solving the linear
program and using Corollary 4 (for the system Y ∩F)), we can at least find
such a subset of size O(|Sopt| log |Sopt|).

Let G be a graph. For a vertex v ∈ V (G) and a non-negative integer r,
let BG(v, r) denote the set of vertices of G at distance at most r from v, and
let BG = {BG(v, r) : v ∈ V (G), 0 ≤ r ≤ |V (G)|}.

Lemma 5. If G does not contain Kt as a minor, then BG has VC-dimension
at most t− 1.

Proof. Suppose for a contradiction that some set X = {v1, . . . , vt} ⊆ V (G)
is broken by BG. Hence, for 1 ≤ i < j ≤ t there exist vertices vij ∈ V (G) and
integers rij ∈ {1, . . . , |V (G)|} such that. BG(vij, rij) ∩X = {vi, vj}. Choose
such vertices vij so that the integers rij are minimum. Note that G contains
shortest paths Pij,1 and Pij,2 from vij to vi and vj, and both of them have
length at most rij. The minimality of rij implies that Pij,1 and Pij,2 intersect
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only in vij; their union Pij consequently is a path from vi to vj containing
vij. For i > j, let us set Pij = Pji, vij = vji, and rij = rji.

Suppose y 6= vij appears on Pij between vi and vij. We claim that
d(vi, y) < d(vj, y): otherwise, if d(vj, y) ≤ d(vi, y) = r, then note that
r < rij, since the path Pij,1 from vij to vi has length at most rij. But
BG(y, r) ∩X = {vi, vj}, contradicting the minimality of rij. It follows that

(?) all vertices of Pij before vij are strictly closer to vi than to vj, and
symmetrically, all those after vij are closer to vj than to vi.

Suppose x is a vertex belonging to the intersection of paths Pi1j1 a Pi2j2

for some {i1, j1} 6= {i2, j2}. By symmetry, we can assume that d(x, vis) ≤
d(x, vjs) for s ∈ {1, 2}, and (?) implies that x lies on a shortest path from
visjs to vis ; therefore, d(visjs , x) + d(x, vis) = d(visjs , vis). By symmetry, we
can also assume that d(x, vi1) ≤ d(x, vi2). Using the triangle inequality, we
have

d(vi2j2 , vi1) ≤ d(vi2j2 , x)+d(x, vi1) ≤ d(vi2j2 , x)+d(x, vi2) = d(vi2j2 , vi2) ≤ ri2j2 .

Therefore vi1 ∈ BG(vi2j2 , ri2j2) ∩X = {vi2 , vj2}. If d(x, vi2) < d(x, vj2), then
d(x, vi1) < d(x, vj2), and thus i1 6= j2; it follows that i1 = i2. If d(x, vi2) =
d(x, vj2), then we can assume i1 = i2 by symmetry. Let i = i1 = i2. If
d(x, vi) = d(x, vjs) for some s ∈ {1, 2}, then

d(vij3−s , vjs) ≤ d(vij3−s , x)+d(x, vjs) = d(vij3−s , x)+d(x, vi) = d(vij3−s , vi) ≤ rij3−s ,

implying that vjs ∈ BG(vij3−s , rij3−s)∩X, which is a contradiction. Therefore,

(??) if x ∈ V (Pi1j1)∩ V (Pi2j2), then the labels can be chosen so that i1 = i2
and d(x, vis) < d(x, vjs) for s ∈ {1, 2}.

For i = 1, . . . , t, let

Xi = {x ∈ V (Pij) : j ∈ [t]\{i}, d(x, vi) ≤ d(x, vj), and if d(x, vi) = d(x, vj), then i < j}.

By (?), the sets Xi induce connected subgraphs of G, and by (??) the sets
Xi are pairwise disjoint. By contracting them we obtain a minor of Kt in G,
which is a contradiction.

Let us consider the following generalization of the dominating set. For
any function r : V (G)→ Z+

0 , let domr(G) denote the minimum size of a set
X ⊆ V (G) such that d(v,X) ≤ r(v) for every v ∈ V (G).

Corollary 6. For every positive integer t, there exists a polynomial-time al-
gorithm that for every Kt-minor-free graph G and every function r : V (G)→
Z+

0 returns a real number d satisfying d ≤ domr(G) = O(td log(td)).
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Proof. Consider the set system F = {BG(v, r(v)) : v ∈ V (G)}. Since F ⊆
BG, Lemma 5 implies that F has VC-dimension at most t−1. Note also that
domr(G) = τ(F). By Corollary 4 we can let d = τ ?(F) (the number d can
be determined in polynomial time by solving the linear program).
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