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A list assignment for a graph G is a function that to each vertex of G
assigns a set of colors. Given a list assignment L, an L-coloring is a function
ϕ such that

• ϕ(v) ∈ L(v) for every v ∈ V (G), and

• ϕ(u) 6= ϕ(v) for every uv ∈ E(G).
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The choosability χl(G) of a graph G is the smallest integer k such that G
can be L-colored for every assignment L of lists of size at least k to vertices
of G.

Observation 1.
χ(G) ≤ χl(G),

and there exist graphs with χ(G) < χl(G).

A graph G is d-degenerate if every subgraph of G has a vertex of degree
at most d.

Lemma 2. The following conditions are equivalent.
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(a) G is d-degenerate.

(b) There exists an ordering v1, . . . , vn of vertices of G such that for i =
1, . . . , n, the vertex vi has at most d neighbors among vi+1, vi+2, . . . ,
vn.

(c) There exists an acyclic orientation of G with maximum indegree at
most d.

Proof.

(a)⇒ (b) For i = 1, . . . , n, let vi be a vertex of G−{v1, . . . , vi−1} of degree
at most d.

(b)⇒ (c) For each edge vavb ∈ E(G), orient the edge towards vb if and only
if b < a.

(c)⇒ (a) Consider any subgraph H of G. Since the orientation is acyclic,
H contains a vertex v with no outgoing edges. Hence, the degree of v
in H is equal to its indegree, which is at most d.

Observation 3. If G is d-degenerate, then χl(G) ≤ d+ 1.

Observation 3 follows from the following more general result.

Lemma 4. Let G be a graph with an acyclic orientation. Let d+(v) denote
the degree of v in the orientation. If L is a list assignment for G such that
|L(v)| ≥ d+(v) + 1 for every v ∈ V (G), then G is L-colorable.

Proof. We proceed by induction on the number of vertices of G; hence, as-
sume that the claim holds for every proper subgraph of G. Since the ori-
entation is acyclic, there exists v ∈ V (G) with no outgoing edges. By the
induction hypothesis, G− v has an L-coloring ϕ. Let N be the set of neigh-
bors of v in G. We have |N | = d+(v) < |L(v)|, and thus there exists a color
c in L(v) \ {ϕ(v) : v ∈ N}. We can set ϕ(v) = c.

In general, small chromatic number does not imply degeneracy (e.g., bi-
partite graphs may have arbitrary minimum degree). However, every graph
with choosability at most k is 2O(k)-degenerate (Alon).

The condition that the orientation must be acyclic is somewhat restrictive,
and sometimes there exists an orientation with smaller maximum indegree
that is not acyclic.
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Lemma 5. Let d ≥ 0 be an integer. A graph G has an orientation (not
necessarily acyclic) with maximum indegree at most d if and only if every
subgraph H of G satisfies |E(H)| ≤ d|V (H)|.

Proof. If G has an orientation with maximum indegree at most d, then so
does every subgraph H of G. Each edge of H points towards some vertex,
and thus |E(H)| ≤ d|V (H)|.

Suppose now that every subgraph H of G satisfies |E(H)| ≤ d|V (H)|.
Let G′ be the bipartite graph constructed as follows. The vertex set of G′ is
({1, . . . , d}×V (G))∪E(G) (that is, G′ has a vertex for every edge of G, and
d vertices for every vertex of G). For each edge e = uv of G, the graph G′

contains the edges (i, u)e and (i, v)e for every i = 1, . . . , d.
Let X be any subset of E(G), and let N(X) be the set of neighbors

of vertices of X in G′. Let H be the subgraph of G with vertex set {v :
(i, v) ∈ N(X) for i = 1, . . . , d} and edge set X. Observe that |N(X)| =
d|V (H)| ≥ |E(H)| = |X|.

By Hall’s theorem, there exists a matching M in G′ that covers E(G). If
(i, v)e ∈M for any i ∈ {1, . . . , d}, orient the edge e of G towards v. Note that
every edge of G is oriented in exactly one direction, and that the maximum
indegree of G in this orientation is at most d.

For example, every planar graph on n vertices has at most 3n edges, and
thus it has an orientation with maximum indegree at most 3; while planar
graphs in general are only 5-degenerate. Having an orientation with maxi-
mum indegree at most d does not always imply that the choosability is at
most d + 1; e.g., odd cycles have an orientation with maximum indegree at
most 1 and choosability 3. We now study two sufficient conditions guaran-
teeing the bound on choosability.

1 Kernels

A kernel in a directed graph G is a non-empty independent set S ⊆ V (G)
such that every vertex v ∈ V (G) \ S has an in-neighbor in S.

• The cyclic orientation of an even cycle has a kernel (every second ver-
tex).

• The cyclic orientation of an odd cycle does not have a kernel.

Lemma 6. Let G be a directed graph such that every induced subgraph of G
has a kernel. If L is a list assignment for G such that |L(v)| ≥ d+(v) + 1 for
every v ∈ V (G), then G is L-colorable.
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Proof. We proceed by induction on the number of vertices of G; hence, as-
sume that the claim holds for every proper induced subgraph of G. Let v be
any vertex of G. Since |L(v)| ≥ d+(v) + 1 ≥ 1, there exists a color c ∈ L(v).
Let H be the subgraph of G induced by vertices whose list contains c. Let
S be a kernel of H. Let G′ = G − S and let L′(u) = L(u) \ {c} for every
u ∈ V (G′).

Consider a vertex u ∈ V (G′). If c 6∈ L(u), then |L′(u)| = |L(u)| ≥
d+G(u)+1, and thus |L′(u)| is greater than the indegree of u in G′. If c ∈ L(u),
then u ∈ V (H), and thus u has an in-neighbor in the kernel S. Therefore,
|L′(u)| = |L(u)|−1 ≥ d+G(u) > d+G′(u). Therefore, by the induction hypothesis
there exists an L′-coloring ϕ of G′. We can set ϕ(u) = c for every u ∈ S.

Lemma 7. Any orientation of a bipartite graph has a kernel.

Proof. We proceed by induction on the number of vertices of G; hence, as-
sume that the claim holds for every proper induced subgraph of G. Suppose
that G contains a vertex v with no in-neighbors. Let N be the set of neigh-
bors of v. By the induction hypothesis, G− ({v}∪N) has a kernel S ′. Then,
S ′ ∪ {v} is a kernel of G.

Hence, assume that every vertex of G has at least one in-neighbor. Let
ψ : V (G) → {1, 2} be a proper 2-coloring of G. Then the set of vertices
colored by 1 is a kernel, as every vertex colored by 2 has an in-neighbor
which is colored by 1.

By Euler’s formula, a bipartite planar graph on n vertices has at most 2n
edges. Hence, Lemmas 5, 6 and 7 imply that every bipartite planar graph is
3-choosable.

2 Combinatorial Nullstellensatz

We need a basic result from algebra.

Theorem 8. Every non-zero polynomial of degree at most n has at most n
distinct roots.

We prove the following generalization of the claim.

Lemma 9. Let p(x1, . . . , xk) be a polynomial and let n1, . . . , nk be integers
such that the maximum degree of xi in p is at most ni for i = 1, . . . , k. For
i = 1, . . . , k, let Si be a set of complex numbers of size at least ni + 1. If p is
non-zero, then there exist a1 ∈ S1, . . . , ak ∈ Sk such that

p(a1, . . . , ak) 6= 0.
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Proof. We prove the claim by induction on k. For k = 1, the claim follows
from Theorem 8. Suppose that k ≥ 2. We can write

p(x1, . . . , xk) = p0(x1, . . . , xk−1)+p1(x1, . . . , xk−1)xk+p2(x1, . . . , xk−1)x
2
k+. . .+pnk

(x1, . . . , xk−1)x
nk
k

for some polynomials p0, . . . , pnk
. Since p is non-zero, there exists m ∈

{0, . . . , nk} such that pm is non-zero. By the induction hypothesis, there exist
a1 ∈ S1, . . . , ak−1 ∈ Sk−1 such that pm(a1, . . . , ak−1) 6= 0. For i = 0, . . . , nk,
let Ai = pi(a1, . . . , kk−1). Then q(x) = A0 +A1x+ . . .+Ank

xnk is a non-zero
polynomial of degree at most nk, and by Theorem 8, there exists ak ∈ Sk

such that
0 6= q(ak) = p(a1, . . . , ak).

For a directed graph G on vertices v1, . . . , vn, let

pG(x1, . . . , xn) =
∏

(vi,vj)∈E(G)

(xj − xi).

Note that a function ϕ is a proper coloring ofG if and only if pG(ϕ(v1), . . . , ϕ(vn)) 6=
0. The total degree of term xm1

1 xm2
2 . . . xmn

n is m1 +m2 + . . .+mn. Note that
every term in pG has total degree |E(G)|.

Theorem 10 (Alon, Tarsi). Let G be a directed graph on vertices v1, . . . ,
vn, and let L be an assignment of lists (of complex number) to vertices of
G such that |L(vi)| ≥ d+(vi) + 1 for i = 1, . . . , n. If the coefficient of pG at∏n

i=1 x
d+(vi)
i is non-zero, then G has an L-coloring.

Proof. For i = 1 . . . , n, let mi = d+(vi). Without loss of generality, we
can assume that the set L(vi) has size exactly mi + 1. Hence, pi(x) =∏

a∈L(vi)(x− a) is a polynomial of degree mi + 1. Let qi(x) = xmi+1 − pi(x).

Observe that qi(x) is a polynomial of degree at most mi. Since pi(a) = 0 for
every a ∈ L(vi), we conclude that qi(a) = ami+1 for every a ∈ L(vi).

Let p be the polynomial obtained from pG by repeatedly substituting qi for
xmi+1
i , for each i = 1, . . . , n. Hence, p is a polynomial in that xi has degree

at most mi, and p(a1, . . . , an) = pG(a1, . . . , an) for every a1 ∈ L(v1), . . . ,
an ∈ L(vn). Furthermore, p and pG have the same coefficient at

∏n
i=1 x

mi
i ,

since we cannot perform any substitution in this term, all terms in pG have
total degree |E(G)|, and all terms created by the substitutions have strictly
smaller total degree. Therefore, p is a non-zero polynomial.

By Lemma 9, there exist a1 ∈ L(v1), . . . , an ∈ L(vn) such that p(a1, . . . , an) 6=
0. Therefore, pG(a1, . . . , an) 6= 0, and thus the function ϕ defined by ϕ(vi) =
ai for i = 1, . . . , n is an L-coloring of G.
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To apply Theorem 10, we need a way to determine the value of the coef-

ficient of pG at
∏n

i=1 x
d+(vi)
i . A subgraph H of a directed graph G is eulerian

if the indegree of each vertex of H is equal to its outdegree. It is spanning if
V (H) = V (G). We say that H is even if |E(H)| is even and odd if |E(H)| is
odd.

Lemma 11. Let G be a directed graph on vertices v1, . . . , vn. The absolute

value of the coefficient of pG at
∏n

i=1 x
d+(vi)
i is equal to the difference between

the number of even and odd spanning eulerian subgraphs of G.

Proof. Let D be any orientation of G. Let |D4G| denote the number of
edges that have opposite orientations in D and G. Let xD =

∏
(vi,vj)∈E(G) xj.

We interpret D as encoding a choice from the terms in the product defining
pG. Thus,

p(G) =
∑

D orientation of G

(−1)|D4G|xD.

Let D denote the set of orientations D of G such that vi has indegree d+(vi)
for i = 1, . . . , n. Let Do = {D ∈ D : |D4G| is odd} and De = {D ∈ D :
|D4G| is even}. Observe that the absolute value of the coefficient of pG at∏n

i=1 x
d+(vi)
i is ||De| − |Do||. For each D ∈ D, the subgraph of G with edge

set consisting of the edges with opposite orientations in D and G is eulerian,
and conversely, reversing the orientation of edges in an eulerian subgraph of
G results in an orientation belonging to D. Therefore, |De| is equal to the
number of spanning even eulerian subgraphs of G, and |Do| is equal to the
number of spanning odd eulerian subgraphs of G.

Corollary 12. Let G be a directed graph on vertices v1, . . . , vn, and let
L be an assignment of lists (of complex number) to vertices of G such that
|L(vi)| ≥ d+(vi) + 1 for i = 1, . . . , n. If G has different number of even and
odd spanning eulerian subgraphs, then G has an L-coloring.

As a special case, if G is bipartite, then it has no odd eulerian subgraphs,
and at least one even eulerian subgraph (with no edges), and thus Corol-
lary 12 applies. This gives another proof that every bipartite planar graph
is 3-choosable.
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3 Exercises

1. (??) Prove that any acyclic orientation has a kernel.

2. (?) Find an example of a graph with orientation for that we can apply
Corollary 12, but not Lemma 6 (i.e., has different number of even and
odd spanning eulerian subgraphs, but some induced subgraph does not
have a kernel).

3. (??) Find an example of a graph with orientation for that we can apply
Lemma 6, but not Corollary 12 (i.e., every induced subgraph has a
kernel, but the number of even and odd spanning eulerian subgraphs
is the same).

4. (??) Let G be a connected graph with minimum degree at least two.
Prove that G is 2-choosable if and only if G is either an even cycle,
or the union of three paths of even length with shared endpoints such
that two of the paths have length two.
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