Connectivity and linkedness

Zdeněk Dvořák

September 14, 2015

1 Disjoint paths in well-connected graphs

Let G be a graph and let $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k} \in V(G)$ be pairwise distinct vertices. Pairwise vertex-disjoint paths P_{1}, \ldots, P_{k}, such that for $i=1, \ldots, k$, the path P_{i} joins s_{i} with t_{i}, form an $\vec{s}-\vec{t}$-linkage. A graph G is k-linked if for all pairwise distinct vertices $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k} \in V(G)$, there exists an $\vec{s}-\vec{t}$-linkage. Let us recall Menger's theorem.

Theorem 1. Let $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}$ be pairwise distinct vertices of a graph G. Suppose that for all $A, B \subseteq G$ such that $G=A \cup B,\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V(A)$, and $\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(B)$, we have $|V(A) \cap V(B)| \geq k$. Then G contains pairwise vertex-disjoint paths P_{1}, \ldots, P_{k}, such that for $i=1, \ldots, k$, the path P_{i} joins s_{i} with one of the vertices t_{1}, \ldots, t_{n}.

Unlike k-linkedness, Menger's theorem does not allow us to prescribe the ends of the paths. Indeed, k-connectivity does not imply k-linkedness: even 5 -connected planar graphs are not 2 -linked.

Returning to a postponed topic from the last lecture, we will show the following claim.

Lemma 2. For any integer $k \geq 1$, if G is $2 k$-connected and contains $K_{4 k}$ as a minor, then G is k-linked.

Instead of Lemma 2, we prove the following stronger claim.
Lemma 3. Let $k \geq 1$ be an integer, let G be a graph, let $S=\left\{s_{1}, \ldots, s_{k}, t_{1}\right.$, $\left.\ldots, t_{k}\right\} \subseteq V(G)$ be pairwise distinct, and let $H_{1}, \ldots, H_{4 k}$ be pairwise vertexdisjoint non-null subgraphs of G satisfying the following conditions.
(a) For $i=1, \ldots, 4 k$, the subgraph H_{i} either is connected or every connected component of H_{i} intersects S.
(b) For $1 \leq i<j \leq 4 k$, either G contains an edge with one end in H_{i} and the other end in H_{j}, or both H_{i} and H_{j} intersect S.
(c) If $A, B \subseteq G, G=A \cup B, S \subseteq V(A)$ and there exists $m \in\{1, \ldots, 4 k\}$ such that $H_{m} \subseteq B-V(A)$, then $|V(A) \cap V(B)| \geq 2 k$.

Then G contains an $\vec{s}-\vec{t}$-linkage.
Lemma 3 implies Lemma 2: Let $H_{1}, \ldots, H_{4 k}$ be the connected subgraphs of G contracted in order to create the $K_{4 k}$ minor. Hence, assumptions (a) and (b) hold. The assumption (c) holds by $2 k$-connectivity of G. Let us now prove Lemma 3.

Proof. We proceed by induction on $|V(G)|+|E(G)|$; in particular, we assume that Lemma 3 holds for all proper minors of G.

Suppose first that the condition (c) holds sharply for some nontrivial $A, B \subseteq G$, that is, $G=A \cup B, G \neq B, S \subseteq V(A),|V(A) \cap V(B)|=2 k$, and there exists $m \in\{1, \ldots, 4 k\}$ such that $H_{m} \subseteq B-V(A)$. Let $S^{\prime}=V(A) \cap$ $V(B)$ a $H_{j}^{\prime}=H_{j} \cap B$ for $1 \leq j \leq 4 k$. Menger's theorem and condition (c) implies that there exist pairwise vertex-disjoint paths $S_{1}, \ldots, S_{k}, T_{1}, \ldots, T_{k} \subset$ G such that each of them has one end in S and the other end in S^{\prime}. We can assume that $s_{j} \in V\left(S_{j}\right)$ and $t_{j} \in V\left(T_{j}\right)$ for $j=1, \ldots, k$. Let s_{j}^{\prime} denote the end of S_{j} in S^{\prime}, and let t_{j}^{\prime} denote the end of T_{j} in S^{\prime}.

Since $S \subset V(A)$ and $H_{m} \subseteq B-V(A)$, it follows that H_{m} is disjoint with S and $H_{m}^{\prime}=H_{m}$. For $j=1, \ldots, 4 k$ different from m, the condition (b) implies that G contains an edge e joining H_{m} with H_{j}. Since one end of e lies in $B-V(A)$, we have $e \in E(B)$, and thus $H_{j}^{\prime}=H_{j} \cap B$ is non-null.

Let us now argue that B, S^{\prime}, and $H_{1}^{\prime}, \ldots, H_{4 k}^{\prime}$ satisfy the assumptions of Lemma 3.
(a) If H_{j}^{\prime} contains a component C disjoint with S^{\prime}, then C is a component of H_{j} as well and C is disjoint with S. By the condition (a) for G, we conclude that H_{j} is connected. Hence, $H_{j}=C$, and thus $H_{j}^{\prime}=C$ is connected.
(b) Suppose that say H_{j}^{\prime} does not intersect S^{\prime}. By the preceding argument, $H_{j}^{\prime}=H_{j}$ is connected and H_{j} is disjoint with S. By the condition (b) for G, G contains an edge e with one end in H_{j} and the other end in H_{i}. Since $H_{j} \subseteq B \backslash V(A)$, we have $e \in E(B)$, and thus B contains an edge with one end in H_{j}^{\prime} and the other end in H_{i}^{\prime}.
(c) Suppose that $B=A^{\prime} \cup B^{\prime}, S^{\prime} \subseteq V\left(A^{\prime}\right)$ and there exists $m^{\prime} \in\{1, \ldots, 4 k\}$ such that $H_{m^{\prime}}^{\prime} \subseteq B^{\prime}-V\left(A^{\prime}\right)$. By the preceding argument, $H_{m^{\prime}}^{\prime}=H_{m^{\prime}}$.

Note that $G=\left(A \cup A^{\prime}\right) \cup B^{\prime}$ and $S \subseteq V\left(A \cup A^{\prime}\right)$, hence the condition (c) for G gives $\left|V\left(A \cup A^{\prime}\right) \cap V\left(B^{\prime}\right)\right| \geq 2 k$. However, $V\left(A \cup A^{\prime}\right) \cap V\left(B^{\prime}\right)=$ $V\left(A^{\prime}\right) \cap V\left(B^{\prime}\right)$, since $V(A) \cap V\left(B^{\prime}\right) \subseteq V(A) \cap V(B)=S \subseteq V\left(A^{\prime}\right)$.

Since $B \subsetneq G$, we can apply induction to B. Therefore, there exists an $\overrightarrow{s^{\prime}}-\overrightarrow{t^{\prime}}$-linkage $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ in B. We obtain an $\vec{s}-\vec{t}$-linkage in G by letting $P_{j}=S_{j} \cup P_{j}^{\prime} \cup T_{j}$ for $j=1, \ldots, k$.

Hence, we can assume a stronger version of (c):
(\star) If $A \subseteq G$ and $B \subsetneq G$ satisfy $G=A \cup B, S \subseteq V(A)$ a $H_{m} \subseteq B-V(A)$ for some $m \in\{1, \ldots, 4 k\}$, then $|V(A) \cap V(B)| \geq 2 k+1$.

Consider any edge $e \in E(G)$. If both ends of e belong to S, then $G-e$ satisfies the assumptions of Lemma 3.
(a) If removing e disconnects some component of H_{i}, then both resulting components contain a vertex of S.
(b) If e is an edge between H_{i} and H_{j}, then both H_{i} and H_{j} intersect S.
(c) Trivially follows from (c) for G.

By the induction hypothesis, $G-e$ contains an $\vec{s}-\vec{t}$-linkage, and so does G. Hence, we can assume that e has at least one end outside of S.

Suppose that the ends of e do not belong to distinct subgraphs H_{i} and H_{j}, that is, either both ends of e belong to $V\left(H_{i}\right)$ for some $i \in\{1, \ldots, 4 k\}$, or at least one end belongs to $V(G) \backslash\left(V\left(H_{1}\right) \cup \ldots \cup V\left(H_{4 k}\right)\right)$. Consider the graph G / e with subgraphs $H_{j}^{\prime}=H_{j} / e$ for $j=1, \ldots, 4 k$. Assumptions (a) and (b) trivially hold. Suppose that $G / e=A^{\prime} \cup B^{\prime}$, where $S \subseteq V\left(A^{\prime}\right)$ and $H_{m}^{\prime} \subseteq B^{\prime}-V\left(A^{\prime}\right)$ for some $m \in\{1, \ldots, 4 k\}$. Let A and B be subgraphs of G such that $G=A \cup B, A^{\prime}=A / e$ and $B^{\prime}=B / e$. Clearly, $S \subseteq V(A)$ and $H_{m} \subseteq B-V(A)$. If $B=G$, then $B^{\prime}=G / e$ and $\left|V\left(A^{\prime}\right) \cap V\left(B^{\prime}\right)\right| \geq$ $|S|=2 k$. If $B \neq G$, then by (\star) we have $|V(A) \cap V(B)| \geq 2 k+1$, and thus $\left|V\left(A^{\prime}\right) \cap V\left(B^{\prime}\right)\right| \geq|V(A) \cap V(B)|-1 \geq 2 k$. Hence, we can apply induction to G / e and obtain an $\vec{s}-\vec{t}$-linkage in G / e. Decontracting the edge e results in an $\vec{s}-\vec{t}$-linkage in G.

Similarly, we can delete any vertices not contained in $S \cup V\left(H_{1}\right) \cup \ldots \cup$ $V\left(H_{4 k}\right)$. Therefore, we can assume that S is an independent set, every edge of G joins vertices in some distinct subgraphs H_{i} and H_{j}, and $V(G)=S \cup$ $V\left(H_{1}\right) \cup \ldots \cup V\left(H_{4 k}\right)$. For $i=1, \ldots, 4 k$, the set $V\left(H_{i}\right)$ is independent, and by the assumption (a), either $V\left(H_{i}\right) \subseteq S$, or $\left|V\left(H_{i}\right)\right|=1$. The assumption (b) impies that $G-S$ is a clique.

Now, let us prove the following:
(**) For every $S^{\prime} \subseteq S$, there exist at least $\left|S^{\prime}\right|$ vertices of G with a neighbor in S^{\prime}.

Indeed, consider any such set $S^{\prime} \subseteq S$, let Y be the set of vertices of G with a neighbor in S^{\prime}, and let $A=G[S \cup Y]$ and $B=G-S^{\prime}$. Then $G=A \cup B$ and $S \subseteq V(A)$. If there exists no $m \in\{1, \ldots, 4 k\}$ such that $H_{m} \subseteq B \backslash V(A)$, then $V(G)=V(A)$. However, $|V(G)| \geq 4 k$ and $|V(A)|=|S|+|Y|=$ $2 k+|Y|$, and thus $|Y| \geq 2 k \geq\left|S^{\prime}\right|$ as required. If $H_{m} \subseteq B \backslash V(A)$ for some $m \in\{1, \ldots, 4 k\}$, then the assumption (c) implies that $|V(A) \cap V(B)| \geq 2 k$. However, $|V(A) \cap V(B)|=\left|\left(S \backslash S^{\prime}\right) \cup Y\right|=2 k-\left|S^{\prime}\right|+|Y|$, and thus again we get $|Y| \geq\left|S^{\prime}\right|$.

By Hall's theorem, ($* \star$) implies that there exists a matching $M \subseteq G$ of size $2 k$ such that every edge of M has exactly one end in S. The matching M together with the edges of the clique $G-S$ contains an $\vec{s}-\vec{t}$-linkage.

2 Exercises

1. ($\star \star \star$) Prove that every 4 -connected non-planar graph is 2-linked.
2. ($\star *$) A graph G is edge k-linked if for every pairwise-distinct vertices $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}$, there exists pairwise edge-disjoint paths in G joinining s_{1} with t_{1}, s_{2} with t_{2}, \ldots, and s_{k} with t_{k}. Show that if G is 4 -edge-connected, then G is edge 2 -linked.
3. (\star) Find an example of a 2-edge-connected graph that is not edge 2linked.
