Connectivity and linkedness

Zdeněk Dvořák

September 14, 2015

1 Disjoint paths in well-connected graphs

Let G be a graph and let $s_1, \ldots, s_k, t_1, \ldots, t_k \in V(G)$ be pairwise distinct vertices. Pairwise vertex-disjoint paths P_1, \ldots, P_k , such that for $i = 1, \ldots, k$, the path P_i joins s_i with t_i , form an $\vec{s} - \vec{t}$ -linkage. A graph G is k-linked if for all pairwise distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k \in V(G)$, there exists an $\vec{s} - \vec{t}$ -linkage. Let us recall Menger's theorem.

Theorem 1. Let $s_1, \ldots, s_k, t_1, \ldots, t_k$ be pairwise distinct vertices of a graph G. Suppose that for all $A, B \subseteq G$ such that $G = A \cup B, \{s_1, \ldots, s_k\} \subseteq V(A)$, and $\{t_1, \ldots, t_k\} \subseteq V(B)$, we have $|V(A) \cap V(B)| \ge k$. Then G contains pairwise vertex-disjoint paths P_1, \ldots, P_k , such that for $i = 1, \ldots, k$, the path P_i joins s_i with one of the vertices t_1, \ldots, t_n .

Unlike k-linkedness, Menger's theorem does not allow us to prescribe the ends of the paths. Indeed, k-connectivity does not imply k-linkedness: even 5-connected planar graphs are not 2-linked.

Returning to a postponed topic from the last lecture, we will show the following claim.

Lemma 2. For any integer $k \ge 1$, if G is 2k-connected and contains K_{4k} as a minor, then G is k-linked.

Instead of Lemma 2, we prove the following stronger claim.

Lemma 3. Let $k \ge 1$ be an integer, let G be a graph, let $S = \{s_1, \ldots, s_k, t_1, \ldots, t_k\} \subseteq V(G)$ be pairwise distinct, and let H_1, \ldots, H_{4k} be pairwise vertexdisjoint non-null subgraphs of G satisfying the following conditions.

(a) For i = 1, ..., 4k, the subgraph H_i either is connected or every connected component of H_i intersects S.

- (b) For $1 \le i < j \le 4k$, either G contains an edge with one end in H_i and the other end in H_j , or both H_i and H_j intersect S.
- (c) If $A, B \subseteq G$, $G = A \cup B$, $S \subseteq V(A)$ and there exists $m \in \{1, \dots, 4k\}$ such that $H_m \subseteq B - V(A)$, then $|V(A) \cap V(B)| \ge 2k$.

Then G contains an $\vec{s} - \vec{t}$ -linkage.

Lemma 3 implies Lemma 2: Let H_1, \ldots, H_{4k} be the connected subgraphs of G contracted in order to create the K_{4k} minor. Hence, assumptions (a) and (b) hold. The assumption (c) holds by 2k-connectivity of G. Let us now prove Lemma 3.

Proof. We proceed by induction on |V(G)| + |E(G)|; in particular, we assume that Lemma 3 holds for all proper minors of G.

Suppose first that the condition (c) holds sharply for some nontrivial $A, B \subseteq G$, that is, $G = A \cup B$, $G \neq B$, $S \subseteq V(A)$, $|V(A) \cap V(B)| = 2k$, and there exists $m \in \{1, \ldots, 4k\}$ such that $H_m \subseteq B - V(A)$. Let $S' = V(A) \cap V(B)$ a $H'_j = H_j \cap B$ for $1 \leq j \leq 4k$. Menger's theorem and condition (c) implies that there exist pairwise vertex-disjoint paths $S_1, \ldots, S_k, T_1, \ldots, T_k \subset G$ such that each of them has one end in S and the other end in S'. We can assume that $s_j \in V(S_j)$ and $t_j \in V(T_j)$ for $j = 1, \ldots, k$. Let s'_j denote the end of S_j in S', and let t'_j denote the end of T_j in S'.

Since $S \subset V(A)$ and $H_m \subseteq B - V(A)$, it follows that H_m is disjoint with S and $H'_m = H_m$. For $j = 1, \ldots, 4k$ different from m, the condition (b) implies that G contains an edge e joining H_m with H_j . Since one end of e lies in B - V(A), we have $e \in E(B)$, and thus $H'_j = H_j \cap B$ is non-null.

Let us now argue that B, S', and H'_1, \ldots, H'_{4k} satisfy the assumptions of Lemma 3.

- (a) If H'_j contains a component C disjoint with S', then C is a component of H_j as well and C is disjoint with S. By the condition (a) for G, we conclude that H_j is connected. Hence, $H_j = C$, and thus $H'_j = C$ is connected.
- (b) Suppose that say H'_j does not intersect S'. By the preceding argument, H'_j = H_j is connected and H_j is disjoint with S. By the condition (b) for G, G contains an edge e with one end in H_j and the other end in H_i. Since H_j ⊆ B \ V(A), we have e ∈ E(B), and thus B contains an edge with one end in H'_j and the other end in H'_i.
- (c) Suppose that $B = A' \cup B', S' \subseteq V(A')$ and there exists $m' \in \{1, \ldots, 4k\}$ such that $H'_{m'} \subseteq B' V(A')$. By the preceding argument, $H'_{m'} = H_{m'}$.

Note that $G = (A \cup A') \cup B'$ and $S \subseteq V(A \cup A')$, hence the condition (c) for G gives $|V(A \cup A') \cap V(B')| \ge 2k$. However, $V(A \cup A') \cap V(B') = V(A') \cap V(B')$, since $V(A) \cap V(B') \subseteq V(A) \cap V(B) = S \subseteq V(A')$.

Since $B \subsetneq G$, we can apply induction to B. Therefore, there exists an $\vec{s'} - \vec{t'}$ -linkage P'_1, \ldots, P'_k in B. We obtain an $\vec{s} - \vec{t}$ -linkage in G by letting $P_j = S_j \cup P'_j \cup T_j$ for $j = 1, \ldots, k$.

Hence, we can assume a stronger version of (c):

(*) If $A \subseteq G$ and $B \subsetneq G$ satisfy $G = A \cup B$, $S \subseteq V(A)$ a $H_m \subseteq B - V(A)$ for some $m \in \{1, \dots, 4k\}$, then $|V(A) \cap V(B)| \ge 2k + 1$.

Consider any edge $e \in E(G)$. If both ends of e belong to S, then G - e satisfies the assumptions of Lemma 3.

- (a) If removing e disconnects some component of H_i , then both resulting components contain a vertex of S.
- (b) If e is an edge between H_i and H_j , then both H_i and H_j intersect S.
- (c) Trivially follows from (c) for G.

By the induction hypothesis, G - e contains an $\vec{s} - \vec{t}$ -linkage, and so does G. Hence, we can assume that e has at least one end outside of S.

Suppose that the ends of e do not belong to distinct subgraphs H_i and H_j , that is, either both ends of e belong to $V(H_i)$ for some $i \in \{1, \ldots, 4k\}$, or at least one end belongs to $V(G) \setminus (V(H_1) \cup \ldots \cup V(H_{4k}))$. Consider the graph G/e with subgraphs $H'_j = H_j/e$ for $j = 1, \ldots, 4k$. Assumptions (a) and (b) trivially hold. Suppose that $G/e = A' \cup B'$, where $S \subseteq V(A')$ and $H'_m \subseteq B' - V(A')$ for some $m \in \{1, \ldots, 4k\}$. Let A and B be subgraphs of G such that $G = A \cup B$, A' = A/e and B' = B/e. Clearly, $S \subseteq V(A)$ and $H_m \subseteq B - V(A)$. If B = G, then B' = G/e and $|V(A') \cap V(B')| \ge |S| = 2k$. If $B \neq G$, then by (\star) we have $|V(A) \cap V(B)| \ge 2k + 1$, and thus $|V(A') \cap V(B')| \ge |V(A) \cap V(B)| - 1 \ge 2k$. Hence, we can apply induction to G/e and obtain an $\vec{s} - \vec{t}$ -linkage in G/e. Decontracting the edge e results in an $\vec{s} - \vec{t}$ -linkage in G.

Similarly, we can delete any vertices not contained in $S \cup V(H_1) \cup \ldots \cup V(H_{4k})$. Therefore, we can assume that S is an independent set, every edge of G joins vertices in some distinct subgraphs H_i and H_j , and $V(G) = S \cup V(H_1) \cup \ldots \cup V(H_{4k})$. For $i = 1, \ldots, 4k$, the set $V(H_i)$ is independent, and by the assumption (a), either $V(H_i) \subseteq S$, or $|V(H_i)| = 1$. The assumption (b) imples that G - S is a clique.

Now, let us prove the following:

(**) For every $S' \subseteq S$, there exist at least |S'| vertices of G with a neighbor in S'.

Indeed, consider any such set $S' \subseteq S$, let Y be the set of vertices of G with a neighbor in S', and let $A = G[S \cup Y]$ and B = G - S'. Then $G = A \cup B$ and $S \subseteq V(A)$. If there exists no $m \in \{1, \ldots, 4k\}$ such that $H_m \subseteq B \setminus V(A)$, then V(G) = V(A). However, $|V(G)| \ge 4k$ and |V(A)| = |S| + |Y| =2k + |Y|, and thus $|Y| \ge 2k \ge |S'|$ as required. If $H_m \subseteq B \setminus V(A)$ for some $m \in \{1, \ldots, 4k\}$, then the assumption (c) implies that $|V(A) \cap V(B)| \ge 2k$. However, $|V(A) \cap V(B)| = |(S \setminus S') \cup Y| = 2k - |S'| + |Y|$, and thus again we get $|Y| \ge |S'|$.

By Hall's theorem, $(\star\star)$ implies that there exists a matching $M \subseteq G$ of size 2k such that every edge of M has exactly one end in S. The matching M together with the edges of the clique G - S contains an $\vec{s} - \vec{t}$ -linkage. \Box

2 Exercises

- 1. $(\star \star \star)$ Prove that every 4-connected non-planar graph is 2-linked.
- 2. $(\star\star)$ A graph G is *edge k-linked* if for every pairwise-distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k$, there exists pairwise edge-disjoint paths in G joining s_1 with t_1, s_2 with t_2, \ldots , and s_k with t_k . Show that if G is 4-edge-connected, then G is edge 2-linked.
- 3. (*) Find an example of a 2-edge-connected graph that is not edge 2-linked.