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September 14, 2015

1 Disjoint paths in well-connected graphs

Let G be a graph and let s1, . . . , sk, t1, . . . , tk ∈ V (G) be pairwise distinct
vertices. Pairwise vertex-disjoint paths P1, . . . , Pk, such that for i = 1, . . . , k,
the path Pi joins si with ti, form an ~s − ~t-linkage. A graph G is k-linked if
for all pairwise distinct vertices s1, . . . , sk, t1, . . . , tk ∈ V (G), there exists an
~s− ~t-linkage. Let us recall Menger’s theorem.

Theorem 1. Let s1, . . . , sk, t1, . . . , tk be pairwise distinct vertices of a graph
G. Suppose that for all A,B ⊆ G such that G = A∪B, {s1, . . . , sk} ⊆ V (A),
and {t1, . . . , tk} ⊆ V (B), we have |V (A) ∩ V (B)| ≥ k. Then G contains
pairwise vertex-disjoint paths P1, . . . , Pk, such that for i = 1, . . . , k, the path
Pi joins si with one of the vertices t1, . . . , tn.

Unlike k-linkedness, Menger’s theorem does not allow us to prescribe the
ends of the paths. Indeed, k-connectivity does not imply k-linkedness: even
5-connected planar graphs are not 2-linked.

Returning to a postponed topic from the last lecture, we will show the
following claim.

Lemma 2. For any integer k ≥ 1, if G is 2k-connected and contains K4k as
a minor, then G is k-linked.

Instead of Lemma 2, we prove the following stronger claim.

Lemma 3. Let k ≥ 1 be an integer, let G be a graph, let S = {s1, . . . , sk, t1,
. . . , tk} ⊆ V (G) be pairwise distinct, and let H1, . . . , H4k be pairwise vertex-
disjoint non-null subgraphs of G satisfying the following conditions.

(a) For i = 1, . . . , 4k, the subgraph Hi either is connected or every con-
nected component of Hi intersects S.
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(b) For 1 ≤ i < j ≤ 4k, either G contains an edge with one end in Hi and
the other end in Hj, or both Hi and Hj intersect S.

(c) If A,B ⊆ G, G = A ∪ B, S ⊆ V (A) and there exists m ∈ {1, . . . , 4k}
such that Hm ⊆ B − V (A), then |V (A) ∩ V (B)| ≥ 2k.

Then G contains an ~s− ~t-linkage.

Lemma 3 implies Lemma 2: Let H1, . . . , H4k be the connected subgraphs
of G contracted in order to create the K4k minor. Hence, assumptions (a)
and (b) hold. The assumption (c) holds by 2k-connectivity of G. Let us now
prove Lemma 3.

Proof. We proceed by induction on |V (G)|+|E(G)|; in particular, we assume
that Lemma 3 holds for all proper minors of G.

Suppose first that the condition (c) holds sharply for some nontrivial
A,B ⊆ G, that is, G = A ∪B, G 6= B, S ⊆ V (A), |V (A) ∩ V (B)| = 2k, and
there exists m ∈ {1, . . . , 4k} such that Hm ⊆ B − V (A). Let S ′ = V (A) ∩
V (B) a H ′

j = Hj ∩ B for 1 ≤ j ≤ 4k. Menger’s theorem and condition (c)
implies that there exist pairwise vertex-disjoint paths S1, . . . , Sk, T1, . . . , Tk ⊂
G such that each of them has one end in S and the other end in S ′. We can
assume that sj ∈ V (Sj) and tj ∈ V (Tj) for j = 1, . . . , k. Let s′j denote the
end of Sj in S ′, and let t′j denote the end of Tj in S ′.

Since S ⊂ V (A) and Hm ⊆ B − V (A), it follows that Hm is disjoint with
S and H ′

m = Hm. For j = 1, . . . , 4k different from m, the condition (b)
implies that G contains an edge e joining Hm with Hj. Since one end of e
lies in B − V (A), we have e ∈ E(B), and thus H ′

j = Hj ∩B is non-null.
Let us now argue that B, S ′, and H ′

1, . . . , H ′
4k satisfy the assumptions of

Lemma 3.

(a) If H ′
j contains a component C disjoint with S ′, then C is a component

of Hj as well and C is disjoint with S. By the condition (a) for G, we
conclude that Hj is connected. Hence, Hj = C, and thus H ′

j = C is
connected.

(b) Suppose that say H ′
j does not intersect S ′. By the preceding argument,

H ′
j = Hj is connected and Hj is disjoint with S. By the condition (b)

for G, G contains an edge e with one end in Hj and the other end in
Hi. Since Hj ⊆ B \ V (A), we have e ∈ E(B), and thus B contains an
edge with one end in H ′

j and the other end in H ′
i.

(c) Suppose that B = A′∪B′, S ′ ⊆ V (A′) and there exists m′ ∈ {1, . . . , 4k}
such that H ′

m′ ⊆ B′ − V (A′). By the preceding argument, H ′
m′ = Hm′ .
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Note that G = (A∪A′)∪B′ and S ⊆ V (A∪A′), hence the condition (c)
for G gives |V (A ∪ A′) ∩ V (B′)| ≥ 2k. However, V (A ∪ A′) ∩ V (B′) =
V (A′) ∩ V (B′), since V (A) ∩ V (B′) ⊆ V (A) ∩ V (B) = S ⊆ V (A′).

Since B ( G, we can apply induction to B. Therefore, there exists an
~s′ − ~t′-linkage P ′

1, . . . , P ′
k in B. We obtain an ~s − ~t-linkage in G by letting

Pj = Sj ∪ P ′
j ∪ Tj for j = 1, . . . , k.

Hence, we can assume a stronger version of (c):

(?) If A ⊆ G and B ( G satisfy G = A ∪B, S ⊆ V (A) a Hm ⊆ B − V (A)
for some m ∈ {1, . . . , 4k}, then |V (A) ∩ V (B)| ≥ 2k + 1.

Consider any edge e ∈ E(G). If both ends of e belong to S, then G − e
satisfies the assumptions of Lemma 3.

(a) If removing e disconnects some component of Hi, then both resulting
components contain a vertex of S.

(b) If e is an edge between Hi and Hj, then both Hi and Hj intersect S.

(c) Trivially follows from (c) for G.

By the induction hypothesis, G− e contains an ~s−~t-linkage, and so does G.
Hence, we can assume that e has at least one end outside of S.

Suppose that the ends of e do not belong to distinct subgraphs Hi and
Hj, that is, either both ends of e belong to V (Hi) for some i ∈ {1, . . . , 4k},
or at least one end belongs to V (G) \ (V (H1) ∪ . . . ∪ V (H4k)). Consider the
graph G/e with subgraphs H ′

j = Hj/e for j = 1, . . . , 4k. Assumptions (a)
and (b) trivially hold. Suppose that G/e = A′ ∪ B′, where S ⊆ V (A′) and
H ′

m ⊆ B′ − V (A′) for some m ∈ {1, . . . , 4k}. Let A and B be subgraphs
of G such that G = A ∪ B, A′ = A/e and B′ = B/e. Clearly, S ⊆ V (A)
and Hm ⊆ B − V (A). If B = G, then B′ = G/e and |V (A′) ∩ V (B′)| ≥
|S| = 2k. If B 6= G, then by (?) we have |V (A) ∩ V (B)| ≥ 2k + 1, and thus
|V (A′) ∩ V (B′)| ≥ |V (A) ∩ V (B)| − 1 ≥ 2k. Hence, we can apply induction
to G/e and obtain an ~s− ~t-linkage in G/e. Decontracting the edge e results
in an ~s− ~t-linkage in G.

Similarly, we can delete any vertices not contained in S ∪ V (H1) ∪ . . . ∪
V (H4k). Therefore, we can assume that S is an independent set, every edge
of G joins vertices in some distinct subgraphs Hi and Hj, and V (G) = S ∪
V (H1) ∪ . . . ∪ V (H4k). For i = 1, . . . , 4k, the set V (Hi) is independent, and
by the assumption (a), either V (Hi) ⊆ S, or |V (Hi)| = 1. The assumption
(b) impies that G− S is a clique.

Now, let us prove the following:
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(??) For every S ′ ⊆ S, there exist at least |S ′| vertices of G with a neighbor
in S ′.

Indeed, consider any such set S ′ ⊆ S, let Y be the set of vertices of G with
a neighbor in S ′, and let A = G[S ∪ Y ] and B = G − S ′. Then G = A ∪ B
and S ⊆ V (A). If there exists no m ∈ {1, . . . , 4k} such that Hm ⊆ B \V (A),
then V (G) = V (A). However, |V (G)| ≥ 4k and |V (A)| = |S| + |Y | =
2k + |Y |, and thus |Y | ≥ 2k ≥ |S ′| as required. If Hm ⊆ B \ V (A) for some
m ∈ {1, . . . , 4k}, then the assumption (c) implies that |V (A) ∩ V (B)| ≥ 2k.
However, |V (A) ∩ V (B)| = |(S \ S ′) ∪ Y | = 2k − |S ′| + |Y |, and thus again
we get |Y | ≥ |S ′|.

By Hall’s theorem, (??) implies that there exists a matching M ⊆ G of
size 2k such that every edge of M has exactly one end in S. The matching
M together with the edges of the clique G−S contains an ~s−~t-linkage.
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2 Exercises

1. (? ? ?) Prove that every 4-connected non-planar graph is 2-linked.

2. (??) A graph G is edge k-linked if for every pairwise-distinct vertices
s1, . . . , sk, t1, . . . , tk, there exists pairwise edge-disjoint paths in G
joinining s1 with t1, s2 with t2, . . . , and sk with tk. Show that if G is
4-edge-connected, then G is edge 2-linked.

3. (?) Find an example of a 2-edge-connected graph that is not edge 2-
linked.
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