Minors, topological minors and degrees

Zdeněk Dvořák

September 14, 2015

1 Minors and average degree

By results of Mader, Kostochka, and Thomasson, there exists $c>0$ such that every graph on n vertices with at least $c k \sqrt{\log k} \cdot n$ edges contains K_{k} as a minor (and this result is tight, since there exists $c^{\prime}>0$ such that a random graph on $c^{\prime} k \sqrt{\log k}$ vertices with high probability does not contain K_{k} as a minor). We are going to prove a somewhat weaker bound.

Let us start with a technical lemma.
Lemma 1. Let $d \geq 1$ be an integer and let G be a graph with at least $d|V(G)|$ edges. Let G^{\prime} be a minor of G such that $\left|E\left(G^{\prime}\right)\right| \geq d\left|V\left(G^{\prime}\right)\right|$ and $\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|$ is minimal. Every edge of G^{\prime} is contained in at least d triangles, and the minimum degree of G^{\prime} is at least $d+1$ and at most $2 d$.

Proof. Suppose that an edge $x y$ of G^{\prime} is contained in t triangles. Contracting the edge $x y$ decreases the number of vertices by 1 and the number of edges by $t+1$. By the minimality of G^{\prime}, we have $t+1>d$, and thus $t \geq d$. Similarly, removing a vertex v of G^{\prime} of degree k decreases the number of vertices by 1 and the number of edges by k, and by the minimality of G^{\prime}, we have $k>d$. Finally, the minimality of G^{\prime} implies that $\left|E\left(G^{\prime}\right)\right|=d\left|V\left(G^{\prime}\right)\right|$, that is, the average degree of G^{\prime} is $2 d$, and thus the minimum degree of G^{\prime} is at most $2 d$.

By considering the neighbors of a vertex of G^{\prime} of the minimum degree, we obtain the following consequence.

Corollary 2. Let $d \geq 1$ be an integer. If a graph G has at least $d|V(G)|$ edges, then there exists a minor H of G such that $|V(H)| \leq 2 d$ and H has minimum degree at least d.

Now, we form an auxiliary d-non-similarity graph F of H with $V(F)=$ $V(H)$ and two vertices $u, v \in V(F)$ adjacent if they have less than $d / 3$ common neighbors in H.

Lemma 3. Let $d \geq 1$ be an integer. Let H be a graph with $|V(H)| \leq 2 d$. If H has minimum degree at least d, then the d-non-similarity graph of H is triangle-free.

Proof. Let F be the d-non-similarity graph of H, and suppose that $u v, u w \in$ $E(F)$ for distinct $u, v, w \in V(F)$. Let S be the set of non-neighbors of u in H; since H has minimum degree at least d, it follows that $|S| \leq|V(H)|-d \leq d$. Since $u v \in E(F), v$ has less than $d / 3$ common neighbors with u in H, and since v has degree at least d, it has more than $\frac{2}{3} d$ neighbors in S. Similarly, w has more than $\frac{2}{3} d$ neighbors in S. It follows that v and w have more than $2 \cdot \frac{2}{3} d-|S| \geq d / 3$ common neighbors in S, and thus $v w \notin E(F)$. Therefore, $u v w$ is not a triangle in F.

Let us recall a basic result from Ramsey theory.
Lemma 4. For any integer $t \geq 0$, if F is a triangle-free graph with at least t^{2} vertices, then F contains an independent set of size at least t.

Proof. If F has maximum degree at least t, then the neighborhood of a vertex of maximum degree forms an independent set of size at least t. Hence, assume that every vertex in F has degree at most $t-1$. Let S be a maximal independent set in F, and let X be the set of vertices of F that have a neighbor in S. Since S is maximal, we have $V(F)=S \cup X$, and thus $|S|+|X| \geq t^{2}$. However, since every vertex of F has degree at most $t-1$, we have $|X| \leq(t-1)|S|$, and thus $|S|+|X| \leq t|S|$. By comparing the inequalities, we conclude that $|S| \geq t$.

We are now ready to prove the result on the density of graphs without K_{k} minor.

Theorem 5. Let $k \geq 1$ be an integer, and let $d=\frac{3}{2} k(k+1)$. If a graph G has at least $d|V(G)|$ edges, then G contains K_{k} as a minor.

Proof. Let H be the minor of G obtained using Corollary 2, such that $|V(H)| \leq 2 d$ and H has minimum degree at least d. Let F be the d-nonsimilarity graph of H. By Lemma 3, F is triangle-free, and by Lemma 4, F contains an independent set S of size k.

Consider any two vertices $u, v \in S$. Since $u v \notin E(F), u$ and v have at least $d / 3$ common neighbors in H, and at least $d / 3-k=\binom{k}{2}$ of them are not contained in S. Therefore, for every pair $\{u, v\} \subseteq S$, we can choose a vertex $m_{u v}$ adjacent to both u and v and not belonging to S, such that the choices are pairwise distinct for different pairs of vertices of S. The union of the paths $u m_{u v} v$ for $\{u, v\} \subseteq S$ forms a subdivision of K_{k} in H. Since $H \leq_{m} G$, we conclude that $K_{k} \leq_{m} G$.

Let us remark that this proves a weak version of Hadwiger's conjecture.
Corollary 6. For any integer $k \geq 1$, if G does not contain K_{k} as a minor, then $\chi(G) \leq 3 k(k+1)$.

2 Disjoint paths in connected graphs

Let G be a graph and let $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k} \in V(G)$ be pairwise distinct vertices. Pairwise vertex-disjoint paths P_{1}, \ldots, P_{k}, such that for $i=1, \ldots, k$, the path P_{i} joins s_{i} with t_{i}, form an $\vec{s}-\vec{t}$-linkage. A graph G is k-linked if for all pairwise distinct vertices $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k} \in V(G)$, there exists an $\vec{s}-\vec{t}$-linkage. Let us recall Menger's theorem.

Theorem 7. Let $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}$ be pairwise distinct vertices of a graph G. Suppose that for all $A, B \subseteq G$ such that $G=A \cup B,\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V(A)$, and $\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V(B)$, we have $|V(A) \cap V(B)| \geq k$. Then G contains pairwise vertex-disjoint paths P_{1}, \ldots, P_{k}, such that for $i=1, \ldots, k$, the path P_{i} joins s_{i} with one of the vertices t_{1}, \ldots, t_{n}.

Unlike k-linkedness, Menger's theorem does not allow us to prescribe the ends of the paths. Indeed, k-connectivity does not imply k-linkedness: even 5 -connected planar graphs are not 2 -linked. However, we can prove that sufficiently high connectivity implies k-linkedness.

Theorem 8. For any integer $k \geq 1$, if G is $12 k(4 k+1)$-connected, then G is k-linked.

Thomas and Wollan proved that actually $5 k$-connectivity implies k-linkedness. Theorem 8 is a corollary of Theorem 5 and the following claim.

Lemma 9. For any integer $k \geq 1$, if G is $2 k$-connected and contains $K_{4 k}$ as a minor, then G is k-linked.

We postpone the proof of Lemma 9 for the next lecture.

3 Topological minors and average degree

As an easy corollary of Theorem 8, we obtain the following result on the existence of topological minors.

Lemma 10. For any $k \geq 1$, let $d=12\binom{k}{2}\left(4\binom{k}{2}+1\right)+k=O\left(k^{4}\right)$. Every d-connected graph contains a subdivision of K_{k}.

Proof. Let G be a d-connected graph, and let v_{1}, \ldots, v_{k} be arbitrary vertices of G. Since the minimum degree of G is greater than $k(k-1)$, we can select pairwise distinct vertices $v_{i j}$ for all $i, j \in\{1, \ldots, k\}, i \neq j$, so that $v_{i j}$ is a neighbor of v_{i}. The graph $G-\left\{v_{1}, \ldots, v_{k}\right\}$ is $d-k=12\binom{k}{2}\left(4\binom{k}{2}+1\right)$ connected, and by Theorem 8, it is $\binom{k}{2}$-linked. Hence, it contains pairwise disjoint paths $P_{i j}$ joining $v_{i j}$ with $v_{j i}$ for $1 \leq i<j \leq k$. These paths together with the stars around v_{1}, \ldots, v_{n} give a subdivision of K_{k}.

We are going to use the following interesting result by Mader.
Lemma 11. For every integer $d \geq 1$, if a graph G has at least $2 d|V(G)|$ edges, then G contains a $(d+1)$-connected subgraph.

Proof. Let H be a smallest subgraph of G such that $|V(H)| \geq 2 d$ and $|E(H)|>2 d(|V(H)|-d)$. If $|V(H)|=2 d$, then $|E(H)|>2 d^{2}>\binom{|V(H)|}{2}$, which is a contradiction. Therefore, $|V(H)| \geq 2 d+1$. By the minimality of H, removing each vertex results in removal of at least $2 d$ edges, and thus H has minimum degree at least $2 d$.

Consider any proper induced subgraphs A and B of H such that $H=$ $A \cup B$. Any vertex in $V(A) \backslash V(B)$ has all its neighbors in A, and thus $|V(A)|>2 d$, and similarly $|V(B)|>2 d$. By the minimality of H, we have $|E(A)| \leq 2 d(|V(A)|-d)$ and $|E(B)| \leq 2 d(|V(B)|-d)$. Consequently,

$$
\begin{aligned}
|E(H)| & \leq|E(A)|+|E(B)| \\
& \leq 2 d(|V(A)|+|V(B)|-2 d) \\
& =2 d(|V(H)|-d+|V(A) \cap V(B)|-d) .
\end{aligned}
$$

Since $|E(H)|>2 d(|V(H)|-d)$, it follows that $|V(A) \cap V(B)|>d$, and thus G has no cut of size at most d.

In conclusion, we have the following.
Corollary 12. For any $k \geq 1$, let $d=24\binom{k}{2}\left(4\binom{k}{2}+1\right)+2 k=O\left(k^{4}\right)$. Every graph G with at least $d|V(G)|$ edges contains a subdivision of K_{k}.

By the results of Thomas and Wollan, $|E(G)| \geq 10 k^{2}|V(G)|$ suffices to force the existence of a subdivision of K_{k}.

4 Exercises

1. ($\star \star$) Prove that every graph G with at least four vertices and at least $2|V(G)|-2$ edges contains K_{4} as a minor.
2. (\star) Prove that if a graph G is t-linked for every $t \leq k$, then G is k-connected.
3. (**) Assume that the following claim is true: every 4-connected nonplanar graph is 2 -linked. Let G be a planar 4 -connected graph and let s_{1}, s_{2}, t_{1}, and t_{2} be pairwise distinct vertices of G. Prove that G contains an $\vec{s}-\vec{t}$-linkage unless G has a face bounded by a cycle C containing s_{1}, s_{2}, t_{1}, and t_{2} such that $\left\{s_{1}, t_{1}\right\}$ separates s_{2} from t_{2} in C.
4. (\star) Show that there exist some constant $c>0$ such that for every integer $k \geq 2$, there exists a graph G with at least $c k^{2}|V(G)|$ edges that does not contain a subdivision of K_{k}.
