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September 14, 2015

1 Minors and average degree

By results of Mader, Kostochka, and Thomasson, there exists c > 0 such
that every graph on n vertices with at least ck

√
log k ·n edges contains Kk as

a minor (and this result is tight, since there exists c′ > 0 such that a random
graph on c′k

√
log k vertices with high probability does not contain Kk as a

minor). We are going to prove a somewhat weaker bound.
Let us start with a technical lemma.

Lemma 1. Let d ≥ 1 be an integer and let G be a graph with at least
d|V (G)| edges. Let G′ be a minor of G such that |E(G′)| ≥ d|V (G′)| and
|V (G′)| + |E(G′)| is minimal. Every edge of G′ is contained in at least d
triangles, and the minimum degree of G′ is at least d+ 1 and at most 2d.

Proof. Suppose that an edge xy of G′ is contained in t triangles. Contracting
the edge xy decreases the number of vertices by 1 and the number of edges by
t+ 1. By the minimality of G′, we have t+ 1 > d, and thus t ≥ d. Similarly,
removing a vertex v of G′ of degree k decreases the number of vertices by 1
and the number of edges by k, and by the minimality of G′, we have k > d.
Finally, the minimality of G′ implies that |E(G′)| = d|V (G′)|, that is, the
average degree of G′ is 2d, and thus the minimum degree of G′ is at most
2d.

By considering the neighbors of a vertex of G′ of the minimum degree,
we obtain the following consequence.

Corollary 2. Let d ≥ 1 be an integer. If a graph G has at least d|V (G)|
edges, then there exists a minor H of G such that |V (H)| ≤ 2d and H has
minimum degree at least d.

Now, we form an auxiliary d-non-similarity graph F of H with V (F ) =
V (H) and two vertices u, v ∈ V (F ) adjacent if they have less than d/3
common neighbors in H.
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Lemma 3. Let d ≥ 1 be an integer. Let H be a graph with |V (H)| ≤ 2d.
If H has minimum degree at least d, then the d-non-similarity graph of H is
triangle-free.

Proof. Let F be the d-non-similarity graph of H, and suppose that uv, uw ∈
E(F ) for distinct u, v, w ∈ V (F ). Let S be the set of non-neighbors of u in H;
since H has minimum degree at least d, it follows that |S| ≤ |V (H)|−d ≤ d.
Since uv ∈ E(F ), v has less than d/3 common neighbors with u in H, and
since v has degree at least d, it has more than 2

3
d neighbors in S. Similarly,

w has more than 2
3
d neighbors in S. It follows that v and w have more than

2 · 2
3
d− |S| ≥ d/3 common neighbors in S, and thus vw 6∈ E(F ). Therefore,

uvw is not a triangle in F .

Let us recall a basic result from Ramsey theory.

Lemma 4. For any integer t ≥ 0, if F is a triangle-free graph with at least
t2 vertices, then F contains an independent set of size at least t.

Proof. If F has maximum degree at least t, then the neighborhood of a
vertex of maximum degree forms an independent set of size at least t. Hence,
assume that every vertex in F has degree at most t− 1. Let S be a maximal
independent set in F , and let X be the set of vertices of F that have a
neighbor in S. Since S is maximal, we have V (F ) = S ∪ X, and thus
|S| + |X| ≥ t2. However, since every vertex of F has degree at most t − 1,
we have |X| ≤ (t − 1)|S|, and thus |S| + |X| ≤ t|S|. By comparing the
inequalities, we conclude that |S| ≥ t.

We are now ready to prove the result on the density of graphs without
Kk minor.

Theorem 5. Let k ≥ 1 be an integer, and let d = 3
2
k(k + 1). If a graph G

has at least d|V (G)| edges, then G contains Kk as a minor.

Proof. Let H be the minor of G obtained using Corollary 2, such that
|V (H)| ≤ 2d and H has minimum degree at least d. Let F be the d-non-
similarity graph of H. By Lemma 3, F is triangle-free, and by Lemma 4, F
contains an independent set S of size k.

Consider any two vertices u, v ∈ S. Since uv 6∈ E(F ), u and v have at
least d/3 common neighbors in H, and at least d/3 − k =

(
k
2

)
of them are

not contained in S. Therefore, for every pair {u, v} ⊆ S, we can choose a
vertex muv adjacent to both u and v and not belonging to S, such that the
choices are pairwise distinct for different pairs of vertices of S. The union
of the paths umuvv for {u, v} ⊆ S forms a subdivision of Kk in H. Since
H ≤m G, we conclude that Kk ≤m G.
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Let us remark that this proves a weak version of Hadwiger’s conjecture.

Corollary 6. For any integer k ≥ 1, if G does not contain Kk as a minor,
then χ(G) ≤ 3k(k + 1).

2 Disjoint paths in connected graphs

Let G be a graph and let s1, . . . , sk, t1, . . . , tk ∈ V (G) be pairwise distinct
vertices. Pairwise vertex-disjoint paths P1, . . . , Pk, such that for i = 1, . . . , k,
the path Pi joins si with ti, form an ~s − ~t-linkage. A graph G is k-linked if
for all pairwise distinct vertices s1, . . . , sk, t1, . . . , tk ∈ V (G), there exists an
~s− ~t-linkage. Let us recall Menger’s theorem.

Theorem 7. Let s1, . . . , sk, t1, . . . , tk be pairwise distinct vertices of a graph
G. Suppose that for all A,B ⊆ G such that G = A∪B, {s1, . . . , sk} ⊆ V (A),
and {t1, . . . , tk} ⊆ V (B), we have |V (A) ∩ V (B)| ≥ k. Then G contains
pairwise vertex-disjoint paths P1, . . . , Pk, such that for i = 1, . . . , k, the path
Pi joins si with one of the vertices t1, . . . , tn.

Unlike k-linkedness, Menger’s theorem does not allow us to prescribe the
ends of the paths. Indeed, k-connectivity does not imply k-linkedness: even
5-connected planar graphs are not 2-linked. However, we can prove that
sufficiently high connectivity implies k-linkedness.

Theorem 8. For any integer k ≥ 1, if G is 12k(4k + 1)-connected, then G
is k-linked.

Thomas and Wollan proved that actually 5k-connectivity implies k-linkedness.
Theorem 8 is a corollary of Theorem 5 and the following claim.

Lemma 9. For any integer k ≥ 1, if G is 2k-connected and contains K4k as
a minor, then G is k-linked.

We postpone the proof of Lemma 9 for the next lecture.

3 Topological minors and average degree

As an easy corollary of Theorem 8, we obtain the following result on the
existence of topological minors.

Lemma 10. For any k ≥ 1, let d = 12
(
k
2

) (
4
(
k
2

)
+ 1

)
+ k = O(k4). Every

d-connected graph contains a subdivision of Kk.
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Proof. Let G be a d-connected graph, and let v1, . . . , vk be arbitrary vertices
of G. Since the minimum degree of G is greater than k(k− 1), we can select
pairwise distinct vertices vij for all i, j ∈ {1, . . . , k}, i 6= j, so that vij is
a neighbor of vi. The graph G − {v1, . . . , vk} is d − k = 12

(
k
2

) (
4
(
k
2

)
+ 1

)
-

connected, and by Theorem 8, it is
(
k
2

)
-linked. Hence, it contains pairwise

disjoint paths Pij joining vij with vji for 1 ≤ i < j ≤ k. These paths together
with the stars around v1, . . . , vn give a subdivision of Kk.

We are going to use the following interesting result by Mader.

Lemma 11. For every integer d ≥ 1, if a graph G has at least 2d|V (G)|
edges, then G contains a (d+ 1)-connected subgraph.

Proof. Let H be a smallest subgraph of G such that |V (H)| ≥ 2d and
|E(H)| > 2d(|V (H)| − d). If |V (H)| = 2d, then |E(H)| > 2d2 >

(|V (H)|
2

)
,

which is a contradiction. Therefore, |V (H)| ≥ 2d + 1. By the minimality of
H, removing each vertex results in removal of at least 2d edges, and thus H
has minimum degree at least 2d.

Consider any proper induced subgraphs A and B of H such that H =
A ∪ B. Any vertex in V (A) \ V (B) has all its neighbors in A, and thus
|V (A)| > 2d, and similarly |V (B)| > 2d. By the minimality of H, we have
|E(A)| ≤ 2d(|V (A)| − d) and |E(B)| ≤ 2d(|V (B)| − d). Consequently,

|E(H)| ≤ |E(A)|+ |E(B)|
≤ 2d(|V (A)|+ |V (B)| − 2d)

= 2d(|V (H)| − d+ |V (A) ∩ V (B)| − d).

Since |E(H)| > 2d(|V (H)| − d), it follows that |V (A)∩ V (B)| > d, and thus
G has no cut of size at most d.

In conclusion, we have the following.

Corollary 12. For any k ≥ 1, let d = 24
(
k
2

) (
4
(
k
2

)
+ 1

)
+ 2k = O(k4). Every

graph G with at least d|V (G)| edges contains a subdivision of Kk.

By the results of Thomas and Wollan, |E(G)| ≥ 10k2|V (G)| suffices to
force the existence of a subdivision of Kk.
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4 Exercises

1. (??) Prove that every graph G with at least four vertices and at least
2|V (G)| − 2 edges contains K4 as a minor.

2. (?) Prove that if a graph G is t-linked for every t ≤ k, then G is
k-connected.

3. (??) Assume that the following claim is true: every 4-connected non-
planar graph is 2-linked. Let G be a planar 4-connected graph and
let s1, s2, t1, and t2 be pairwise distinct vertices of G. Prove that G
contains an ~s − ~t-linkage unless G has a face bounded by a cycle C
containing s1, s2, t1, and t2 such that {s1, t1} separates s2 from t2 in
C.

4. (?) Show that there exist some constant c > 0 such that for every
integer k ≥ 2, there exists a graph G with at least ck2|V (G)| edges
that does not contain a subdivision of Kk.
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