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1 Minors and average degree

By results of Mader, Kostochka, and Thomasson, there exists ¢ > 0 such
that every graph on n vertices with at least ck+/log k-n edges contains K}, as
a minor (and this result is tight, since there exists ¢ > 0 such that a random
graph on c’kv/log k vertices with high probability does not contain K}, as a
minor). We are going to prove a somewhat weaker bound.

Let us start with a technical lemma.

Lemma 1. Let d > 1 be an integer and let G be a graph with at least
d|V(G)| edges. Let G' be a minor of G such that |E(G")| > d|V(G')| and
V(G| + |E(G")| is minimal. FEvery edge of G' is contained in at least d
triangles, and the minimum degree of G is at least d + 1 and at most 2d.

Proof. Suppose that an edge xy of G’ is contained in t triangles. Contracting
the edge xy decreases the number of vertices by 1 and the number of edges by
t + 1. By the minimality of G’, we have t + 1 > d, and thus ¢ > d. Similarly,
removing a vertex v of G’ of degree k decreases the number of vertices by 1
and the number of edges by k, and by the minimality of G’, we have k > d.
Finally, the minimality of G’ implies that |E(G")| = d|V(G")|, that is, the
average degree of G’ is 2d, and thus the minimum degree of G’ is at most
2d. O

By considering the neighbors of a vertex of G’ of the minimum degree,
we obtain the following consequence.

Corollary 2. Let d > 1 be an integer. If a graph G has at least d|V (G)]
edges, then there exists a minor H of G such that |V (H)| < 2d and H has
mainimum degree at least d.

Now, we form an auxiliary d-non-similarity graph F of H with V(F) =
V(H) and two vertices u,v € V(F) adjacent if they have less than d/3
common neighbors in H.



Lemma 3. Let d > 1 be an integer. Let H be a graph with |V (H)| < 2d.
If H has minimum degree at least d, then the d-non-similarity graph of H s
triangle-free.

Proof. Let F be the d-non-similarity graph of H, and suppose that uv, uw €
E(F) for distinct u, v, w € V(F'). Let S be the set of non-neighbors of u in H;
since H has minimum degree at least d, it follows that |S| < |V(H)|—d < d.
Since uwv € E(F), v has less than d/3 common neighbors with v in H, and
since v has degree at least d, it has more than %d neighbors in S. Similarly,
w has more than %d neighbors in S. It follows that v and w have more than
2-2d —|S| > d/3 common neighbors in S, and thus vw & E(F). Therefore,
uvw is not a triangle in F. O]

Let us recall a basic result from Ramsey theory.

Lemma 4. For any integer t > 0, if F' is a triangle-free graph with at least
t2 vertices, then I contains an independent set of size at least t.

Proof. If F' has maximum degree at least ¢, then the neighborhood of a
vertex of maximum degree forms an independent set of size at least t. Hence,
assume that every vertex in F' has degree at most ¢ — 1. Let S be a maximal
independent set in F', and let X be the set of vertices of F' that have a
neighbor in S. Since S is maximal, we have V(F) = S U X, and thus
S| + | X| > t*. However, since every vertex of F has degree at most t — 1,
we have |X| < (¢t — 1)|S], and thus |S| + | X| < ¢|S|. By comparing the
inequalities, we conclude that |S| > t. O

We are now ready to prove the result on the density of graphs without
K, minor.

Theorem 5. Let k > 1 be an integer, and let d = gk(k: +1). If a graph G
has at least d|V(G)| edges, then G contains K as a minor.

Proof. Let H be the minor of G obtained using Corollary 2, such that
\V(H)| < 2d and H has minimum degree at least d. Let F' be the d-non-
similarity graph of H. By Lemma 3, F' is triangle-free, and by Lemma 4, F
contains an independent set S of size k.

Consider any two vertices u,v € S. Since uv ¢ E(F), u and v have at
least d/3 common neighbors in H, and at least d/3 — k = (g) of them are
not contained in S. Therefore, for every pair {u,v} C S, we can choose a
vertex my, adjacent to both u and v and not belonging to S, such that the
choices are pairwise distinct for different pairs of vertices of S. The union
of the paths um,,v for {u,v} C S forms a subdivision of K} in H. Since

H <, G, we conclude that K, <, G. O
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Let us remark that this proves a weak version of Hadwiger’s conjecture.

Corollary 6. For any integer k > 1, if G does not contain Ky as a minor,
then x(G) < 3k(k +1).

2 Disjoint paths in connected graphs

Let G be a graph and let sq,..., 8k, t1,...,tx € V(G) be pairwise distinct

vertices. Pairwise vertex-disjoint paths Py, ..., P, such that fori =1,... k,
the path P; joins s; with t;, form an §— t-linkage. A graph G is k-linked if
for all pairwise distinct vertices si, ..., Sk, t1,...,tx € V(G), there exists an

§ — tlinkage. Let us recall Menger’s theorem.

Theorem 7. Let sy,...,Sk,t1,...,t, be pairwise distinct vertices of a graph
G. Suppose that for all A, B C G such that G = AUB, {s1,...,sx} CV(A),
and {t1,...,ty} € V(B), we have |V(A) NV (B)| > k. Then G contains
pairwise vertex-disjoint paths Py, ..., Py, such that fori=1,... k, the path
P; joins s; with one of the vertices ty, ..., t,.

Unlike k-linkedness, Menger’s theorem does not allow us to prescribe the
ends of the paths. Indeed, k-connectivity does not imply k-linkedness: even
5-connected planar graphs are not 2-linked. However, we can prove that
sufficiently high connectivity implies k-linkedness.

Theorem 8. For any integer k > 1, if G is 12k(4k + 1)-connected, then G
15 k-linked.

Thomas and Wollan proved that actually 5k-connectivity implies k-linkedness.
Theorem 8 is a corollary of Theorem 5 and the following claim.

Lemma 9. For any integer k > 1, if G is 2k-connected and contains Ky as
a minor, then G is k-linked.

We postpone the proof of Lemma 9 for the next lecture.

3 Topological minors and average degree

As an easy corollary of Theorem 8, we obtain the following result on the
existence of topological minors.

Lemma 10. For any k > 1, let d = 12(%) (4(5) + 1) + k = O(k*). Every

d-connected graph contains a subdivision of Ky.



Proof. Let G be a d-connected graph, and let vy, ..., v, be arbitrary vertices
of G. Since the minimum degree of G is greater than k(k — 1), we can select
pairwise distinct vertices v;; for all 7,5 € {1,...,k}, i # j, so that v;; is
a neighbor of v;. The graph G — {vq,..., v} isd — k = 12(5) (4(’;) + 1)—
connected, and by Theorem 8, it is (g)—linked. Hence, it contains pairwise
disjoint paths P;; joining v;; with vj; for 1 < ¢ < j < k. These paths together
with the stars around vy, ..., v, give a subdivision of K. O

We are going to use the following interesting result by Mader.

Lemma 11. For every integer d > 1, if a graph G has at least 2d|V(G)|
edges, then G contains a (d + 1)-connected subgraph.

Proof. Let H be a smallest subgraph of G such that |V(H)| > 2d and

|E(H)| > 2d(|V(H)| — d). If |V(H)| = 2d, then |E(H)| > 24> > (V{)),
which is a contradiction. Therefore, |V (H)| > 2d + 1. By the minimality of
H, removing each vertex results in removal of at least 2d edges, and thus H
has minimum degree at least 2d.

Consider any proper induced subgraphs A and B of H such that H =
AU B. Any vertex in V(A) \ V(B) has all its neighbors in A, and thus
|V(A)| > 2d, and similarly |V (B)| > 2d. By the minimality of H, we have
|E(A)] < 2d(|[V(A)| —d) and |E(B)| < 2d(|]V(B)| — d). Consequently,

[E(H)| < |E(A)| + |E(B)]
< 2d(|V(A)| + [V(B)| - 2d)
=2d(|V(H)| - d+ [V(A) NV(B)| — d).

Since |E(H)| > 2d(|V (H)| — d), it follows that |V (A) NV (B)| > d, and thus
G has no cut of size at most d. O]

In conclusion, we have the following.

Corollary 12. For any k > 1, let d = 24(5) (4(5) + 1) +2k = O(k*). Every
graph G with at least d|V(G)| edges contains a subdivision of K.

By the results of Thomas and Wollan, |E(G)| > 10k?|V (G)] suffices to
force the existence of a subdivision of K.



Exercises

. (%*) Prove that every graph G with at least four vertices and at least
2|V(G)| — 2 edges contains K, as a minor.

. (%) Prove that if a graph G is t-linked for every ¢ < k, then G is
k-connected.

. (*x) Assume that the following claim is true: every 4-connected non-
planar graph is 2-linked. Let G be a planar 4-connected graph and
let si1, s9, t1, and ty be pairwise distinct vertices of G. Prove that G
contains an § — {-linkage unless G has a face bounded by a cycle C
containing sy, S, t1, and ty such that {s1,t;} separates sy from ¢, in

C.

. (x) Show that there exist some constant ¢ > 0 such that for every
integer k > 2, there exists a graph G with at least ck?|V(G)| edges
that does not contain a subdivision of K.



