Minors, topological minors and degrees

Zdeněk Dvořák

September 14, 2015

1 Minors and average degree

By results of Mader, Kostochka, and Thomasson, there exists c > 0 such that every graph on n vertices with at least $ck\sqrt{\log k} \cdot n$ edges contains K_k as a minor (and this result is tight, since there exists c' > 0 such that a random graph on $c'k\sqrt{\log k}$ vertices with high probability does not contain K_k as a minor). We are going to prove a somewhat weaker bound.

Let us start with a technical lemma.

Lemma 1. Let $d \ge 1$ be an integer and let G be a graph with at least d|V(G)| edges. Let G' be a minor of G such that $|E(G')| \ge d|V(G')|$ and |V(G')| + |E(G')| is minimal. Every edge of G' is contained in at least d triangles, and the minimum degree of G' is at least d + 1 and at most 2d.

Proof. Suppose that an edge xy of G' is contained in t triangles. Contracting the edge xy decreases the number of vertices by 1 and the number of edges by t+1. By the minimality of G', we have t+1 > d, and thus $t \ge d$. Similarly, removing a vertex v of G' of degree k decreases the number of vertices by 1 and the number of edges by k, and by the minimality of G', we have k > d. Finally, the minimality of G' implies that |E(G')| = d|V(G')|, that is, the average degree of G' is 2d, and thus the minimum degree of G' is at most 2d.

By considering the neighbors of a vertex of G' of the minimum degree, we obtain the following consequence.

Corollary 2. Let $d \ge 1$ be an integer. If a graph G has at least d|V(G)| edges, then there exists a minor H of G such that $|V(H)| \le 2d$ and H has minimum degree at least d.

Now, we form an auxiliary *d*-non-similarity graph F of H with V(F) = V(H) and two vertices $u, v \in V(F)$ adjacent if they have less than d/3 common neighbors in H.

Lemma 3. Let $d \ge 1$ be an integer. Let H be a graph with $|V(H)| \le 2d$. If H has minimum degree at least d, then the d-non-similarity graph of H is triangle-free.

Proof. Let F be the d-non-similarity graph of H, and suppose that $uv, uw \in E(F)$ for distinct $u, v, w \in V(F)$. Let S be the set of non-neighbors of u in H; since H has minimum degree at least d, it follows that $|S| \leq |V(H)| - d \leq d$. Since $uv \in E(F)$, v has less than d/3 common neighbors with u in H, and since v has degree at least d, it has more than $\frac{2}{3}d$ neighbors in S. Similarly, w has more than $\frac{2}{3}d$ neighbors in S. It follows that v and w have more than $2 \cdot \frac{2}{3}d - |S| \geq d/3$ common neighbors in S, and thus $vw \notin E(F)$. Therefore, uvw is not a triangle in F.

Let us recall a basic result from Ramsey theory.

Lemma 4. For any integer $t \ge 0$, if F is a triangle-free graph with at least t^2 vertices, then F contains an independent set of size at least t.

Proof. If F has maximum degree at least t, then the neighborhood of a vertex of maximum degree forms an independent set of size at least t. Hence, assume that every vertex in F has degree at most t-1. Let S be a maximal independent set in F, and let X be the set of vertices of F that have a neighbor in S. Since S is maximal, we have $V(F) = S \cup X$, and thus $|S| + |X| \ge t^2$. However, since every vertex of F has degree at most t-1, we have $|X| \le (t-1)|S|$, and thus $|S| + |X| \le t|S|$. By comparing the inequalities, we conclude that $|S| \ge t$.

We are now ready to prove the result on the density of graphs without K_k minor.

Theorem 5. Let $k \ge 1$ be an integer, and let $d = \frac{3}{2}k(k+1)$. If a graph G has at least d|V(G)| edges, then G contains K_k as a minor.

Proof. Let H be the minor of G obtained using Corollary 2, such that $|V(H)| \leq 2d$ and H has minimum degree at least d. Let F be the d-non-similarity graph of H. By Lemma 3, F is triangle-free, and by Lemma 4, F contains an independent set S of size k.

Consider any two vertices $u, v \in S$. Since $uv \notin E(F)$, u and v have at least d/3 common neighbors in H, and at least $d/3 - k = \binom{k}{2}$ of them are not contained in S. Therefore, for every pair $\{u, v\} \subseteq S$, we can choose a vertex m_{uv} adjacent to both u and v and not belonging to S, such that the choices are pairwise distinct for different pairs of vertices of S. The union of the paths $um_{uv}v$ for $\{u, v\} \subseteq S$ forms a subdivision of K_k in H. Since $H \leq_m G$, we conclude that $K_k \leq_m G$. \Box Let us remark that this proves a weak version of Hadwiger's conjecture.

Corollary 6. For any integer $k \ge 1$, if G does not contain K_k as a minor, then $\chi(G) \le 3k(k+1)$.

2 Disjoint paths in connected graphs

Let G be a graph and let $s_1, \ldots, s_k, t_1, \ldots, t_k \in V(G)$ be pairwise distinct vertices. Pairwise vertex-disjoint paths P_1, \ldots, P_k , such that for $i = 1, \ldots, k$, the path P_i joins s_i with t_i , form an $\vec{s} - \vec{t}$ -linkage. A graph G is k-linked if for all pairwise distinct vertices $s_1, \ldots, s_k, t_1, \ldots, t_k \in V(G)$, there exists an $\vec{s} - \vec{t}$ -linkage. Let us recall Menger's theorem.

Theorem 7. Let $s_1, \ldots, s_k, t_1, \ldots, t_k$ be pairwise distinct vertices of a graph G. Suppose that for all $A, B \subseteq G$ such that $G = A \cup B, \{s_1, \ldots, s_k\} \subseteq V(A)$, and $\{t_1, \ldots, t_k\} \subseteq V(B)$, we have $|V(A) \cap V(B)| \ge k$. Then G contains pairwise vertex-disjoint paths P_1, \ldots, P_k , such that for $i = 1, \ldots, k$, the path P_i joins s_i with one of the vertices t_1, \ldots, t_n .

Unlike k-linkedness, Menger's theorem does not allow us to prescribe the ends of the paths. Indeed, k-connectivity does not imply k-linkedness: even 5-connected planar graphs are not 2-linked. However, we can prove that sufficiently high connectivity implies k-linkedness.

Theorem 8. For any integer $k \ge 1$, if G is 12k(4k+1)-connected, then G is k-linked.

Thomas and Wollan proved that actually 5k-connectivity implies k-linkedness. Theorem 8 is a corollary of Theorem 5 and the following claim.

Lemma 9. For any integer $k \ge 1$, if G is 2k-connected and contains K_{4k} as a minor, then G is k-linked.

We postpone the proof of Lemma 9 for the next lecture.

3 Topological minors and average degree

As an easy corollary of Theorem 8, we obtain the following result on the existence of topological minors.

Lemma 10. For any $k \ge 1$, let $d = 12\binom{k}{2}\left(4\binom{k}{2}+1\right) + k = O(k^4)$. Every *d*-connected graph contains a subdivision of K_k .

Proof. Let G be a d-connected graph, and let v_1, \ldots, v_k be arbitrary vertices of G. Since the minimum degree of G is greater than k(k-1), we can select pairwise distinct vertices v_{ij} for all $i, j \in \{1, \ldots, k\}, i \neq j$, so that v_{ij} is a neighbor of v_i . The graph $G - \{v_1, \ldots, v_k\}$ is $d - k = 12\binom{k}{2} \left(4\binom{k}{2} + 1\right)$ connected, and by Theorem 8, it is $\binom{k}{2}$ -linked. Hence, it contains pairwise disjoint paths P_{ij} joining v_{ij} with v_{ji} for $1 \leq i < j \leq k$. These paths together with the stars around v_1, \ldots, v_n give a subdivision of K_k .

We are going to use the following interesting result by Mader.

Lemma 11. For every integer $d \ge 1$, if a graph G has at least 2d|V(G)| edges, then G contains a (d+1)-connected subgraph.

Proof. Let H be a smallest subgraph of G such that $|V(H)| \ge 2d$ and |E(H)| > 2d(|V(H)| - d). If |V(H)| = 2d, then $|E(H)| > 2d^2 > \binom{|V(H)|}{2}$, which is a contradiction. Therefore, $|V(H)| \ge 2d + 1$. By the minimality of H, removing each vertex results in removal of at least 2d edges, and thus H has minimum degree at least 2d.

Consider any proper induced subgraphs A and B of H such that $H = A \cup B$. Any vertex in $V(A) \setminus V(B)$ has all its neighbors in A, and thus |V(A)| > 2d, and similarly |V(B)| > 2d. By the minimality of H, we have $|E(A)| \le 2d(|V(A)| - d)$ and $|E(B)| \le 2d(|V(B)| - d)$. Consequently,

$$|E(H)| \le |E(A)| + |E(B)| \le 2d(|V(A)| + |V(B)| - 2d) = 2d(|V(H)| - d + |V(A) \cap V(B)| - d)$$

Since |E(H)| > 2d(|V(H)| - d), it follows that $|V(A) \cap V(B)| > d$, and thus G has no cut of size at most d.

In conclusion, we have the following.

Corollary 12. For any $k \ge 1$, let $d = 24\binom{k}{2}\left(4\binom{k}{2}+1\right)+2k = O(k^4)$. Every graph G with at least d|V(G)| edges contains a subdivision of K_k .

By the results of Thomas and Wollan, $|E(G)| \ge 10k^2|V(G)|$ suffices to force the existence of a subdivision of K_k .

4 Exercises

- 1. $(\star\star)$ Prove that every graph G with at least four vertices and at least 2|V(G)| 2 edges contains K_4 as a minor.
- 2. (*) Prove that if a graph G is t-linked for every $t \leq k$, then G is k-connected.
- 3. $(\star\star)$ Assume that the following claim is true: every 4-connected nonplanar graph is 2-linked. Let G be a planar 4-connected graph and let s_1, s_2, t_1 , and t_2 be pairwise distinct vertices of G. Prove that G contains an $\vec{s} - \vec{t}$ -linkage unless G has a face bounded by a cycle C containing s_1, s_2, t_1 , and t_2 such that $\{s_1, t_1\}$ separates s_2 from t_2 in C.
- 4. (*) Show that there exist some constant c > 0 such that for every integer $k \ge 2$, there exists a graph G with at least $ck^2|V(G)|$ edges that does not contain a subdivision of K_k .