Monadic Second Order Logic

Zdeněk Dvořák

September 14, 2015

1 Courcelle's theorem

A formula in Monadic Second Order Logic (MSOL) may contain:

- variables v_{1}, v_{2}, \ldots for vertices
- variables e_{1}, e_{2}, \ldots for edges
- variables V_{1}, V_{2}, \ldots for sets of vertices
- variables E_{1}, E_{2}, \ldots for sets of edges
- equality $=$ for vertices and edges
- incidence predicate $i\left(v_{1}, e_{1}\right), \ldots$-is v_{1} incident with e_{1} ?
- set membership predicates $v_{1} \in V_{1}, e_{1} \in E_{1}, \ldots$
- logical conjunctions \vee, $ᄀ$
- existential quantifier \exists applied to any kind of variable
- anything else expressible from these, for example
- universal quantifier $(\forall X) \psi \equiv \neg(\exists X) \neg \psi$
- "and" conjuction $\psi_{1} \wedge \psi_{2} \equiv \neg\left(\neg \psi_{1} \vee \neg \psi_{2}\right)$
- non-equality $v_{1} \neq v_{2} \equiv \neg\left(v_{1}=v_{2}\right)$
- adjacency $e\left(v_{1}, v_{2}\right) \equiv v_{1} \neq v_{2} \wedge\left(\exists e_{1}\right) i\left(v_{1}, e_{1}\right) \wedge i\left(v_{2}, e_{1}\right)$
- implication $\psi \Rightarrow \varphi \equiv \neg \psi \vee \varphi$
- subset relation $V_{1} \subseteq V_{2} \equiv\left(\forall v_{1}\right) v_{1} \in V_{1} \Rightarrow v_{1} \in V_{2}$
- equality for sets $V_{1}=V_{2} \equiv V_{1} \subseteq V_{2} \wedge V_{2} \subseteq V_{1}$

If φ is a formula in MSOL without free variables and G is a graph, we write $G \models \varphi$ if G satisfies the formula φ.

Formally: A variable assignment in G for a formula φ is a function σ such that

- for each free vertex variable $v_{i}, \sigma\left(v_{i}\right)$ is a vertex of G,
- for each free edge variable $e_{i}, \sigma\left(e_{i}\right)$ is an edge of G,
- for each free vertex set variable $V_{i}, \sigma\left(V_{i}\right)$ is a set of vertices of G, and
- for each free edge set variable $E_{i}, \sigma\left(E_{i}\right)$ is a set of edges of G.

We write $G, \sigma \models \varphi$ when

- $\varphi \equiv \alpha=\beta$ for some variables α, β such that $\sigma(\alpha)=\sigma(\beta)$
- $\varphi \equiv i\left(v_{1}, e_{1}\right)$ for some variables v_{1}, e_{1} such that $\sigma\left(v_{1}\right)$ is incident with $\sigma\left(e_{1}\right)$
- $\varphi \equiv \alpha \in A$ for vertex or edge variable α and vertex set or edge set variable A such that $\sigma(\alpha)$ is an element of $\sigma(A)$.
- $\varphi \equiv \psi_{1} \vee \psi_{2}$ and $G, \sigma \models \psi_{1}$ or $G, \sigma \models \psi_{2}$
- $\varphi \equiv \neg \psi$ and the claim $G, \sigma \models \psi$ does not hold
- $\varphi \equiv(\exists \alpha) \psi$ and there exists a variable assignment σ^{\prime} in G for ψ that is obtained from σ by assigning a value to the variable α and satisfies $G, \sigma^{\prime} \models \psi$

Then, $G \models \varphi$ is a shorthand for $G, \sigma \models \varphi$, where σ is the null function.
Many interesting graph properties can be expressed in MSOL. For example,

- V_{1} is an independent set in G :

$$
I\left(V_{1}\right) \equiv\left(\forall v_{1}, v_{2}\right) v_{1} \in V_{1} \wedge v_{2} \in V_{1} \Rightarrow \neg e\left(v_{1}, v_{2}\right) .
$$

- G is 3 -colorable if and only if

$$
G \models\left(\exists V_{1}, V_{2}, V_{3}\right) I\left(V_{1}\right) \wedge I\left(V_{2}\right) \wedge I\left(V_{3}\right) \wedge\left(\forall v_{1}\right) v_{1} \in V_{1} \vee v_{1} \in V_{2} \vee v_{1} \in V_{3} .
$$

- G has a perfect matching if and only if

$$
G \models\left(\exists E_{1}\right)\left(\forall v_{1}\right)\left(\exists e_{1}\right) e_{1} \in E_{1} \wedge i\left(v_{1}, e_{1}\right) \wedge\left[\left(\forall e_{2}\right)\left(e_{2} \in E_{1} \wedge i\left(v_{1}, e_{2}\right)\right) \Rightarrow e_{1}=e_{2}\right]
$$

This makes the following algorithmic result very interesting.
Theorem 1 (Courcelle). For any MSOL formula φ without free variables and for any $k \geq 0$, there exists a linear-time algorithm deciding whether a graph G of tree-width at most k satisfies $G \models \varphi$.

All the natural variants of this claim are true as well.
Theorem 2 (Courcelle). For any MSOL formula φ with one free variable V_{1} and for any $k \geq 0$, there exist polynomial-time algorithms that given a graph G of tree-width at most k

- find the largest set $V_{1} \subseteq V(G)$ satisfying φ, and
- determine the number of sets $V_{1} \subseteq V(G)$ satisfying φ.

2 Limits of MSOL

Ehrenfeucht-Fraïssé game: Two players, Spoiler and Duplicator. Given two graphs A_{1} and A_{2}, and integer $n \geq 1$. For $k=1, \ldots, n$,

- Spoiler chooses $i_{k} \in\{1,2\}$, and selects a vertex/edge/set of vertices/set of edges $X_{k, i_{k}}$ in $A_{i_{k}}$.
- Duplicator chooses $i_{k} \in\{1,2\}$, and selects a vertex/edge/set of vertices/set of edges (the same type as Spoiler) $X_{k, 3-i_{k}}$ in $A_{3-i_{k}}$.

Duplicator wins if there are the same relations among the corresponding selected objects, i.e., for $1 \leq k, t \leq n$,

- If $X_{k, 1}$ is a vertex/edge and $X_{t, 1}$ is a vertex/edge, then $X_{k, 1}=X_{t, 1}$ if and only if $X_{k, 2}=X_{t, 2}$.
- If $X_{k, 1}$ is a vertex and $X_{t, 1}$ is an edge, then $X_{k, 1}$ is incident with $X_{t, 1}$ if and only if $X_{k, 2}$ is incident with $X_{t, 2}$.
- If $X_{k, 1}$ is a vertex/edge and $X_{t, 1}$ is a set of vertices/edges, then $X_{k, 1} \in$ $X_{t, 1}$ if and only if $X_{k, 2} \in X_{t, 2}$.

Lemma 3. Let P be a graph property. Suppose that for every $n \geq 1$, there exist graphs $A_{n, 1}$ and $A_{n, 2}$ such that $A_{n, 1}$ has the property $P, A_{n, 2}$ does not have the property P, and Duplicator has a winning strategy for the EhrenfeuchtFraissé game for n and the graphs $A_{n, 1}$ and $A_{n, 2}$. Then P cannot be expressed in MSOL.

Proof. Suppose for a contradiction that a graph G has the property P if and only if $G \models \varphi$ for some MSOL formula φ without free variables. We can assume that φ is in prenex normal form, that is,

$$
\varphi=\left(Q_{1} \alpha_{1}\right)\left(Q_{2} \alpha_{2}\right) \ldots\left(Q_{n} \alpha_{n}\right) \psi\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

for some existential or universal quantifiers Q_{1}, \ldots, Q_{n}, variables $\alpha_{1}, \ldots, \alpha_{n}$ and a quantifier-free MSOL formula ψ.

We are going to describe Spoiler's winning strategy in n-round EhrenfeuchtFraïssé game for graphs $A_{n, 1}$ and $A_{n, 2}$. Consider the situation after first k rounds. For $i \in\{1,2\}$, let $\sigma_{k, i}$ be the variable assignment in $A_{n, i}$ such that for $j=1, \ldots, k$, we have $\sigma_{k, i}\left(\alpha_{j}\right)=X_{j, i}$. We maintain the invariants that

$$
\begin{equation*}
A_{n, 1}, \sigma_{k, 1} \models\left(Q_{k+1} \alpha_{k+1}\right)\left(Q_{k+2} \alpha_{k+2}\right) \ldots\left(Q_{n} \alpha_{n}\right) \psi\left(\alpha_{1}, \ldots, \alpha_{n}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n, 2}, \sigma_{k, 2} \not \vDash\left(Q_{k+1} \alpha_{k+1}\right)\left(Q_{k+2} \alpha_{k+2}\right) \ldots\left(Q_{n} \alpha_{n}\right) \psi\left(\alpha_{1}, \ldots, \alpha_{n}\right) . \tag{2}
\end{equation*}
$$

For $k=0$, these invariants hold since $A_{n, 1}$ has the property P and $A_{n, 2}$ does not have the property P.

Suppose that we already managed to play the first k rounds while preserving the invariant, $0 \leq k \leq n-1$. If $Q_{k+1}=\exists$, then Spoiler sets $i_{k+1}=1$ and chooses the value $X_{k+1,1}$ for α_{k+1} in $A_{n, 1}$ so that

$$
A_{n, 1}, \sigma_{k+1,1} \models\left(Q_{k+2} \alpha_{k+2}\right) \ldots\left(Q_{n} \alpha_{n}\right) \psi\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

Since (2) holds, Duplicator cannot choose any value $X_{k+1,2}$ for α_{k+1} in $A_{n, 2}$ to violate the second invariant.

Similarly, if $Q_{k+1}=\forall$, then Spoiler sets $i_{k+1}=2$ and chooses the value $X_{k+1,2}$ for α_{k+1} in $A_{n, 2}$ so that

$$
A_{n, 2}, \sigma_{k+1,2} \not \vDash\left(Q_{k+2} \alpha_{k+2}\right) \ldots\left(Q_{n} \alpha_{n}\right) \psi\left(\alpha_{1}, \ldots, \alpha_{n}\right) .
$$

Since (1) holds, Duplicator cannot choose any value $X_{k+1,1}$ for α_{k+1} in $A_{n, 1}$ to violate the first invariant.

Hence, Spoiler can ensure that the invariants (1) and (2) hold for $k=n$, that is,

$$
A_{n, 1}, \sigma_{n, 1} \models \psi\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

and

$$
A_{n, 2}, \sigma_{n, 2} \not \vDash \psi\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

However, this implies that ψ contains some relation which is true in the variable assignment $\sigma_{n, 1}$ and false in the variable assignment $\sigma_{n, 2}$, or vice versa, and thus Spolier wins the game. This is a contradiction.

Let us remark that the reverse implication (if there exists $n \geq 1$ such that Spoiler wins any n-round game with graphs A_{1} satisfying P and A_{2} not satisfying P, then P can be expressed in MSOL) is true as well, but somewhat harder to prove and much less useful.

Example: the property "the graph has even number of vertices" cannot be expressed in MSOL.

Proof. Let $A_{n, 1}$ consist of 2^{n} isolated vertices and $A_{n, 2}$ of $2^{n}+1$ isolated vertices. Hence, in the game, no edges or sets of edges will be chosen. Treat the chosen vertices as single-vertex sets. For $k=0, \ldots, n$, ensure that after the k-th step, the following invariant holds:

- For all disjoint sets $K, L \subseteq\{1, \ldots, k\}$, the sets

$$
\bigcap_{i \in K} X_{i, 1} \backslash \bigcup_{i \in L} X_{i, 1}
$$

and

$$
\bigcap_{i \in K} X_{i, 2} \backslash \bigcup_{i \in L} X_{i, 2}
$$

either have the same size, or they both have size at least 2^{n-k}.
This ensures that in the end, if $X_{k, 1}$ is a vertex, then

- when $X_{t, 1}$ is a set, then $X_{k, 1} \in X_{t, 1}$ if and only if $X_{k, 2} \in X_{t, 2}$,
- when $X_{t, 1}$ is a vertex, then $X_{k, 1}=X_{t, 1}$ if and only if $X_{k, 2}=X_{t, 2}$,
since the sets $X_{k, 1} \backslash X_{t, 1}$ and $X_{k, 2} \backslash X_{t, 2}$ are either both empty or both have at least one element.

3 Exercises

1. (\star) Write a formula in MSOL with one free vertex set variable V_{1} which is true exactly when V_{1} is a dominating set.
2. ($\star \star$) Write a formula in MSOL which is true exactly for Hamiltonian graphs.
3. ($\star \star *$) Write a formula in MSOL which is true exactly for planar graphs.
4. $(\star \star \star)$ Prove that the property " G has the same number of vertices of degree 0 and 1 " is not expressible in MSOL.
