Monadic Second Order Logic

Zdeněk Dvořák

September 14, 2015

1 Courcelle's theorem

A formula in *Monadic Second Order Logic* (MSOL) may contain:

- variables v_1, v_2, \ldots for vertices
- variables e_1, e_2, \ldots for edges
- variables V_1, V_2, \ldots for sets of vertices
- variables E_1, E_2, \ldots for sets of edges
- equality = for vertices and edges
- incidence predicate $i(v_1, e_1), \ldots$ —is v_1 incident with e_1 ?
- set membership predicates $v_1 \in V_1, e_1 \in E_1, \ldots$
- logical conjunctions \lor , \neg
- existential quantifier \exists applied to any kind of variable
- anything else expressible from these, for example
 - universal quantifier $(\forall X)\psi \equiv \neg(\exists X)\neg\psi$
 - "and" conjuction $\psi_1 \wedge \psi_2 \equiv \neg(\neg \psi_1 \vee \neg \psi_2)$
 - non-equality $v_1 \neq v_2 \equiv \neg(v_1 = v_2)$
 - adjacency $e(v_1, v_2) \equiv v_1 \neq v_2 \land (\exists e_1) i(v_1, e_1) \land i(v_2, e_1)$
 - implication $\psi \Rightarrow \varphi \equiv \neg \psi \lor \varphi$
 - subset relation $V_1 \subseteq V_2 \equiv (\forall v_1) v_1 \in V_1 \Rightarrow v_1 \in V_2$
 - equality for sets $V_1 = V_2 \equiv V_1 \subseteq V_2 \land V_2 \subseteq V_1$

If φ is a formula in MSOL without free variables and G is a graph, we write $G \models \varphi$ if G satisfies the formula φ .

Formally: A variable assignment in G for a formula φ is a function σ such that

- for each free vertex variable v_i , $\sigma(v_i)$ is a vertex of G,
- for each free edge variable e_i , $\sigma(e_i)$ is an edge of G,
- for each free vertex set variable V_i , $\sigma(V_i)$ is a set of vertices of G, and
- for each free edge set variable E_i , $\sigma(E_i)$ is a set of edges of G.

We write $G, \sigma \models \varphi$ when

- $\varphi \equiv \alpha = \beta$ for some variables α , β such that $\sigma(\alpha) = \sigma(\beta)$
- $\varphi \equiv i(v_1, e_1)$ for some variables v_1 , e_1 such that $\sigma(v_1)$ is incident with $\sigma(e_1)$
- $\varphi \equiv \alpha \in A$ for vertex or edge variable α and vertex set or edge set variable A such that $\sigma(\alpha)$ is an element of $\sigma(A)$.
- $\varphi \equiv \psi_1 \lor \psi_2$ and $G, \sigma \models \psi_1$ or $G, \sigma \models \psi_2$
- $\varphi \equiv \neg \psi$ and the claim $G, \sigma \models \psi$ does not hold
- $\varphi \equiv (\exists \alpha) \psi$ and there exists a variable assignment σ' in G for ψ that is obtained from σ by assigning a value to the variable α and satisfies $G, \sigma' \models \psi$

Then, $G \models \varphi$ is a shorthand for $G, \sigma \models \varphi$, where σ is the null function.

Many interesting graph properties can be expressed in MSOL. For example,

• V_1 is an independent set in G:

$$I(V_1) \equiv (\forall v_1, v_2) v_1 \in V_1 \land v_2 \in V_1 \Rightarrow \neg e(v_1, v_2).$$

• G is 3-colorable if and only if

 $G \models (\exists V_1, V_2, V_3) I(V_1) \land I(V_2) \land I(V_3) \land (\forall v_1) v_1 \in V_1 \lor v_1 \in V_2 \lor v_1 \in V_3.$

• G has a perfect matching if and only if

$$G \models (\exists E_1) (\forall v_1) (\exists e_1) e_1 \in E_1 \land i(v_1, e_1) \land [(\forall e_2) (e_2 \in E_1 \land i(v_1, e_2)) \Rightarrow e_1 = e_2]$$

This makes the following algorithmic result very interesting.

Theorem 1 (Courcelle). For any MSOL formula φ without free variables and for any $k \ge 0$, there exists a linear-time algorithm deciding whether a graph G of tree-width at most k satisfies $G \models \varphi$.

All the natural variants of this claim are true as well.

Theorem 2 (Courcelle). For any MSOL formula φ with one free variable V_1 and for any $k \ge 0$, there exist polynomial-time algorithms that given a graph G of tree-width at most k

- find the largest set $V_1 \subseteq V(G)$ satisfying φ , and
- determine the number of sets $V_1 \subseteq V(G)$ satisfying φ .

2 Limits of MSOL

Ehrenfeucht-Fraïssé game: Two players, Spoiler and Duplicator. Given two graphs A_1 and A_2 , and integer $n \ge 1$. For $k = 1, \ldots, n$,

- Spoiler chooses $i_k \in \{1, 2\}$, and selects a vertex/edge/set of vertices/set of edges X_{k,i_k} in A_{i_k} .
- Duplicator chooses $i_k \in \{1, 2\}$, and selects a vertex/edge/set of vertices/set of edges (the same type as Spoiler) $X_{k,3-i_k}$ in A_{3-i_k} .

Duplicator wins if there are the same relations among the corresponding selected objects, i.e., for $1 \le k, t \le n$,

- If $X_{k,1}$ is a vertex/edge and $X_{t,1}$ is a vertex/edge, then $X_{k,1} = X_{t,1}$ if and only if $X_{k,2} = X_{t,2}$.
- If $X_{k,1}$ is a vertex and $X_{t,1}$ is an edge, then $X_{k,1}$ is incident with $X_{t,1}$ if and only if $X_{k,2}$ is incident with $X_{t,2}$.
- If $X_{k,1}$ is a vertex/edge and $X_{t,1}$ is a set of vertices/edges, then $X_{k,1} \in X_{t,1}$ if and only if $X_{k,2} \in X_{t,2}$.

Lemma 3. Let P be a graph property. Suppose that for every $n \ge 1$, there exist graphs $A_{n,1}$ and $A_{n,2}$ such that $A_{n,1}$ has the property P, $A_{n,2}$ does not have the property P, and Duplicator has a winning strategy for the Ehrenfeucht-Fraissé game for n and the graphs $A_{n,1}$ and $A_{n,2}$. Then P cannot be expressed in MSOL.

Proof. Suppose for a contradiction that a graph G has the property P if and only if $G \models \varphi$ for some MSOL formula φ without free variables. We can assume that φ is in prenex normal form, that is,

$$\varphi = (Q_1 \alpha_1)(Q_2 \alpha_2) \dots (Q_n \alpha_n) \psi(\alpha_1, \dots, \alpha_n)$$

for some existential or universal quantifiers Q_1, \ldots, Q_n , variables $\alpha_1, \ldots, \alpha_n$ and a quantifier-free MSOL formula ψ .

We are going to describe Spoiler's winning strategy in *n*-round Ehrenfeucht-Fraïssé game for graphs $A_{n,1}$ and $A_{n,2}$. Consider the situation after first krounds. For $i \in \{1, 2\}$, let $\sigma_{k,i}$ be the variable assignment in $A_{n,i}$ such that for $j = 1, \ldots, k$, we have $\sigma_{k,i}(\alpha_j) = X_{j,i}$. We maintain the invariants that

$$A_{n,1}, \sigma_{k,1} \models (Q_{k+1}\alpha_{k+1})(Q_{k+2}\alpha_{k+2})\dots(Q_n\alpha_n)\psi(\alpha_1,\dots,\alpha_n)$$
(1)

and

$$A_{n,2}, \sigma_{k,2} \not\models (Q_{k+1}\alpha_{k+1})(Q_{k+2}\alpha_{k+2})\dots(Q_n\alpha_n)\psi(\alpha_1,\dots,\alpha_n).$$
(2)

For k = 0, these invariants hold since $A_{n,1}$ has the property P and $A_{n,2}$ does not have the property P.

Suppose that we already managed to play the first k rounds while preserving the invariant, $0 \le k \le n-1$. If $Q_{k+1} = \exists$, then Spoiler sets $i_{k+1} = 1$ and chooses the value $X_{k+1,1}$ for α_{k+1} in $A_{n,1}$ so that

$$A_{n,1}, \sigma_{k+1,1} \models (Q_{k+2}\alpha_{k+2})\dots(Q_n\alpha_n)\psi(\alpha_1,\dots,\alpha_n).$$

Since (2) holds, Duplicator cannot choose any value $X_{k+1,2}$ for α_{k+1} in $A_{n,2}$ to violate the second invariant.

Similarly, if $Q_{k+1} = \forall$, then Spoiler sets $i_{k+1} = 2$ and chooses the value $X_{k+1,2}$ for α_{k+1} in $A_{n,2}$ so that

$$A_{n,2}, \sigma_{k+1,2} \not\models (Q_{k+2}\alpha_{k+2})\dots(Q_n\alpha_n)\psi(\alpha_1,\dots,\alpha_n).$$

Since (1) holds, Duplicator cannot choose any value $X_{k+1,1}$ for α_{k+1} in $A_{n,1}$ to violate the first invariant.

Hence, Spoiler can ensure that the invariants (1) and (2) hold for k = n, that is,

$$A_{n,1}, \sigma_{n,1} \models \psi(\alpha_1, \dots, \alpha_n)$$

and

$$A_{n,2}, \sigma_{n,2} \not\models \psi(\alpha_1, \ldots, \alpha_n).$$

However, this implies that ψ contains some relation which is true in the variable assignment $\sigma_{n,1}$ and false in the variable assignment $\sigma_{n,2}$, or vice versa, and thus Spolier wins the game. This is a contradiction.

Let us remark that the reverse implication (if there exists $n \ge 1$ such that Spoiler wins any *n*-round game with graphs A_1 satisfying P and A_2 not satisfying P, then P can be expressed in MSOL) is true as well, but somewhat harder to prove and much less useful.

Example: the property "the graph has even number of vertices" cannot be expressed in MSOL.

Proof. Let $A_{n,1}$ consist of 2^n isolated vertices and $A_{n,2}$ of $2^n + 1$ isolated vertices. Hence, in the game, no edges or sets of edges will be chosen. Treat the chosen vertices as single-vertex sets. For k = 0, ..., n, ensure that after the k-th step, the following invariant holds:

• For all disjoint sets $K, L \subseteq \{1, \ldots, k\}$, the sets

$$\bigcap_{i \in K} X_{i,1} \setminus \bigcup_{i \in L} X_{i,1}$$

and

$$\bigcap_{i \in K} X_{i,2} \setminus \bigcup_{i \in L} X_{i,2}$$

either have the same size, or they both have size at least 2^{n-k} .

This ensures that in the end, if $X_{k,1}$ is a vertex, then

- when $X_{t,1}$ is a set, then $X_{k,1} \in X_{t,1}$ if and only if $X_{k,2} \in X_{t,2}$,
- when $X_{t,1}$ is a vertex, then $X_{k,1} = X_{t,1}$ if and only if $X_{k,2} = X_{t,2}$,

since the sets $X_{k,1} \setminus X_{t,1}$ and $X_{k,2} \setminus X_{t,2}$ are either both empty or both have at least one element.

3 Exercises

- 1. (*) Write a formula in MSOL with one free vertex set variable V_1 which is true exactly when V_1 is a dominating set.
- 2. $(\star\star)$ Write a formula in MSOL which is true exactly for Hamiltonian graphs.
- 3. $(\star\star\star)$ Write a formula in MSOL which is true exactly for planar graphs.
- 4. $(\star \star \star)$ Prove that the property "G has the same number of vertices of degree 0 and 1" is not expressible in MSOL.