Tree-width and algorithms

Zdeněk Dvořák

September 14, 2015

1 Algorithmic applications of tree-width

Many problems that are hard in general become easy on trees. For example, consider the problem of finding the size of the largest independent in a graph G. This problem is NP-complete for general graphs, but it can be solved in linear time for trees.

Consider a rooted tree T, and let r denote the root of T. For a vertex n of T, let T_{n} denote the subtree of T rooted in n. For every n we compute two numbers:

- $c(n)$ is the size of the largest independent set in T_{n} that contains n
- $d(n)$ is the size of the largest independent set in T_{n} that does not contain n

We proceed recursively, so that when processing n, we already computed these numbers for all sons of n. If n is a leaf, then $c(n)=1$ and $d(n)=0$. Otherwise,

$$
\begin{aligned}
& c(n)=1+\sum_{n^{\prime} \text { son of } n} d\left(n^{\prime}\right) \\
& d(n)=\sum_{n^{\prime} \text { son of } n}^{\max \left(c\left(n^{\prime}\right), d\left(n^{\prime}\right)\right)}
\end{aligned}
$$

The size of the largest independent set in T is $\min (c(r), d(r))$.
Similar algorithms usually work even for graphs with bounded tree-width. It is useful to first simplify the decomposition. A tree decomposition (T, β) is canonical if

- T is rooted, and the root r satisfies $\beta(r)=\emptyset$.
- Each leaf n satisfies $\beta(n)=\emptyset$.
- Each non-leaf vertex n satisfies one of the following conditions:
- n has exactly one son n^{\prime}, and $\beta(n)=\beta\left(n^{\prime}\right) \cup\{v\}$ for some vertex v.
- n has exactly one son n^{\prime}, and $\beta(n)=\beta\left(n^{\prime}\right) \backslash\{v\}$ for some vertex v.
- n has exactly two sons n_{1} and n_{2}, and $\beta(n)=\beta\left(n_{1}\right)=\beta\left(n_{2}\right)$.

Lemma 1. Every graph G of tree-width at most k has a canonical tree decomposition of width at most k, of polynomial size.

Proof. Insert new vertices and split the original vertices of a tree decomposition of G as necessary.

Suppose that (T, β) is a canonical tree decomposition of a graph G. For $n \in V(T)$, let $G_{n}=G\left[\bigcup_{n^{\prime} \in V\left(T_{n}\right)} \beta\left(n^{\prime}\right)\right]$. For any $C \subseteq \beta(n)$, we compute

- $s(n, C)=$ size of the larges independent set $S \subseteq V\left(G_{n}\right)$ such that $S \cap \beta(n)=C$.

When the tree decomposition has width at most k, we compute at most 2^{k+1} numbers for each vertex of T. We proceed recursively from leaves, so that when a vertex is processed, we already computed these numbers for its sons.

- If n is a leaf, then $s(n, \emptyset)=0$.
- If n has exactly one son n^{\prime} and $\beta(n)=\beta\left(n^{\prime}\right) \cup\{v\}$, then
$-s(n, C)=1+s\left(n^{\prime}, C \backslash\{v\}\right)$ when $v \in C$ and no neighbor of v belongs to C,
$-s(n, C)=-\infty$ when $v \in C$ and a neighbor of v belongs to C,
$-s(n, C)=s\left(n^{\prime}, C\right)$ when $v \notin C$.
- If n has exactly one son n^{\prime} and $\beta(n)=\beta\left(n^{\prime}\right) \backslash\{v\}$, then $s(n, C)=$ $\max \left(s\left(n^{\prime}, C\right), s\left(n^{\prime}, C \cup\{v\}\right)\right)$.
- If n has exactly two sons n_{1} and n_{2}, and $\beta(n)=\beta\left(n_{1}\right)=\beta\left(n_{2}\right)$, then $s(n, C)=s\left(n_{1}, C\right)+s\left(n_{2}, C\right)-|C|$.

The size of the largest independent set in G is $s(r, \emptyset)$. The time complexity is $O\left(k 2^{k}|V(T)|\right)$.

As a slightly more involved example, consider the computation of the size of the smallest dominating set, i.e., the smallest set $S \subseteq V(G)$ such that every vertex of G either belongs to S or has a neighbor in S. Again, let (T, β) be is a canonical tree decomposition of a graph G, and for $n \in V(T)$, let $G_{n}=G\left[\bigcup_{n^{\prime} \in V\left(T_{n}\right)} \beta\left(n^{\prime}\right)\right]$.

For any disjoint sets $B, C \subseteq \beta(n)$, we compute

- $s(n, B, C)=$ size of the smallest set $S \subseteq V\left(G_{n}\right)$ such that $S \cap \beta(n)=C$, no vertex of B has a neighbor in S, and every vertex of $V\left(G_{n}\right) \backslash B$ either belongs to S, or has a neighbor in S.

When the tree decomposition has width at most k, we compute at most 3^{k+1} numbers for each vertex of T. We proceed recursively from leaves, so that when a vertex is processed, we already computed these numbers for its sons.

- If n is a leaf, then $s(n, \emptyset, \emptyset)=0$.
- If n has exactly one son n^{\prime} and $\beta(n)=\beta\left(n^{\prime}\right) \cup\{v\}$, then
- $s(n, B, C)=s\left(n^{\prime}, B \backslash\{v\}, C\right)$ when $v \in B$ and no neighbor of v belongs to C,
- $s(n, B, C)=\infty$ when $v \in B$ and a neighbor of v belongs to C,
$-s(n, B, C)=1+\min \left\{s\left(n^{\prime}, B^{\prime}, C \backslash\{v\}\right): B \subseteq B^{\prime} \subseteq B \cup N\right\}$ when $v \in C, N$ is the set of neighbors of v in $\beta\left(n^{\prime}\right) \backslash C$, and $N \cap B=\emptyset$,
- $s(n, B, C)=\infty$ when $v \in C$ and a neighbor of v belongs to B,
- $s(n, B, C)=s\left(n^{\prime}, B, C\right)$ when $v \notin B \cup C$ and a neighbor of v belongs to C, and
- $s(n, B, C)=\infty$ when $v \notin B \cup C$ and no neighbor of v belongs to C.
- If n has exactly one son n^{\prime} and $\beta(n)=\beta\left(n^{\prime}\right) \backslash\{v\}$, then $s(n, B, C)=$ $\min \left(s\left(n^{\prime}, B, C\right), s\left(n^{\prime}, B, C \cup\{v\}\right)\right)$.
- If n has exactly two sons n_{1} and n_{2}, and $\beta(n)=\beta\left(n_{1}\right)=\beta\left(n_{2}\right)$, then $s(n, B, C)=\min \left\{s\left(n_{1}, B_{1}, C\right)+s\left(n_{2}, B_{2}, C\right)-|C|: B_{1}, B_{2} \subseteq \beta(n) \backslash\right.$ $\left.C, B_{1} \cap B_{2}=B\right\}$.

The size of the smallest dominating set in G is $s(r, \emptyset, \emptyset)$. The time complexity is $O\left(k 5^{k}|V(T)|\right)$.

2 Finding a tree decomposition

We use a variant of a lemma from the last lecture.
Lemma 2. Let G be a graph of tree-width at most k and let $f: V(G) \rightarrow \mathbf{R}^{+}$ be an arbitrary function. For a set $X \subseteq V(G)$, let $f(X)=\sum_{x \in X} f(x)$. Then G contains a set $S \subseteq V(G)$ of size at most $k+1$ such that every component C of $G-S$ satisfies $f(V(C)) \leq f(V(G)) / 2$.

We say that a graph G is s-fragile if for every $G^{\prime} \subseteq G$ and $W \subseteq V\left(G^{\prime}\right)$, G^{\prime} contains a set $S \subseteq V\left(G^{\prime}\right)$ of size at most s such that every component C of $G^{\prime}-S$ contains at most $|W| / 2$ vertices of W.

Lemma 3. Every graph of tree-width at most k is $(k+1)$-fragile.
Proof. As every subgraph of G has tree-width at most k, it suffices to prove the condition of $(k+1)$-fragility for $G=G^{\prime}$. Let $f(v)=1$ for $v \in W$ and $f(v)=0$ otherwise, and apply Lemma 2 .

Lemma 3 has an approximate converse.
Lemma 4. Every s-fragile graph has tree-width at most $2 s$.
Proof. We prove a stronger claim.
Let G be an s-fragile graph, and let $W \subseteq V(G)$ have size at most $2 s+1$. Then G has a tree-decomposition (T, β) of width at most $2 s$ such that $W \subseteq \beta(n)$ for some $n \in V(T)$.
We prove (1) by induction on the number of vertices of G (i.e., we assume that (1) holds for all graphs with less than $|V(G)|$ vertices). If $|V(G)| \leq 2 s$, then we can let T be the tree with one vertex n and $\beta(n)=V(G)$. Hence, assume that $|V(G)| \geq 2 s+1$. By adding vertices to W if necessary, we can assume that $|W|=2 s+1$. Let $S \subseteq V(G)$ be a set of size at most s such that every component of $G-S$ contains at most $(2 s+1) / 2$ vertices of W. Let C_{1}, \ldots, C_{m} be the components of $G-S$, and for $1 \leq i \leq m$, let $G_{i}=G\left[V\left(C_{i}\right) \cup S\right]$. Note that G_{i} contains at most $(2 s+1) / 2+s<2 s+1$ vertices of W, hence $W \nsubseteq V\left(G_{i}\right)$, and thus $\left|V\left(G_{i}\right)\right|<|V(G)|$. By the induction hypothesis, G_{i} has a tree decomposition $\left(T_{i}, \beta_{i}\right)$ of width at most $2 s$ such that $W \cap V\left(G_{i}\right) \subseteq \beta\left(n_{i}\right)$ for some $n_{i} \in V\left(T_{i}\right)$.

Let T be the tree obtained from the disjoint union of T_{1}, \ldots, T_{m} by adding a new vertex n adjacent to n_{1}, \ldots, n_{m}. Let $\beta\left(n^{\prime}\right)=\beta_{i}\left(n^{\prime}\right)$ for $n^{\prime} \in V(T) \backslash\{n\}$, where $i \in\{1, \ldots, m\}$ satisfies $n^{\prime} \in V\left(T_{i}\right)$; and let $\beta(n)=W$. Then (T, β) is a tree decomposition of G of width at most $2 s$ and $W \subseteq \beta(n)$.

As a corollary, we have the following.
Theorem 5. For every $s \geq 0$, there exists a polynomial-time algorithm that for a graph G either decides that G has tree-width at least s, or returns a tree decomposition of G of width at most $2 s$.

Proof. The proof of Lemma 3 gives an algorithm that either finds a tree decomposition of G of width $2 s$, or finds a subgraph $G^{\prime} \subseteq G$ and a set $W \subseteq V\left(G^{\prime}\right)$ showing that G is not s-fragile. In the latter case, Lemma 3 shows that G does not have tree-width at most $s-1$.

To execute the algorithm, we need for a given set W and graph G^{\prime} to decide whether there exists a set S of size at most s such that each component of $G^{\prime}-S$ contains at most $|W| / 2$ vertices of W. To do so, we can simply test all such sets $S \subseteq V\left(G^{\prime}\right)$. This results in an algorithm with time complexity $O\left(|V(G)|^{s+2}\right)$.

With a little work, this can be improved to $O\left(f(s)|V(G)|^{2}\right)$ for some function f. The current best approximation algorithms is by Bodlaender, Drange, Dregi, Fomin, Lokshtanov and Pilipczuk: decides that either the tree-width is at most $5 k-1$, or at least k, in time $O\left(c^{k}|V(G)|\right)$.

Let us remark that such an approximation is sufficient for the described algorithms. E.g., we can find the size of the largest independent set of a graph with tree-width at most k in time $O\left(c^{k}|V(G)|\right)$, even if the tree decomposition is not given in advance - we find a decomposition of width at most $5 k-1$ using the algorithm of Bodlaender et al., and then apply the algorithm for independent sets to this approximate decomposition, which has time complexity $O\left(k 2^{5 k}|V(G)|\right)$.

Furthermore, for fixed k, given a tree decomposition of G of width at most $5 k-1$, it is possible to find a tree decomposition of G of width at most k (when it exists) in linear time, using an algorithm of Bodlaender and Kloks. Hence, we have the following.

Theorem 6. For every $k \geq 1$, there exists a linear-time algorithm which for given graph G either decides that $\mathrm{tw}(G)>k$, or finds a tree decomposition of G of width at most k.

3 Exercises

1. (\star) Modify the algorithm that finds the size of the largest independent set in a graph G of bounded tree-width so that it also returns one such largest independent set $S \subseteq V(G)$.
2. ((\star) Modify the algorithm that finds the size of the smallest dominating set in a graph G of bounded tree-width so that it returns the number of all (not necessarily smallest) dominating sets in G.
3. ($\star \star \star$) Design a polynomial-time algorithm that determines whether a graph of bounded tree-width (given with its tree decomposition) is 3 -colorable.
4. (\star) Prove Lemma 2.
