Tree-width

Zdeněk Dvořák

September 14, 2015

A tree decomposition of a graph G is a pair (T, β), where $\beta: V(T) \rightarrow 2^{V(G)}$ assigns a bag $\beta(n)$ to each vertex of T, such that

- for every $v \in V(G)$, there exists $n \in V(T)$ such that $v \in \beta(n)$ - "every vertex is in some bag",
- for every $u v \in E(G)$, there exists $n \in V(T)$ such that $u, v \in \beta(n)$ "every edge is in some bag", and
- for every $v \in V(G)$, the set $\{n \in V(T): v \in \beta(n)\}$ induces a connected subtree of T - "every vertex appears in a connected subtree of the decomposition".

Lemma 1. If $S \subseteq V(G)$ induces a clique in G and (T, β) is a tree decomposition of G, then there exists $n \in V(T)$ such that $S \subseteq \beta(n)$.

Theorem 2. A graph is chordal if and only if it has a tree decomposition where every bag induces a clique.

1 Tree-width

The width of the tree decomposition is the size of the largest bag minus one. The tree-width $\operatorname{tw}(G)$ of a graph G is the minimum width of a tree decomposition of G.

Corollary 3. A graph G has tree-width at most k, if and only if $G \subseteq G^{\prime}$ for some chordal graph G^{\prime} with $\omega\left(G^{\prime}\right)=k+1$.

Corollary 4. Every graph of tree-width at most k contains a vertex of degree at most k.

Examples:

- G has tree-width at most 1 if and only if G is a forest.
- Any cycle has tree-width 2.
- The complete graph K_{n} has tree-width $n-1$.

A graph H is a minor of a graph $G\left(H \leq_{m} G\right)$ if H is obtained from G by removing vertices and edges and by contracting edges.

Lemma 5. If $H \leq_{m} G$, then $\operatorname{tw}(H) \leq \operatorname{tw}(G)$.
Proof. Let (T, β) be a tree decomposition of G of width $\operatorname{tw}(G)$.

- If H is obtained from G by removing an edge, then (T, β) is a tree decomposition of H.
- If H is obtained from G by removing a vertex v, then $\left(T, \beta^{\prime}\right)$ is a tree decomposition of H, where $\beta^{\prime}(n)=\beta(n) \backslash\{v\}$ for every $n \in V(T)$.
- If H is obtained from G by contracting the edge $x y$ to a new vertex w, then $\left(T, \beta^{\prime}\right)$ is a tree decomposition of H, where $\beta^{\prime}(n)=(\beta(n) \backslash$ $\{x, y\}) \cup\{w\}$ for every $n \in V(T)$ such that $\{x, y\} \cap \beta(n) \neq \emptyset$, and $\beta^{\prime}(n)=\beta(n)$ for every $n \in V(T)$ such that $\{x, y\} \cap \beta(n)=\emptyset$.

A model of H in G is a function $\mu: V(H) \rightarrow$ connected subgraphs of G such that

- $\mu(u) \cap \mu(v)=\emptyset$ for every $u \neq v$, and
- if $u v \in E(H)$, then G has an edge with one end in $\mu(u)$ and the other end in $\mu(v)$. We denote one such edge by $\mu(u v)$.

Observation 6. H is a minor of G if and only if H has a model in G.
Corollary 7. If H is a minor of G and H has maximum degree at most 3, then H is a topological minor of G.

Proof. Let μ be a model of H in G, chosen so that $H^{\prime}=\bigcup_{x \in V(H) \cup E(H)} \mu(x)$ is minimal. Then for every $v \in V(H), \mu(v) \cup \bigcup_{u v \in E(H)} \mu(u v)$ is a subdivision of K_{1}, K_{2} or $K_{1,3}$, and thus H^{\prime} is a subdivision of H.

We can now give characterizations of graphs with tree-width 1 and 2 in terms of forbidden (topological) minors.

Theorem 8.

tree-width at most $1=\operatorname{Forb}_{\leq_{m}}\left(K_{3}\right)=\operatorname{Forb}_{\leq_{t}}\left(K_{3}\right)$
tree-width at most $2=\operatorname{Forb}_{\leq_{m}}\left(K_{4}\right)=\operatorname{Forb}_{\leq_{t}}\left(K_{4}\right)$
tree-width at most $k \subsetneq \operatorname{Forb}_{\leq_{m}}\left(K_{k+2}\right) \subsetneq \operatorname{Forb}_{\leq_{t}}\left(K_{k+2}\right)$ for $k \geq 3$.
Proof. By Lemma 1, we have $\operatorname{tw}\left(K_{n}\right)=n-1$, and thus a graph of treewidth at most k cannot contain K_{k+2} as a minor. For $k \geq 3$, $\operatorname{Forb}_{\leq_{m}}\left(K_{k+2}\right)$ includes all planar graphs, which have unbounded tree-width (see below).

Hence, it remains to prove that

- Every graph without K_{3}-minor (or K_{3}-topological minor) has treewidth at most 1.
- Every graph without K_{4}-minor (or K_{4}-topological minor) has treewidth at most 2.

Graphs without K_{3}-minor are precisely forests, which have tree-width at most 1. For K_{4}-minor-free graphs, we proceed by induction on the number of vertices. That is, we are given a graph G without without K_{4}-minor, and assume that every K_{4}-minor-free graph with less than $|V(G)|$ vertices has tree-width at most 2 .

Note that G is not 3-connected: otherwise, let C be an induced cycle in G. Since G is 3 -connected, we have $G \neq C$, and thus $G-V(C)$ is non-empty. Since G is 3-connected, every component K of $G-V(C)$ has at least three distinct neighbors in C. Consequently, contracting K and all but three edges of C results in K_{4}, contrary to the assumption that $K_{4} \not Z_{m} G$.

If $|V(G)| \leq 3$, then G has tree-width at most two. Hence, assume that $|V(G)| \geq 4$, and thus G contains a minimum cut S (of size at most 2). Let G_{1} and G_{2} be subgraphs of G such that $V\left(G_{1}\right) \neq S \neq V\left(G_{2}\right), V\left(G_{1}\right) \cap V\left(G_{2}\right)=S$ and $G_{1} \cup G_{2}=G$. If $|S| \leq 1$, then let $G_{1}^{\prime}=G_{1}$ and $G_{2}^{\prime}=G_{2}$. If $S=\{u, v\}$, then let $G_{1}^{\prime}=G_{1}+u v$ and $G_{2}^{\prime}=G_{2}+u v$. Observe that G_{1}^{\prime} and G_{2}^{\prime} are minors of G, and thus they do not contain K_{4} as a minor. For $i \in\{1,2\}$, induction hypothesis implies that G_{i}^{\prime} has a tree decomposition $\left(T_{i}, \beta_{i}\right)$ of width at most 2. By Lemma 1, there exists $n_{i} \in V\left(T_{i}\right)$ such that $S \subseteq \beta_{i}\left(n_{i}\right)$. Let $T=\left(T_{1} \cup T_{2}\right)+n_{1} n_{2}$, and let $\beta(n)=\beta_{1}(n)$ for $n \in V\left(T_{1}\right)$ and $\beta(n)=\beta_{2}(n)$ for $n \in V\left(T_{2}\right)$. Then (T, β) is a tree decomposition of G of width at most two.

1.1 Minors and coloring

Clearly, if G contains a clique of size k, its chromatic number is at least k. The converse is false, however Hadwiger conjectured a "weak" converse in
the terms of minors.
Conjecture 1. For every $k \geq 1$, every graph that does not contain K_{k} as a minor has chromatic number at most $k-1$.

For $k=5$, this strengthens the 4-color theorem (since a planar graph does not contain K_{5} as a minor, it is 4-colorable). Hadwiger's conjecture is known to be true for $k=5$ and $k=6$, in both cases by showing its equivalence with the 4 -color theorem. For $k \geq 7$, the conjecture is open. For $k \leq 4$, we can prove even stronger statement.

Lemma 9. For $1 \leq k \leq 4$, every graph that does not contain K_{k} as a topological minor has chromatic number at most $k-1$.

Proof. A graph without K_{1} has no vertices, and thus it can be colored by 0 colors. A graph without K_{2} has no edges, and thus it can be colored by 1 color.

For $3 \leq k \leq 4$, Theorem 8 implies that every graph G without K_{k} as a topological minor has tree-width at most $k-2$, and by Corollary $4, G$ contains a vertex v of degree at most $k-2$. Hence, we can color G by removing v, coloring $G-v$ by at most $k-1$ colors, and assigning v a color different from the colors of its neighbors.

Let us note that the analogue of Lemma 9 for arbitrary k was conjectured by Hajós. Hajós conjecture is known to be false for $k \geq 7$, and it is open for $k \in\{5,6\}$.

1.2 Tree-width and cuts

Let (T, β) be a tree decomposition of a graph G. Every edge of the tree decomposition defines a cut in G, as follows. For an edge $n_{1} n_{2} \in E(T)$, let $T_{n_{1}, n_{2}}$ be the component of $T-n_{1} n_{2}$ that contains n_{2}, and let $G_{n_{1}, n_{2}}=$ $G\left[\bigcup_{n \in V\left(T_{n_{1}, n_{2}}\right)} \beta(n)\right]$.
Observation 10. Let G be a graph, let (T, β) be its tree decomposition, and let $n_{1} n_{2}$ be an edge of T. Then $G=G_{n_{1}, n_{2}} \cup G_{n_{2}, n_{1}}$ and $V\left(G_{n_{1}, n_{2}}\right) \cap$ $V\left(G_{n_{2}, n_{1}}\right)=\beta\left(n_{1}\right) \cup \beta\left(n_{2}\right)$. In particular, G contains no edge with one end in $V\left(G_{n_{1}, n_{2}}\right) \backslash V\left(G_{n_{2}, n_{1}}\right)$ and the other end in $V\left(G_{n_{2}, n_{1}}\right) \backslash V\left(G_{n_{1}, n_{2}}\right)$.

Hence, graphs of bounded tree-width contain many small cuts.
Lemma 11. If G is a graph of tree-width at most k, then there exists $S \subseteq$ $V(G)$ of size at most $k+1$ such that every component of $G-S$ has at most $|V(G)| / 2$ vertices.

Proof. Let (T, β) be a tree decomposition of G of width at most k. Each of the bags of the decomposition has size at most $k+1$. We define an orientation of T as follows. For every edge $n n^{\prime} \in E(T)$ such that $\left|V\left(G_{n, n^{\prime}}\right) \backslash \beta(n)\right|>|V(G)| / 2$, orient the edge $n n^{\prime}$ towards n^{\prime}. Since T is a tree, we have $|E(T)|<|V(T)|$, and thus T contains a vertex n such that no edge of T is oriented away from n. Hence, we can set $S=\beta(n)$.

The $n \times n$ grid is the graph with vertex set $\{(i, j): 1 \leq i, j \leq n\}$ and two vertices $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$ adjacent if $\left|i_{1}-i_{2}\right|+\left|j_{1}-j_{2}\right|=1$.

Corollary 12. The $n \times n$ grid G_{n} has tree-width at least $\lfloor n / 2\rfloor$.
Proof. Suppose that G_{n} has tree-width at most $\lfloor n / 2\rfloor-1$. By Lemma 11, there exists $S \subseteq V\left(G_{n}\right)$ of size at most $\lfloor n / 2\rfloor$ such that every component of $G_{n}-S$ has at most $\left|V\left(G_{n}\right)\right| / 2$ vertices. However, at least $\lceil n / 2\rceil$ of rows and columns of the grid are not intersected by S, which gives a component with more than $\left|V\left(G_{n}\right)\right| / 2$ vertices.

A slightly more involved argument shows that the $n \times n$ grid has treewidth exactly n. The following result of Robertson and Seymour gives an approximate characterization of graphs with bounded tree-width.

Theorem 13. For every n, there exists k such that every graph of tree-width at least k contains the $n \times n$ grid as a minor.

2 Exercises

1. (\star) Prove that if G has tree-width at most k, then G has a tree decomposition (T, β) of width at most k such that $|V(T)| \leq n$.
2. (\star) A graph G is outerplanar if it can be drawn in plane so that every vertex of G is incident with the outer face. Prove that every outerplanar graph has tree-width at most 2.
3. ($\star \star)$ Prove that outerplanar $=\operatorname{Forb}_{\leq_{t}}\left(K_{4}, K_{2,3}\right)$.
4. ($\star \star \star$) A 2 -terminal graph is a triple (G, u, v), where u and v are distinct vertices of G. For two 2-terminal graphs $\left(G_{1}, u_{1}, v_{1}\right)$ and $\left(G_{2}, u_{2}, v_{2}\right)$, their series composition is $\left(G^{\prime}, u_{1}, v_{2}\right)$, where G^{\prime} is obtained from the disjoint union of G_{1} and G_{2} by identifying v_{1} with u_{2}; and their parallel composition is $\left(G^{\prime \prime}, u, v\right)$, where $G^{\prime \prime}$ is obtained from the disjoint union of G_{1} and G_{2} by identifying u_{1} with u_{2} to a single vertex u, and v_{1} with v_{2} to a single vertex v. Let K_{2}^{*} denote the 2-terminal graph (G, u, v), where $V(G)=\{u, v\}$ and $E(G)=\{u v\}$. A 2-terminal graph (G, u, v) is series-parallel if can be obtained by a sequence of series and parallel compositions from copies of K_{2}^{*}. Prove that (G, u, v) is series-parallel, if and only if $G+u v$ is 2 -connected and has tree-width at most 2 .
5. ($\star \star$) Prove that if G is a graph of tree-width at most k, then it has induced subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2},\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq$ $k+1,\left|V\left(G_{1}\right) \backslash V\left(G_{2}\right)\right| \leq \frac{2}{3}|V(G)|$ and $\left|V\left(G_{2}\right) \backslash V\left(G_{1}\right)\right| \leq \frac{2}{3}|V(G)|$.
