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A tree decomposition of a graphG is a pair (T, β), where β : V (T )→ 2V (G)

assigns a bag β(n) to each vertex of T , such that

• for every v ∈ V (G), there exists n ∈ V (T ) such that v ∈ β(n) – “every
vertex is in some bag”,

• for every uv ∈ E(G), there exists n ∈ V (T ) such that u, v ∈ β(n) –
“every edge is in some bag”, and

• for every v ∈ V (G), the set {n ∈ V (T ) : v ∈ β(n)} induces a connected
subtree of T – “every vertex appears in a connected subtree of the
decomposition”.

Lemma 1. If S ⊆ V (G) induces a clique in G and (T, β) is a tree decompo-
sition of G, then there exists n ∈ V (T ) such that S ⊆ β(n).

Theorem 2. A graph is chordal if and only if it has a tree decomposition
where every bag induces a clique.

1 Tree-width

The width of the tree decomposition is the size of the largest bag minus
one. The tree-width tw(G) of a graph G is the minimum width of a tree
decomposition of G.

Corollary 3. A graph G has tree-width at most k, if and only if G ⊆ G′ for
some chordal graph G′ with ω(G′) = k + 1.

Corollary 4. Every graph of tree-width at most k contains a vertex of degree
at most k.

Examples:
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• G has tree-width at most 1 if and only if G is a forest.

• Any cycle has tree-width 2.

• The complete graph Kn has tree-width n− 1.

A graph H is a minor of a graph G (H ≤m G) if H is obtained from G
by removing vertices and edges and by contracting edges.

Lemma 5. If H ≤m G, then tw(H) ≤ tw(G).

Proof. Let (T, β) be a tree decomposition of G of width tw(G).

• If H is obtained from G by removing an edge, then (T, β) is a tree
decomposition of H.

• If H is obtained from G by removing a vertex v, then (T, β′) is a tree
decomposition of H, where β′(n) = β(n) \ {v} for every n ∈ V (T ).

• If H is obtained from G by contracting the edge xy to a new vertex
w, then (T, β′) is a tree decomposition of H, where β′(n) = (β(n) \
{x, y}) ∪ {w} for every n ∈ V (T ) such that {x, y} ∩ β(n) 6= ∅, and
β′(n) = β(n) for every n ∈ V (T ) such that {x, y} ∩ β(n) = ∅.

A model of H in G is a function µ : V (H) → connected subgraphs of G
such that

• µ(u) ∩ µ(v) = ∅ for every u 6= v, and

• if uv ∈ E(H), then G has an edge with one end in µ(u) and the other
end in µ(v). We denote one such edge by µ(uv).

Observation 6. H is a minor of G if and only if H has a model in G.

Corollary 7. If H is a minor of G and H has maximum degree at most 3,
then H is a topological minor of G.

Proof. Let µ be a model of H in G, chosen so that H ′ =
⋃

x∈V (H)∪E(H) µ(x)

is minimal. Then for every v ∈ V (H), µ(v)∪
⋃

uv∈E(H) µ(uv) is a subdivision
of K1, K2 or K1,3, and thus H ′ is a subdivision of H.

We can now give characterizations of graphs with tree-width 1 and 2 in
terms of forbidden (topological) minors.
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Theorem 8.

tree-width at most 1 = Forb≤m(K3) = Forb≤t(K3)

tree-width at most 2 = Forb≤m(K4) = Forb≤t(K4)

tree-width at most k ( Forb≤m(Kk+2) ( Forb≤t(Kk+2) for k ≥ 3.

Proof. By Lemma 1, we have tw(Kn) = n − 1, and thus a graph of tree-
width at most k cannot contain Kk+2 as a minor. For k ≥ 3, Forb≤m(Kk+2)
includes all planar graphs, which have unbounded tree-width (see below).

Hence, it remains to prove that

• Every graph without K3-minor (or K3-topological minor) has tree-
width at most 1.

• Every graph without K4-minor (or K4-topological minor) has tree-
width at most 2.

Graphs without K3-minor are precisely forests, which have tree-width at
most 1. For K4-minor-free graphs, we proceed by induction on the number
of vertices. That is, we are given a graph G without without K4-minor, and
assume that every K4-minor-free graph with less than |V (G)| vertices has
tree-width at most 2.

Note that G is not 3-connected: otherwise, let C be an induced cycle in
G. Since G is 3-connected, we have G 6= C, and thus G−V (C) is non-empty.
Since G is 3-connected, every component K of G− V (C) has at least three
distinct neighbors in C. Consequently, contracting K and all but three edges
of C results in K4, contrary to the assumption that K4 6≤m G.

If |V (G)| ≤ 3, then G has tree-width at most two. Hence, assume that
|V (G)| ≥ 4, and thus G contains a minimum cut S (of size at most 2). Let G1

and G2 be subgraphs of G such that V (G1) 6= S 6= V (G2), V (G1)∩V (G2) = S
and G1 ∪G2 = G. If |S| ≤ 1, then let G′1 = G1 and G′2 = G2. If S = {u, v},
then let G′1 = G1 + uv and G′2 = G2 + uv. Observe that G′1 and G′2 are
minors of G, and thus they do not contain K4 as a minor. For i ∈ {1, 2},
induction hypothesis implies that G′i has a tree decomposition (Ti, βi) of
width at most 2. By Lemma 1, there exists ni ∈ V (Ti) such that S ⊆ βi(ni).
Let T = (T1∪T2)+n1n2, and let β(n) = β1(n) for n ∈ V (T1) and β(n) = β2(n)
for n ∈ V (T2). Then (T, β) is a tree decomposition of G of width at most
two.

1.1 Minors and coloring

Clearly, if G contains a clique of size k, its chromatic number is at least k.
The converse is false, however Hadwiger conjectured a “weak” converse in
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the terms of minors.

Conjecture 1. For every k ≥ 1, every graph that does not contain Kk as a
minor has chromatic number at most k − 1.

For k = 5, this strengthens the 4-color theorem (since a planar graph does
not contain K5 as a minor, it is 4-colorable). Hadwiger’s conjecture is known
to be true for k = 5 and k = 6, in both cases by showing its equivalence with
the 4-color theorem. For k ≥ 7, the conjecture is open. For k ≤ 4, we can
prove even stronger statement.

Lemma 9. For 1 ≤ k ≤ 4, every graph that does not contain Kk as a
topological minor has chromatic number at most k − 1.

Proof. A graph without K1 has no vertices, and thus it can be colored by 0
colors. A graph without K2 has no edges, and thus it can be colored by 1
color.

For 3 ≤ k ≤ 4, Theorem 8 implies that every graph G without Kk as
a topological minor has tree-width at most k − 2, and by Corollary 4, G
contains a vertex v of degree at most k − 2. Hence, we can color G by
removing v, coloring G− v by at most k − 1 colors, and assigning v a color
different from the colors of its neighbors.

Let us note that the analogue of Lemma 9 for arbitrary k was conjectured
by Hajós. Hajós conjecture is known to be false for k ≥ 7, and it is open for
k ∈ {5, 6}.

1.2 Tree-width and cuts

Let (T, β) be a tree decomposition of a graph G. Every edge of the tree
decomposition defines a cut in G, as follows. For an edge n1n2 ∈ E(T ),
let Tn1,n2 be the component of T − n1n2 that contains n2, and let Gn1,n2 =

G
[⋃

n∈V (Tn1,n2 )
β(n)

]
.

Observation 10. Let G be a graph, let (T, β) be its tree decomposition,
and let n1n2 be an edge of T . Then G = Gn1,n2 ∪ Gn2,n1 and V (Gn1,n2) ∩
V (Gn2,n1) = β(n1) ∪ β(n2). In particular, G contains no edge with one end
in V (Gn1,n2) \ V (Gn2,n1) and the other end in V (Gn2,n1) \ V (Gn1,n2).

Hence, graphs of bounded tree-width contain many small cuts.

Lemma 11. If G is a graph of tree-width at most k, then there exists S ⊆
V (G) of size at most k + 1 such that every component of G− S has at most
|V (G)|/2 vertices.
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Proof. Let (T, β) be a tree decomposition ofG of width at most k. Each of the
bags of the decomposition has size at most k+1. We define an orientation of T
as follows. For every edge nn′ ∈ E(T ) such that |V (Gn,n′)\β(n)| > |V (G)|/2,
orient the edge nn′ towards n′. Since T is a tree, we have |E(T )| < |V (T )|,
and thus T contains a vertex n such that no edge of T is oriented away from
n. Hence, we can set S = β(n).

The n×n grid is the graph with vertex set {(i, j) : 1 ≤ i, j ≤ n} and two
vertices (i1, j1) and (i2, j2) adjacent if |i1 − i2|+ |j1 − j2| = 1.

Corollary 12. The n× n grid Gn has tree-width at least bn/2c.

Proof. Suppose that Gn has tree-width at most bn/2c − 1. By Lemma 11,
there exists S ⊆ V (Gn) of size at most bn/2c such that every component of
Gn− S has at most |V (Gn)|/2 vertices. However, at least dn/2e of rows and
columns of the grid are not intersected by S, which gives a component with
more than |V (Gn)|/2 vertices.

A slightly more involved argument shows that the n × n grid has tree-
width exactly n. The following result of Robertson and Seymour gives an
approximate characterization of graphs with bounded tree-width.

Theorem 13. For every n, there exists k such that every graph of tree-width
at least k contains the n× n grid as a minor.

2 Exercises

1. (?) Prove that if G has tree-width at most k, then G has a tree decom-
position (T, β) of width at most k such that |V (T )| ≤ n.

2. (?) A graph G is outerplanar if it can be drawn in plane so that every
vertex of G is incident with the outer face. Prove that every outerplanar
graph has tree-width at most 2.
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3. (??) Prove that outerplanar = Forb≤t(K4, K2,3).

4. (???) A 2-terminal graph is a triple (G, u, v), where u and v are distinct
vertices of G. For two 2-terminal graphs (G1, u1, v1) and (G2, u2, v2),
their series composition is (G′, u1, v2), where G′ is obtained from the
disjoint union of G1 and G2 by identifying v1 with u2; and their parallel
composition is (G′′, u, v), where G′′ is obtained from the disjoint union
of G1 and G2 by identifying u1 with u2 to a single vertex u, and v1 with
v2 to a single vertex v. Let K ··2 denote the 2-terminal graph (G, u, v),
where V (G) = {u, v} and E(G) = {uv}. A 2-terminal graph (G, u, v)
is series-parallel if can be obtained by a sequence of series and parallel
compositions from copies of K ··2 . Prove that (G, u, v) is series-parallel,
if and only if G+ uv is 2-connected and has tree-width at most 2.

5. (??) Prove that if G is a graph of tree-width at most k, then it has in-
duced subgraphs G1 and G2 such that G = G1∪G2, |V (G1)∩V (G2)| ≤
k + 1, |V (G1) \ V (G2)| ≤ 2

3
|V (G)| and |V (G2) \ V (G1)| ≤ 2

3
|V (G)|.
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