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Recall:

Theorem 1 (Triangle Removal lemma). For every 0 < α ≤ 1, there exists
β > 0 and n0 such that if G is a graph with n ≥ n0 vertices, then either

• G contains at least βn3 triangles, or

• there exists a set X ⊆ V (G) such that |X| ≤ αn2 and G−X contains
no trianges.

1 Arithmetic progressions in dense sets

Removal lemma has many interesting applications, let us give one in arith-
metic Ramsey theory. A well-known theorem of Van der Waerden states that
in any coloring of integers by finitely many colors, there exist arbitrarily long
monochromatic arithmetic sequences. Actually, a stronger claim holds: if
we select any subset of integers of positive density, such a subset contains
arbitrarily long arithmetic sequences (which implies Van der Waerden’s the-
orem, since if we color integers by k colors, at least one of the color classes
has density at least 1/k).

Theorem 2 (Szemerédi). For every γ > 0 and positive integer k, there exists
n2 as follows. If n ≥ n2 and B ⊆ {1, . . . , n} has size at least γn, then there
exist integers b, d > 0 such that b, b+ d, . . . , b+ kd ∈ B.

Here, we show just a restricted subcase of this claim, for arithmetic se-
quences of length 3. Firstly, we will need a “geometric” statement.

Lemma 3. For every δ > 0, there exists n1 as follows. If n ≥ n1 and
A ⊆ {1, . . . , n}2 has size at least δn2, then there exist x, y ∈ {1, . . . , n} and
d 6= 0 such that (x, y), (x, y + d), (x+ d, y) ∈ A.
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Proof. Let α = δ/40. Let β > 0 and n0 be the corresponding constants from
the Removal lemma. Let n1 = dmax(n0/6, 1/(54β))e.

Let G be the graph with vertex set {ri, si, ti : 1 ≤ i ≤ 2n}, and with
edges defined as follows:

• rxsy is an edge if (x, y) ∈ A,

• rxtz is an edge if (x, z − x) ∈ A, and

• sytz is an edge if (z − y, y) ∈ A.

Hence, rxsytz is a triangle if and only if (x, y), (x, z−x), (z−y, y) ∈ A. Letting
d = z − x − y, such a triangle gives the required solution unless d = 0, i.e.,
z = x + y. Note that there are less than (2n)2 triples x, y, z ∈ {1, . . . , 2n}
such that x + y = z. Therefore, if G contains at least (2n)2 triangles, then
the lemma holds.

Suppose that G contains less than (2n)2 ≤ 1
54n1

(6n)3 ≤ β|V (G)|3 trian-
gles. By the Removal lemma, there exists a set X ⊆ E(G) of size at most
α|V (G)|2 = 36αn2 such that G − X is triangle-free. Let T = {rxsytx+y :
(x, y) ∈ A}. Note that T is a set of |A| pairwise edge-disjoint triangles in
G. Since G−X is triangle-free, X contains an edge in each of the triangles
of T , and thus 36αn2 ≥ |X| ≥ |T | = |A|. This is a contradiction, since
|A| ≥ δn2 > 36αn2.

Corollary 4 (Roth’s theorem). For every γ > 0, there exists n2 as follows.
If n ≥ n2 and B ⊆ {1, . . . , n} has size at least γn, then there exist integers
b, d > 0 such that b, b+ d, b+ 2d ∈ B.

Proof. Let δ = γ/4. Let n1 be the corresponding constant from Lemma 3.
Let n2 = dn1/2e.

Let A ⊆ {1, ..., 2n}2 such that (x, y) ∈ A if and only if y − x ∈ B. Note
that if b ∈ B, then (1, b+1), (2, b+2), . . . , (n, b+n) ∈ A, hence |A| ≥ |B|n ≥
γn2 = (γ/4)(2n)2 = δ(2n)2. By Lemma 3, there exist x, y and d 6= 0 such
that (x, y), (x, y+d), (x+d, y) ∈ A. Hence (y−x)−d, y−x, (y−x)+d ∈ B,
giving the arithmetic progression as required.

How to modify the argument to prove the full version of Szemerédi’s
theorem? It suffices to generalize Lemma 3 to higher dimension, i.e., show
that a dense subset A of {1, . . . , n}k contains a point (x1, x2, . . . , xk) such that
(x1 + d, x2, . . . , xk), (x1, x2 + d, . . . , xk), . . . , (x1, x2, . . . , xk + d) ∈ A. Proving
this requires a variant of Removal lemma for hypergraphs: If H is a k-uniform
hypergraph, then either H contains Ω(|V (H)|k+1) copies of the complete k-
uniform hypergraph on k + 1 vertices, or all the copies can be destroyed by
removing o(|V (H)|k) hyperedges.
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Unfortunately, a straightforward generalization of the Regularity lemma
to the hypergraph setting is too weak to prove the Removal lemma. The
problem is that it is not sufficient to control the density of hyperedges: let
G be a random graph with edge density 1/2, and let H be the 3-uniform
hypergraph where uvw ∈ E(H) if and only if uv, uw, vw ∈ E(G). It is easy
to check H is “random-like” in the sense of Regularity lemma, and it has
hyperedge density 1/8. So, we would expect the density of the complete
3-uniform hypergraph on 4 vertices (which has 4 hyperedges) in H to be
(1/8)4 = 1/4096. However, actually the complete 3-uniform hypergraphs on
4 vertices in H correspond exactly to the subgraphs of K4 in G, which have
density (1/2)6 = 1/64. Hence, a much more involved version of hypergraph
Regularity lemma (which is beyond the scope of this lecture) is needed to
prove hypergraph Removal lemma.

Szemerédi’s Theorem probably is not the best possible. Erdös conjectured
the following much stronger statement.

Conjecture 1. Any infinite set B of integers such that∑
n∈B

1

n
=∞

contains arbitrarily long arithmetic progressions.

Recently, Green and Tao proved an interesting special case of this con-
jecture: primes contain arbitrarily long arithmetic progressions. From the
other side, we know that there are quite dense subsets without arithmetic
progressions.

Theorem 5. For every N0, there exists N ≥ N0 and a subset B ⊆ {0, . . . , N−
1} such that

|B| ≥ N

16
√

log2 N

and B does not contain a 3-term arithmetic progression.

Proof. For a positive integer n, let d = 2n−1 and N = (2d)n. Note that
log2N = n(1 + log2 d) = n2.

For 0 ≤ k ≤ n(d− 1)2, let

Sk = {~x ∈ {0, . . . , d− 1}n : ‖~x‖ =
√
k}.

Since Sk is a subset of the sphere of radius k, Sk does not contain a 3-term
arithmetic progression, i.e., for all distinct ~x, ~z ∈ Sk we have ~x+~z

2
6∈ Sk.
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Moreover, we have {0, . . . , d − 1}n =
⋃n(d−1)2

k=0 Sk, and thus there exists k
such that |Sk| ≥ dn

n(d−1)2+1
> dn−2/n. Let us fix this value of k.

For ~x = (x1, . . . , xn) ∈ {0, . . . , 2d−1}n, let us define f(~x) =
∑n

i=1(2d)i−1xi;
i.e., we view ~x as a number in the base 2d. Clearly f(~x) ∈ {0, . . . , N − 1}.
Furthermore, f is a bijection and for ~x, ~y, ~z ∈ {0, . . . , d − 1}n, we have
f(~x) + f(~z) = f(~x + ~z) and 2f(~y) = f(2~y). Since Sk does not contain 3-
term arithmetic progression, it follows that f(Sk) does not contain a 3-term
arithmetic progression. For B = f(Sk), we have

|B|
N

=
|Sk|
N

>
dn−2/n

(2d)n
=

1

n2nd2
≥ 1

4n+log2 d
>

1

42n
=

1

16
√

log2 N
.

2 Hales-Jewett Theorem

Another interesting generalization of Van der Waerden’s theorem essentially
considers higher-dimensional arithmetic progressions.

We will consider subsets of the d-dimensional cube {1, . . . , n}d. Any se-
quence S of stars and integers {1, . . . , n} of length d that contains at least one
star is called a root. For i = 1, . . . , n, let S(i) denote the sequence obtained
from S by replacing the stars by i.

The combinatorial line L(S) described by S is the set {S(1), S(2), . . . , S(n)}.
Example for d = 2 and n = 4:

• L(?, 2) = {(1, 2), (2, 2), (3, 2), (4, 2)} is the second row of the 4 × 4
matrix.

• L(3, ?) = {(3, 1), (3, 2), (3, 3), (3, 4)} is the third column of the 4 × 4
matrix.

• L(?, ?) = {(1, 1), (2, 2), (3, 3), (4, 4)} is the main diagonal of the 4 × 4
matrix.

Theorem 6 (Hales-Jewett). . For every n, k, there exists D such that every
k-coloring of the D-dimensional cube {1, . . . , n}D contains a monochromatic
combinatorial line.

Informally, if we play n-in-a-row in sufficiently large dimension, then it is
impossible to draw. Firstly, let us show that Hales-Jewett theorem implies
Van der Waerden’s theorem.
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Proof of Van der Waerden’s theorem. Consider any k-coloring of the inte-
gers, and suppose that we are looking for an arithmetic progression of length
n. Let D be the dimension from Theorem 6. For X = (x1, . . . , xD) ∈
{1, . . . , n}D, let f(X) = x1 + . . . + xD and assign to X the color of f(X).
By Theorem 6, there exists a monochromatic combinatorial line; let S be
its root. Then f(S(1)), f(S(2)), . . . , f(S(n)) is a monochromatic arithmetic
progression (with step equal to the number of stars in S).

Note that a density version of Hales-Jewett theorem (where we do not
give a k-coloring, but just a set containing at least one k-th of the elements
of the cube) is also true, and implies Szemeredi’s theorem in the same way.

Hales-Jewett theorem is much stronger than Van der Waerden’s theo-
rem. For example, it implies the following generalization showing that the
arithmetic sequences are not really that special.

Theorem 7 (Gallai-Witt). For any finite set T ⊆ Nt and for any coloring
of Nt by k colors, there exist a ∈ Nt and a positive integer d such that the
set {a+ dt : t ∈ T} is monochromatic.

Proof. Let T = {t1, . . . , tn} and let D be the dimension from Theorem 6.
For X = (x1, . . . , xD) ∈ {1, . . . , n}D, let f(X) = tx1 + . . . + txD

, and assign
to X the color of f(X). By Theorem 6, there exists a monochromatic com-
binatorial line; let S = (s1, . . . , sD) be its root. Let I ⊆ {1, . . . , D} be the
set of indices on that S has stars, and J = {1, . . . , D} \ I. Let

a =
∑
j∈J

tsj

d = |I|

Then {f(S(1)), f(S(2)), . . . , f(S(n))} = {a + dt : t ∈ T} is monochromatic.

Note that with T = {1, . . . , n}, Gallai-Witt theorem becomes the Van der
Waerden’s theorem. Let us now prove Hales-Jewett Theorem. Let us start
with a few definitions.

Suppose that a = (a1, . . . , ad) is an element of {1, . . . , n}d and for i =
1, . . . , d, let Si be a root of length Di. Let S be the concatenation of
S1, . . . , Sd. By S(a), we mean the concatenation of S1(a1), S2(a2), . . . , Sd(ad).

Two elements (a1, . . . , ad), (b1, . . . , bd) ∈ {1, . . . , n}d are adjacent if there
exists r ∈ {1, . . . , d} such that ai = bi for i 6= r and {ar, br} ⊆ {n− 1, n}.

Proof of Theorem 6. We proceed by induction on n. For n = 1, the claim
holds trivially. Hence, assume that n > 1 and that the claim holds for n− 1
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(with the same number of colors), and let d be the corresponding bound on
the dimension. Let

Dm = kn
d+D1+...+Dm−1

for m = 1, . . . , d, and let D = D1 + . . .+Dd.
Let ϕ be any k-coloring of {1, . . . , n}D. We need to prove that it contains

a monochromatic combinatorial line.

Claim 1. There exist roots S1, . . . , Sd of lengths D1, . . . , Dd with concate-
nation S such that for any two adjacent a, b ∈ {1, . . . , n}d,

ϕ(S(a)) = ϕ(S(b)).

Proof. We define Sd, Sd−1, . . . , S1 in order. Suppose that Sd, Sd−1, . . . , Sm+1

is already defined. Let Em = D1 + . . .+Dm−1.
For t = 0, . . . , Dm, let

Wt = (n− 1, . . . , n− 1︸ ︷︷ ︸
t times

, n, . . . , n︸ ︷︷ ︸
Dm − t times

)

and define a coloring ϕt of {1, . . . , n}Em+d−m by

ϕt(x1, . . . , xEm , ym+1, . . . , yd) = ϕ(x1, . . . , xEm ,Wt, Sm+1(ym+1), . . . , Sd(yd)).

The number of all k-colorings of {1, . . . , n}Em+d−m is

kn
Em+d−m ≤ kn

Em+d

= Dm.

However, we defined Dm +1 colorings ϕ0, . . . , ϕDm , and thus two of them are
the same, say ϕr = ϕs for some 0 ≤ r < s ≤ Dm. We define

Sm = (n− 1, . . . , n− 1︸ ︷︷ ︸
r times

, ?, . . . , ?︸ ︷︷ ︸
s− r times

, n, . . . , n︸ ︷︷ ︸
Dm − s times

).

After defining S1, . . . , Sd this way, we need to verify that the conclusion
of the claim holds. Suppose that a and b are adjacent and differ only in the
m-th coordinate, a = (a1, . . . , ad) with am = n− 1. Then

S(a) = S1(a1) . . . Sm−1(am−1)WsSm+1(am+1) . . . Sd(ad)

S(b) = S1(a1) . . . Sm−1(am−1)WrSm+1(am+1) . . . Sd(ad)

And thus

ϕ(S(a)) = ϕs(S1(a1) . . . Sm−1(am−1)am−1 . . . ad)

= ϕr(S1(a1) . . . Sm−1(am−1)am−1 . . . ad)

= ϕ(S(b))
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Let S be the root from Claim 1. Note that if a, b ∈ {1, . . . , n}d differ
only in coordinates where they are both equal to n or n− 1, then there exist
a = c0, c1, . . . , cm = b such that ci is adjacent to ci−1 for i = 1, . . . ,m, and
thus ϕ(S(a)) = ϕ(S(b)),

Now, consider the cube {1, . . . , n−1}d, and define its k-coloring ψ by set-
ting ψ(a) = ϕ(S(a)) for every a ∈ {1, . . . , n− 1}d. By the induction hypoth-
esis, there exists a root T of length d such that ψ(T (1)) = . . . = ψ(T (n−1)).
Hence, ϕ(S(T (1))) = . . . = ϕ(S(T (n − 1))). However, S(T (n − 1)) and
S(T (n)) only differ in coordinates where they are both equal to n or n − 1,
and thus ϕ(S(T (n − 1))) = ϕ(S(T (n))). Therefore, {S(T (1)), . . . , S(T (n))}
is a monochromatic combinatorial line in ϕ.
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