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Recall:

Definition 1. Let G be a graph and let δ, ε > 0 be real numbers. A pair
(A,B) of disjoint non-empty sets A,B ⊂ V (G) is (δ, ε)-regular if

• all A′ ⊆ A and B′ ⊆ B such that |A′| ≥ δ|A| and |B′| ≥ δ|B| satisfy

|d(A′, B′)− d(A,B)| ≤ ε.

We say that the pair is ε-regular if it is (ε, ε)-regular.

Lemma 1. Let G be a graph and let (A,B) be a (δ, ε)-regular pair in G for
some 0 < δ, ε ≤ 1. Let B′ ⊆ B have size at least δ|B|. Then

• the number of vertices of A with more than (d(A,B) + ε)|B′| neighbors
in B′ is less than δ|A|, and

• the number of vertices of A with less than (d(A,B) − ε)|B′| neighbors
in B′ is less than δ|A|.

Lemma 2. Let G be a graph and let (A,B), (B,C) and (A,C) be (δ, ε)-
regular pairs in G for some 0 < δ, ε ≤ 1/2, with |A| = |B| = |C| = n and
d(A,B), d(B,C), d(A,C) ≥ δ + ε. The number of triangles v1v2v3 of G with
v1 ∈ A, v2 ∈ B, and v3 ∈ C is at least

(1− 2δ)(d(B,C)− ε)(d(A,B)− ε)(d(A,C)− ε)n3.

Definition 2. For a graph G, a partition V0, V1, . . . , Vm of V (G) is ε-regular
if

• |V0| ≤ ε|V (G)|,

• |V1| = |V2| = . . . = |Vm|, and
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• for all but at most εm2 values of 1 ≤ i < j ≤ m, the pair (Vi, Vj) is
ε-regular.

The integer m is called the order of the partition.

Theorem 3 (Regularity lemma). For any positive integer m0 and real num-
ber ε > 0, there exists an integer M ≥ m0 such that the following holds.
Every graph G with at least m0 vertices has an ε-regular partition of order
at least m0 and at most M .

1 Removal lemma for triangles

Intuitively, either a graph contains a large (cubic) number of triangles, or we
should be able to kill all triangles by removing a small (subquadratic) set of
edges.

Theorem 4 (Triangle removal lemma). For every 0 < α ≤ 1, there exists
β > 0 and n0 such that if G is a graph with n ≥ n0 vertices, then either

• G contains at least βn3 triangles, or

• there exists a set X ⊆ E(G) such that |X| ≤ αn2 and G−X contains
no trianges.

Proof. Let ε = α/5 and m0 = d1/εe. Let M be the upper bound from the
Regularity lemma for these values. Let n0 = m0 and β = (1 − 2ε)ε3(1 −
ε)3/M3.

Regularity lemma implies that G has an ε-regular partition V0, V1, . . . ,
Vm such that m0 ≤ m ≤ M . Let k = |V1| = . . . = |Vm| and note that
(1− ε)n/m ≤ k ≤ n/m.

• Let X1 consist of the edges of G incident with V0. We have |X1| ≤
|V0|n ≤ εn2.

• Let X2 = E(G[V1])∪E(G[V2])∪ . . .∪E(G[Vm]). We have |X2| ≤ mk2 ≤
m(n/m)2 = n2/m ≤ n2/m0 ≤ εn2.

• Let X3 consist of the edges between sets Vi and Vj with 1 ≤ i < j ≤ m
such that d(Vi, Vj) ≤ 2ε. Note that |X3| ≤ m2(2εk2) ≤ 2εm2(n/m)2 =
2εn2.

• Let X4 consist of the edges between sets Vi and Vj with 1 ≤ i < j ≤ m
such that (Vi, Vj) is not an ε-regular pair. Since the partition is ε-
regular, we have |X4| ≤ (εm2)k2 ≤ εm2(n/m)2 = εn2.
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Let X = X1 ∪X2 ∪X3 ∪X4. Note that |X| ≤ 5εn2 = αn2, hence if G −X
is triangle-free, then the second outcome of the Removal lemma holds.

Therefore, suppose that G−X contains a triangle v1v2v3. By the choice
of X, there exist distinct i1, i2, i3 ∈ {1, . . . ,m} such that v1 ∈ Vi1 , v2 ∈ Vi2 ,
v3 ∈ Vi3 , and each of (Vi1 , Vi,2), (Vi2 , Vi3) and (Vi1 , Vi3) is an ε-regular pair
of density at least 2ε. By Lemma 2, G contains at least (1 − 2ε)ε3k3 ≥
(1− 2ε)ε3[(1− ε)n/M ]3 = βn3 triangles, as required by the first outcome of
the Removal lemma.

Similar claims can be proved for all other graphs.

2 Erdös-Stone theorem

Turán gave an upper bound on the number of edges of a graph without Kk:
every n-vertex graph with more than

(
1− 1

k−1

)
n2

2
edges contains Kk (and

the bound is tight, since a complete (k − 1)-partite graph does not contain
Kk). Erdös and Stone generalized this to all forbidden subgraphs.

Theorem 5 (Erdös-Stone theorem). Let H be a graph with chromatic number
k ≥ 2. For every α > 0, there exists n0 such that if a graph G with n ≥ n0

vertices has at least
(
1− 1

k−1 + α
)
n2

2
edges, then G contains H as a subgraph.

Again, since a complete (k − 1)-partite graph cannot contain a graph
with chromatic number k as a subgraph, this result is almost tight both
in the exponent and in the multiplicative constant, with the exception of
excluded bipartite graphs H—for those, the right bound on the number of
edges is subquadratic, and the problem of determining the exponent and
multiplicative constant of such bound is open for most graphs H).

In the proof of Erdös-Stone theorem, we will need the following general-
ization of Lemma 2.

Lemma 6. Let k > 0 be an integer, let H be a k-colorable graph and let d > 0
be a real number. There exists a positive real number ε < d and an integer n1

as follows. Let G be a graph and let V1, . . . , Vk be pairwise disjoint subsets
of its vertices, such that |V1| = . . . = |Vk| ≥ n1. If (Vi, Vj) is an ε-regular
pair of density at least d for 1 ≤ i < j ≤ k, then H is a subgraph of G.

Proof. Choose ε > 0 such that (d− ε)t = 2ε, and let n1 = dt/εe.
Let n = |V1| = . . . = |Vk|. Let ψ : V (H) → {1, . . . , k} be a k-coloring.

Let x1, . . . , xt be the vertices of H. We will choose pairwise distinct vertices
v1, . . . , vt ∈ V (G) such that

1. For i = 1, . . . , t, the vertex vi belongs to Vψ(xi).
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2. For 1 ≤ i < j ≤ t, if ψ(xi) 6= ψ(xj), then vivj is an edge of G.

The second condition implies that {v1, . . . , vt} induces a supergraph of H.
We will choose the vertices v1, . . . , vt one by one. Suppose that we already

fixed v1, . . . , vp. For 1 ≤ i ≤ k, let Cp,i denote the set of vertices of Vi that
are adjacent to all vertices in {v1, . . . , vp}\Vi. We will maintain the following
invariant:

|Cp,i| ≥ (d− ε)pn for 1 ≤ i ≤ k (1)

Let c = ψ(xp+1). We now describe how to choose vp+1 from the set Cp,c,
which will ensure that vp+1 is adjacent to all vertices vi with 1 ≤ i ≤ p such
that ψ(xi) 6= ψ(xp+1).

Note that by (1), we have |Cp,i| ≥ (d−ε)tn > εn for 1 ≤ i ≤ k. Hence, by
Lemma 1, the number of vertices of Vc with less than (d−ε)|Cp,i| neighbors in
Cp,i is less than εn, for any i distinct from c. Since n ≥ n1, we have |Cp,c| ≥
(d− ε)tn ≥ kεn+ t, and thus there exists a vertex vp+1 ∈ Cp,c \ {v1, . . . , vp}
such that vp+1 has at least (d − ε)|Cp,i| neighbors in Cp,i for any i distinct
from c. This ensures that (1) holds for p+ 1.

Let us now proceed with the proof of Erdös-Stone theorem.

Proof of Theorem 5. Let d = α/8. Let ε > 0 and n1 be the constants of
Lemma 6 applied for H. Let m0 = d1/εe. Let M be the constant of the
Regularity lemma for m0 and ε. Let n0 = dmax(m0, n1M/(1− ε))e.

Let V0, V1, . . . , Vm be an ε-regular partition of G. Let s = |V1| = . . . =
|Vm| and note that (1− ε)n/m ≤ s ≤ n/m.

• Let X1 consist of the edges of G incident with V0. We have |X1| ≤
|V0|n ≤ εn2.

• Let X2 = E(G[V1])∪E(G[V2])∪ . . .∪E(G[Vm]). We have |X2| ≤ ms2 ≤
m(n/m)2 = n2/m ≤ n2/m0 ≤ εn2.

• Let X3 consist of the edges between sets Vi and Vj with 1 ≤ i < j ≤ m
such that d(Vi, Vj) ≤ d. Note that |X3| ≤ m2(dk2) ≤ dm2(n/m)2 =
dn2.

• Let X4 consist of the edges between sets Vi and Vj with 1 ≤ i < j ≤ m
such that (Vi, Vj) is not an ε-regular pair. Since the partition is ε-
regular, we have |X4| ≤ (εm2)s2 ≤ εm2(n/m)2 = εn2.

Let X = X1 ∪ X2 ∪ X3 ∪ X4. Note that |X| ≤ (3ε + d)n2 < 4dn2 = αn
2

2
,

and thus G − X has at least
(
1− 1

k−1

)
n2

2
edges. Let G′ be the graph with
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vertex set {1, . . . ,m} such that ij ∈ E(G) if and only if (Vi, Vj) has non-zero
density in G−X. Observe that

|E(G−X)| ≤ s2|E(G′)| ≤ n2

m2
|E(G′)|,

and thus |E(G′)| >
(
1− 1

k−1

)
m2

2
. By Turán’s theorem, Kk is a subgraph of

G′. By renumbering the vertices if necessary, we can assume that {1, . . . , k}
is a clique in G′. By the choice of X and G′, (Vi, Vj) is an ε-regular pair in
G with density at least d for 1 ≤ i < j ≤ k. Since s ≥ (1 − ε)n0/M ≥ n1,
Lemma 6 implies that H is a subgraph of G.
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