Regularity lemma-applications

Zdeněk Dvořák

October 19, 2015

Recall:
Definition 1. Let G be a graph and let $\delta, \varepsilon>0$ be real numbers. A pair (A, B) of disjoint non-empty sets $A, B \subset V(G)$ is (δ, ε)-regular if

- all $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ such that $\left|A^{\prime}\right| \geq \delta|A|$ and $\left|B^{\prime}\right| \geq \delta|B|$ satisfy

$$
\left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right| \leq \varepsilon
$$

We say that the pair is ε-regular if it is $(\varepsilon, \varepsilon)$-regular.
Lemma 1. Let G be a graph and let (A, B) be a (δ, ε)-regular pair in G for some $0<\delta, \varepsilon \leq 1$. Let $B^{\prime} \subseteq B$ have size at least $\delta|B|$. Then

- the number of vertices of A with more than $(d(A, B)+\varepsilon)\left|B^{\prime}\right|$ neighbors in B^{\prime} is less than $\delta|A|$, and
- the number of vertices of A with less than $(d(A, B)-\varepsilon)\left|B^{\prime}\right|$ neighbors in B^{\prime} is less than $\delta|A|$.

Lemma 2. Let G be a graph and let $(A, B),(B, C)$ and (A, C) be (δ, ε) regular pairs in G for some $0<\delta, \varepsilon \leq 1 / 2$, with $|A|=|B|=|C|=n$ and $d(A, B), d(B, C), d(A, C) \geq \delta+\varepsilon$. The number of triangles $v_{1} v_{2} v_{3}$ of G with $v_{1} \in A, v_{2} \in B$, and $v_{3} \in C$ is at least

$$
(1-2 \delta)(d(B, C)-\varepsilon)(d(A, B)-\varepsilon)(d(A, C)-\varepsilon) n^{3} .
$$

Definition 2. For a graph G, a partition $V_{0}, V_{1}, \ldots, V_{m}$ of $V(G)$ is ε-regular if

- $\left|V_{0}\right| \leq \varepsilon|V(G)|$,
- $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{m}\right|$, and
- for all but at most εm^{2} values of $1 \leq i<j \leq m$, the pair $\left(V_{i}, V_{j}\right)$ is ε-regular.

The integer m is called the order of the partition.
Theorem 3 (Regularity lemma). For any positive integer m_{0} and real number $\varepsilon>0$, there exists an integer $M \geq m_{0}$ such that the following holds. Every graph G with at least m_{0} vertices has an ε-regular partition of order at least m_{0} and at most M.

1 Removal lemma for triangles

Intuitively, either a graph contains a large (cubic) number of triangles, or we should be able to kill all triangles by removing a small (subquadratic) set of edges.

Theorem 4 (Triangle removal lemma). For every $0<\alpha \leq 1$, there exists $\beta>0$ and n_{0} such that if G is a graph with $n \geq n_{0}$ vertices, then either

- G contains at least βn^{3} triangles, or
- there exists a set $X \subseteq E(G)$ such that $|X| \leq \alpha n^{2}$ and $G-X$ contains no trianges.

Proof. Let $\varepsilon=\alpha / 5$ and $m_{0}=\lceil 1 / \varepsilon\rceil$. Let M be the upper bound from the Regularity lemma for these values. Let $n_{0}=m_{0}$ and $\beta=(1-2 \varepsilon) \varepsilon^{3}(1-$ $\varepsilon)^{3} / M^{3}$.

Regularity lemma implies that G has an ε-regular partition V_{0}, V_{1}, \ldots, V_{m} such that $m_{0} \leq m \leq M$. Let $k=\left|V_{1}\right|=\ldots=\left|V_{m}\right|$ and note that $(1-\varepsilon) n / m \leq k \leq n / m$.

- Let X_{1} consist of the edges of G incident with V_{0}. We have $\left|X_{1}\right| \leq$ $\left|V_{0}\right| n \leq \varepsilon n^{2}$.
- Let $X_{2}=E\left(G\left[V_{1}\right]\right) \cup E\left(G\left[V_{2}\right]\right) \cup \ldots \cup E\left(G\left[V_{m}\right]\right)$. We have $\left|X_{2}\right| \leq m k^{2} \leq$ $m(n / m)^{2}=n^{2} / m \leq n^{2} / m_{0} \leq \varepsilon n^{2}$.
- Let X_{3} consist of the edges between sets V_{i} and V_{j} with $1 \leq i<j \leq m$ such that $d\left(V_{i}, V_{j}\right) \leq 2 \varepsilon$. Note that $\left|X_{3}\right| \leq m^{2}\left(2 \varepsilon k^{2}\right) \leq 2 \varepsilon m^{2}(n / m)^{2}=$ $2 \varepsilon n^{2}$.
- Let X_{4} consist of the edges between sets V_{i} and V_{j} with $1 \leq i<j \leq m$ such that $\left(V_{i}, V_{j}\right)$ is not an ε-regular pair. Since the partition is ε regular, we have $\left|X_{4}\right| \leq\left(\varepsilon m^{2}\right) k^{2} \leq \varepsilon m^{2}(n / m)^{2}=\varepsilon n^{2}$.

Let $X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$. Note that $|X| \leq 5 \varepsilon n^{2}=\alpha n^{2}$, hence if $G-X$ is triangle-free, then the second outcome of the Removal lemma holds.

Therefore, suppose that $G-X$ contains a triangle $v_{1} v_{2} v_{3}$. By the choice of X, there exist distinct $i_{1}, i_{2}, i_{3} \in\{1, \ldots, m\}$ such that $v_{1} \in V_{i_{1}}, v_{2} \in V_{i_{2}}$, $v_{3} \in V_{i_{3}}$, and each of $\left(V_{i_{1}}, V_{i, 2}\right),\left(V_{i_{2}}, V_{i_{3}}\right)$ and $\left(V_{i_{1}}, V_{i_{3}}\right)$ is an ε-regular pair of density at least 2ε. By Lemma $2, G$ contains at least $(1-2 \varepsilon) \varepsilon^{3} k^{3} \geq$ $(1-2 \varepsilon) \varepsilon^{3}[(1-\varepsilon) n / M]^{3}=\beta n^{3}$ triangles, as required by the first outcome of the Removal lemma.

Similar claims can be proved for all other graphs.

2 Erdös-Stone theorem

Turán gave an upper bound on the number of edges of a graph without K_{k} : every n-vertex graph with more than $\left(1-\frac{1}{k-1}\right) \frac{n^{2}}{2}$ edges contains K_{k} (and the bound is tight, since a complete ($k-1$)-partite graph does not contain K_{k}). Erdös and Stone generalized this to all forbidden subgraphs.

Theorem 5 (Erdös-Stone theorem). Let H be a graph with chromatic number $k \geq 2$. For every $\alpha>0$, there exists n_{0} such that if a graph G with $n \geq n_{0}$ vertices has at least $\left(1-\frac{1}{k-1}+\alpha\right) \frac{n^{2}}{2}$ edges, then G contains H as a subgraph.

Again, since a complete $(k-1)$-partite graph cannot contain a graph with chromatic number k as a subgraph, this result is almost tight both in the exponent and in the multiplicative constant, with the exception of excluded bipartite graphs H-for those, the right bound on the number of edges is subquadratic, and the problem of determining the exponent and multiplicative constant of such bound is open for most graphs H).

In the proof of Erdös-Stone theorem, we will need the following generalization of Lemma 2.

Lemma 6. Let $k>0$ be an integer, let H be a k-colorable graph and let $d>0$ be a real number. There exists a positive real number $\varepsilon<d$ and an integer n_{1} as follows. Let G be a graph and let V_{1}, \ldots, V_{k} be pairwise disjoint subsets of its vertices, such that $\left|V_{1}\right|=\ldots=\left|V_{k}\right| \geq n_{1}$. If $\left(V_{i}, V_{j}\right)$ is an ε-regular pair of density at least d for $1 \leq i<j \leq k$, then H is a subgraph of G.

Proof. Choose $\varepsilon>0$ such that $(d-\varepsilon)^{t}=2 \varepsilon$, and let $n_{1}=\lceil t / \varepsilon\rceil$.
Let $n=\left|V_{1}\right|=\ldots=\left|V_{k}\right|$. Let $\psi: V(H) \rightarrow\{1, \ldots, k\}$ be a k-coloring. Let x_{1}, \ldots, x_{t} be the vertices of H. We will choose pairwise distinct vertices $v_{1}, \ldots, v_{t} \in V(G)$ such that

1. For $i=1, \ldots, t$, the vertex v_{i} belongs to $V_{\psi\left(x_{i}\right)}$.
2. For $1 \leq i<j \leq t$, if $\psi\left(x_{i}\right) \neq \psi\left(x_{j}\right)$, then $v_{i} v_{j}$ is an edge of G.

The second condition implies that $\left\{v_{1}, \ldots, v_{t}\right\}$ induces a supergraph of H.
We will choose the vertices v_{1}, \ldots, v_{t} one by one. Suppose that we already fixed v_{1}, \ldots, v_{p}. For $1 \leq i \leq k$, let $C_{p, i}$ denote the set of vertices of V_{i} that are adjacent to all vertices in $\left\{v_{1}, \ldots, v_{p}\right\} \backslash V_{i}$. We will maintain the following invariant:

$$
\begin{equation*}
\left|C_{p, i}\right| \geq(d-\varepsilon)^{p} n \text { for } 1 \leq i \leq k \tag{1}
\end{equation*}
$$

Let $c=\psi\left(x_{p+1}\right)$. We now describe how to choose v_{p+1} from the set $C_{p, c}$, which will ensure that v_{p+1} is adjacent to all vertices v_{i} with $1 \leq i \leq p$ such that $\psi\left(x_{i}\right) \neq \psi\left(x_{p+1}\right)$.

Note that by (1), we have $\left|C_{p, i}\right| \geq(d-\varepsilon)^{t} n>\varepsilon n$ for $1 \leq i \leq k$. Hence, by Lemma 1, the number of vertices of V_{c} with less than $(d-\varepsilon)\left|C_{p, i}\right|$ neighbors in $C_{p, i}$ is less than εn, for any i distinct from c. Since $n \geq n_{1}$, we have $\left|C_{p, c}\right| \geq$ $(d-\varepsilon)^{t} n \geq k \varepsilon n+t$, and thus there exists a vertex $v_{p+1} \in C_{p, c} \backslash\left\{v_{1}, \ldots, v_{p}\right\}$ such that v_{p+1} has at least $(d-\varepsilon)\left|C_{p, i}\right|$ neighbors in $C_{p, i}$ for any i distinct from c. This ensures that (1) holds for $p+1$.

Let us now proceed with the proof of Erdös-Stone theorem.
Proof of Theorem 5. Let $d=\alpha / 8$. Let $\varepsilon>0$ and n_{1} be the constants of Lemma 6 applied for H. Let $m_{0}=\lceil 1 / \varepsilon\rceil$. Let M be the constant of the Regularity lemma for m_{0} and ε. Let $n_{0}=\left\lceil\max \left(m_{0}, n_{1} M /(1-\varepsilon)\right)\right\rceil$.

Let $V_{0}, V_{1}, \ldots, V_{m}$ be an ε-regular partition of G. Let $s=\left|V_{1}\right|=\ldots=$ $\left|V_{m}\right|$ and note that $(1-\varepsilon) n / m \leq s \leq n / m$.

- Let X_{1} consist of the edges of G incident with V_{0}. We have $\left|X_{1}\right| \leq$ $\left|V_{0}\right| n \leq \varepsilon n^{2}$.
- Let $X_{2}=E\left(G\left[V_{1}\right]\right) \cup E\left(G\left[V_{2}\right]\right) \cup \ldots \cup E\left(G\left[V_{m}\right]\right)$. We have $\left|X_{2}\right| \leq m s^{2} \leq$ $m(n / m)^{2}=n^{2} / m \leq n^{2} / m_{0} \leq \varepsilon n^{2}$.
- Let X_{3} consist of the edges between sets V_{i} and V_{j} with $1 \leq i<j \leq m$ such that $d\left(V_{i}, V_{j}\right) \leq d$. Note that $\left|X_{3}\right| \leq m^{2}\left(d k^{2}\right) \leq d m^{2}(n / m)^{2}=$ $d n^{2}$.
- Let X_{4} consist of the edges between sets V_{i} and V_{j} with $1 \leq i<j \leq m$ such that $\left(V_{i}, V_{j}\right)$ is not an ε-regular pair. Since the partition is ε regular, we have $\left|X_{4}\right| \leq\left(\varepsilon m^{2}\right) s^{2} \leq \varepsilon m^{2}(n / m)^{2}=\varepsilon n^{2}$.
Let $X=X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$. Note that $|X| \leq(3 \varepsilon+d) n^{2}<4 d n^{2}=\alpha \frac{n^{2}}{2}$, and thus $G-X$ has at least $\left(1-\frac{1}{k-1}\right) \frac{n^{2}}{2}$ edges. Let G^{\prime} be the graph with
vertex set $\{1, \ldots, m\}$ such that $i j \in E(G)$ if and only if $\left(V_{i}, V_{j}\right)$ has non-zero density in $G-X$. Observe that

$$
|E(G-X)| \leq s^{2}\left|E\left(G^{\prime}\right)\right| \leq \frac{n^{2}}{m^{2}}\left|E\left(G^{\prime}\right)\right|
$$

and thus $\left|E\left(G^{\prime}\right)\right|>\left(1-\frac{1}{k-1}\right) \frac{m^{2}}{2}$. By Turán's theorem, K_{k} is a subgraph of G^{\prime}. By renumbering the vertices if necessary, we can assume that $\{1, \ldots, k\}$ is a clique in G^{\prime}. By the choice of X and $G^{\prime},\left(V_{i}, V_{j}\right)$ is an ε-regular pair in G with density at least d for $1 \leq i<j \leq k$. Since $s \geq(1-\varepsilon) n_{0} / M \geq n_{1}$, Lemma 6 implies that H is a subgraph of G.

