Regularity lemma—applications

Zdeněk Dvořák

October 19, 2015

Recall:

Definition 1. Let G be a graph and let $\delta, \varepsilon > 0$ be real numbers. A pair (A, B) of disjoint non-empty sets $A, B \subset V(G)$ is (δ, ε) -regular if

• all $A' \subseteq A$ and $B' \subseteq B$ such that $|A'| \ge \delta |A|$ and $|B'| \ge \delta |B|$ satisfy

$$|d(A', B') - d(A, B)| \le \varepsilon.$$

We say that the pair is ε -regular if it is $(\varepsilon, \varepsilon)$ -regular.

Lemma 1. Let G be a graph and let (A, B) be a (δ, ε) -regular pair in G for some $0 < \delta, \varepsilon \leq 1$. Let $B' \subseteq B$ have size at least $\delta|B|$. Then

- the number of vertices of A with more than (d(A, B) + ε)|B'| neighbors in B' is less than δ|A|, and
- the number of vertices of A with less than $(d(A, B) \varepsilon)|B'|$ neighbors in B' is less than $\delta|A|$.

Lemma 2. Let G be a graph and let (A, B), (B, C) and (A, C) be (δ, ε) regular pairs in G for some $0 < \delta, \varepsilon \leq 1/2$, with |A| = |B| = |C| = n and $d(A, B), d(B, C), d(A, C) \geq \delta + \varepsilon$. The number of triangles $v_1v_2v_3$ of G with $v_1 \in A, v_2 \in B$, and $v_3 \in C$ is at least

$$(1-2\delta)(d(B,C)-\varepsilon)(d(A,B)-\varepsilon)(d(A,C)-\varepsilon)n^3.$$

Definition 2. For a graph G, a partition V_0, V_1, \ldots, V_m of V(G) is ε -regular if

- $|V_0| \le \varepsilon |V(G)|,$
- $|V_1| = |V_2| = \ldots = |V_m|$, and

• for all but at most εm^2 values of $1 \le i < j \le m$, the pair (V_i, V_j) is ε -regular.

The integer m is called the order of the partition.

Theorem 3 (Regularity lemma). For any positive integer m_0 and real number $\varepsilon > 0$, there exists an integer $M \ge m_0$ such that the following holds. Every graph G with at least m_0 vertices has an ε -regular partition of order at least m_0 and at most M.

1 Removal lemma for triangles

Intuitively, either a graph contains a large (cubic) number of triangles, or we should be able to kill all triangles by removing a small (subquadratic) set of edges.

Theorem 4 (Triangle removal lemma). For every $0 < \alpha \leq 1$, there exists $\beta > 0$ and n_0 such that if G is a graph with $n \geq n_0$ vertices, then either

- G contains at least βn^3 triangles, or
- there exists a set $X \subseteq E(G)$ such that $|X| \leq \alpha n^2$ and G X contains no trianges.

Proof. Let $\varepsilon = \alpha/5$ and $m_0 = \lceil 1/\varepsilon \rceil$. Let M be the upper bound from the Regularity lemma for these values. Let $n_0 = m_0$ and $\beta = (1 - 2\varepsilon)\varepsilon^3(1 - \varepsilon)^3/M^3$.

Regularity lemma implies that G has an ε -regular partition V_0, V_1, \ldots, V_m such that $m_0 \leq m \leq M$. Let $k = |V_1| = \ldots = |V_m|$ and note that $(1 - \varepsilon)n/m \leq k \leq n/m$.

- Let X_1 consist of the edges of G incident with V_0 . We have $|X_1| \le |V_0|n \le \varepsilon n^2$.
- Let $X_2 = E(G[V_1]) \cup E(G[V_2]) \cup \ldots \cup E(G[V_m])$. We have $|X_2| \le mk^2 \le m(n/m)^2 = n^2/m \le n^2/m_0 \le \varepsilon n^2$.
- Let X_3 consist of the edges between sets V_i and V_j with $1 \le i < j \le m$ such that $d(V_i, V_j) \le 2\varepsilon$. Note that $|X_3| \le m^2(2\varepsilon k^2) \le 2\varepsilon m^2(n/m)^2 = 2\varepsilon n^2$.
- Let X_4 consist of the edges between sets V_i and V_j with $1 \le i < j \le m$ such that (V_i, V_j) is not an ε -regular pair. Since the partition is ε regular, we have $|X_4| \le (\varepsilon m^2)k^2 \le \varepsilon m^2(n/m)^2 = \varepsilon n^2$.

Let $X = X_1 \cup X_2 \cup X_3 \cup X_4$. Note that $|X| \leq 5\varepsilon n^2 = \alpha n^2$, hence if G - X is triangle-free, then the second outcome of the Removal lemma holds.

Therefore, suppose that G - X contains a triangle $v_1v_2v_3$. By the choice of X, there exist distinct $i_1, i_2, i_3 \in \{1, \ldots, m\}$ such that $v_1 \in V_{i_1}, v_2 \in V_{i_2},$ $v_3 \in V_{i_3}$, and each of (V_{i_1}, V_{i_2}) , (V_{i_2}, V_{i_3}) and (V_{i_1}, V_{i_3}) is an ε -regular pair of density at least 2ε . By Lemma 2, G contains at least $(1 - 2\varepsilon)\varepsilon^3k^3 \ge (1 - 2\varepsilon)\varepsilon^3[(1 - \varepsilon)n/M]^3 = \beta n^3$ triangles, as required by the first outcome of the Removal lemma.

Similar claims can be proved for all other graphs.

2 Erdös-Stone theorem

Turán gave an upper bound on the number of edges of a graph without K_k : every *n*-vertex graph with more than $\left(1 - \frac{1}{k-1}\right)\frac{n^2}{2}$ edges contains K_k (and the bound is tight, since a complete (k-1)-partite graph does not contain K_k). Erdös and Stone generalized this to all forbidden subgraphs.

Theorem 5 (Erdös-Stone theorem). Let H be a graph with chromatic number $k \geq 2$. For every $\alpha > 0$, there exists n_0 such that if a graph G with $n \geq n_0$ vertices has at least $\left(1 - \frac{1}{k-1} + \alpha\right) \frac{n^2}{2}$ edges, then G contains H as a subgraph.

Again, since a complete (k - 1)-partite graph cannot contain a graph with chromatic number k as a subgraph, this result is almost tight both in the exponent and in the multiplicative constant, with the exception of excluded bipartite graphs H—for those, the right bound on the number of edges is subquadratic, and the problem of determining the exponent and multiplicative constant of such bound is open for most graphs H).

In the proof of Erdös-Stone theorem, we will need the following generalization of Lemma 2.

Lemma 6. Let k > 0 be an integer, let H be a k-colorable graph and let d > 0be a real number. There exists a positive real number $\varepsilon < d$ and an integer n_1 as follows. Let G be a graph and let V_1, \ldots, V_k be pairwise disjoint subsets of its vertices, such that $|V_1| = \ldots = |V_k| \ge n_1$. If (V_i, V_j) is an ε -regular pair of density at least d for $1 \le i < j \le k$, then H is a subgraph of G.

Proof. Choose $\varepsilon > 0$ such that $(d - \varepsilon)^t = 2\varepsilon$, and let $n_1 = \lfloor t/\varepsilon \rfloor$.

Let $n = |V_1| = \ldots = |V_k|$. Let $\psi : V(H) \to \{1, \ldots, k\}$ be a k-coloring. Let x_1, \ldots, x_t be the vertices of H. We will choose pairwise distinct vertices $v_1, \ldots, v_t \in V(G)$ such that

1. For $i = 1, \ldots, t$, the vertex v_i belongs to $V_{\psi(x_i)}$.

2. For $1 \le i < j \le t$, if $\psi(x_i) \ne \psi(x_j)$, then $v_i v_j$ is an edge of G.

The second condition implies that $\{v_1, \ldots, v_t\}$ induces a supergraph of H.

We will choose the vertices v_1, \ldots, v_t one by one. Suppose that we already fixed v_1, \ldots, v_p . For $1 \le i \le k$, let $C_{p,i}$ denote the set of vertices of V_i that are adjacent to all vertices in $\{v_1, \ldots, v_p\} \setminus V_i$. We will maintain the following invariant:

$$|C_{p,i}| \ge (d-\varepsilon)^p n \text{ for } 1 \le i \le k \tag{1}$$

Let $c = \psi(x_{p+1})$. We now describe how to choose v_{p+1} from the set $C_{p,c}$, which will ensure that v_{p+1} is adjacent to all vertices v_i with $1 \le i \le p$ such that $\psi(x_i) \ne \psi(x_{p+1})$.

Note that by (1), we have $|C_{p,i}| \ge (d-\varepsilon)^t n > \varepsilon n$ for $1 \le i \le k$. Hence, by Lemma 1, the number of vertices of V_c with less than $(d-\varepsilon)|C_{p,i}|$ neighbors in $C_{p,i}$ is less than εn , for any *i* distinct from *c*. Since $n \ge n_1$, we have $|C_{p,c}| \ge (d-\varepsilon)^t n \ge k\varepsilon n + t$, and thus there exists a vertex $v_{p+1} \in C_{p,c} \setminus \{v_1, \ldots, v_p\}$ such that v_{p+1} has at least $(d-\varepsilon)|C_{p,i}|$ neighbors in $C_{p,i}$ for any *i* distinct from *c*. This ensures that (1) holds for p+1.

Let us now proceed with the proof of Erdös-Stone theorem.

Proof of Theorem 5. Let $d = \alpha/8$. Let $\varepsilon > 0$ and n_1 be the constants of Lemma 6 applied for H. Let $m_0 = \lceil 1/\varepsilon \rceil$. Let M be the constant of the Regularity lemma for m_0 and ε . Let $n_0 = \lceil \max(m_0, n_1 M/(1-\varepsilon)) \rceil$.

Let V_0, V_1, \ldots, V_m be an ε -regular partition of G. Let $s = |V_1| = \ldots = |V_m|$ and note that $(1 - \varepsilon)n/m \le s \le n/m$.

- Let X_1 consist of the edges of G incident with V_0 . We have $|X_1| \le |V_0|n \le \varepsilon n^2$.
- Let $X_2 = E(G[V_1]) \cup E(G[V_2]) \cup \ldots \cup E(G[V_m])$. We have $|X_2| \le ms^2 \le m(n/m)^2 = n^2/m \le n^2/m_0 \le \varepsilon n^2$.
- Let X_3 consist of the edges between sets V_i and V_j with $1 \le i < j \le m$ such that $d(V_i, V_j) \le d$. Note that $|X_3| \le m^2(dk^2) \le dm^2(n/m)^2 = dn^2$.
- Let X_4 consist of the edges between sets V_i and V_j with $1 \le i < j \le m$ such that (V_i, V_j) is not an ε -regular pair. Since the partition is ε regular, we have $|X_4| \le (\varepsilon m^2)s^2 \le \varepsilon m^2(n/m)^2 = \varepsilon n^2$.

Let $X = X_1 \cup X_2 \cup X_3 \cup X_4$. Note that $|X| \leq (3\varepsilon + d)n^2 < 4dn^2 = \alpha \frac{n^2}{2}$, and thus G - X has at least $\left(1 - \frac{1}{k-1}\right) \frac{n^2}{2}$ edges. Let G' be the graph with vertex set $\{1, \ldots, m\}$ such that $ij \in E(G)$ if and only if (V_i, V_j) has non-zero density in G - X. Observe that

$$|E(G - X)| \le s^2 |E(G')| \le \frac{n^2}{m^2} |E(G')|,$$

and thus $|E(G')| > (1 - \frac{1}{k-1}) \frac{m^2}{2}$. By Turán's theorem, K_k is a subgraph of G'. By renumbering the vertices if necessary, we can assume that $\{1, \ldots, k\}$ is a clique in G'. By the choice of X and G', (V_i, V_j) is an ε -regular pair in G with density at least d for $1 \le i < j \le k$. Since $s \ge (1 - \varepsilon)n_0/M \ge n_1$, Lemma 6 implies that H is a subgraph of G.