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It is natural to view the stability results we have seen so far as a kind
of limit statements. For example, the stability version of the Erdds-Stone
theorem can be re-stated as follows. Let F' be a graph of chromatic number
r + 1 and consider any sequence G, Gg, ...of graphs such that for each
i, |Gi] =iand F € G;. If ||G,l|/(;) — 1 —1/r as n — oo, then the
sequence “converges to the balanced complete r-partite graph”. We now aim
to develop a theory that will enable us to make such statements precise.

For graphs H and G, let

o(Hs Gy~ 15 S v<a(>|;|)c:[51 ~ 1Y
|H]

In other words, p(H;G) is the probability that a subset of |H| vertices of
G chosen uniformly at random induces a subgraph isomorphic to H. For
example, p(Ky; G) = HGH/('?‘) is the density of G.

Note that if we know p(H; G) for all graphs H with m vertices, we can
also determine it for all graphs with less than m vertices, as follows. Let H,,
denote the set of all pairwise non-isomorpic graphs with m vertices.

Lemma 1. For any graph F with at most m vertices and any graph G, we
have

p(F;G)= > p(F;H)-p(H;G).

HeHm

Proof. To choose a set S of |F| vertices of G, we can first choose a set Sy of
m vertices, then choose S as a subset of S;. Hence, we have

p(F;G) =Pr[G[S] ~ F] = Y Pr[G[S] = F | G[Si] ~ H] - Pr[G[S] ~ H]

= Z p(F;H) - p(H;G).
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This fact (together with the obvious equality » ., p(H;G) = 1) can
be used to obtain some bounds on the extremal functions (but usually not
tight ones).

Example 2. What can we say about the density of graphs without triangles?
Let G be an n-vertex triangle-free graph (so p(K3;G) = 0). Let N3 denote
the graph consisting of three isolated vertices and Ss the 3-vertex graph with
one edge. We have

% = p(K»; G) = Z p(K2; H)p(H; G)
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Recall that Mantel’s theorem gives an asymptotically much better bound ||G|| <
n*/A=~1(3).

To get an improvement, we need a more general notion. A flag H with %
roots is a pair (H, Ag), where H is a graph and Ag : {1,...,k} — V(H) is
an injective function; i.e., a flag is a graph with some of its vertices assigned
labels 1, ..., k, where each label appears on exactly one vertex. We say two
flags Hy and Hy are isomorphic and write Hy; ~ Hy if they have the same
number k£ of roots and there exists an isomorphism f of H; and Hy such
that for i = 1,...,k, f(Am, (7)) = Ag,(7), i.e., the isomorphism respects the
labels. The type of the flag H is the graph with vertex set {1,...,k}, where
ij is an edge iff Ag(i)Au(j) € E(H); i.e., the subgraph of H induced by the
labelled vertices. Clearly, two isomorphic flags have the same type.

For a flag H with k roots, a graph G, and an injective function 6 :
{1,...k} = V(G), let

~HS S V(G) \im(6) : (GIS Uim(6)],6) ~ H}|.

p(H;G,0) = (IS5 ’
|H|—k
i.e., the probability that a random flag in G with | H| vertices and with labels
on vertices (1), ..., 6(k) in order is isomorphic to H. For example, letting

KL be the flag with one root and the graph K,,, we have p(K3;G,0) =
deg(6(1))/(IG| - 1).

Let us note that p(H; G, 6) is related to p(H,G) by averaging. More
precisely, for an expression X (G, 0) depending on a graph G and an injective
function 6 : {1,...,k} — V(G), we define

_ SHX(0):60:{1,...,k} = V(G) injective}

Ep[X(0)] IGI(|IG| = 1)+ (|G] =k +1)
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For example,

D vev(c deg(v) /(1G] — 1)

and thus Fy[p(K3; G, 0)] - (|G| — 1) is the average degree of G.
Lemma 3. For a flag H, we have Eylp(H; G, 0)] = Ey[p(H; H,0)|p(H; G).

Proof. Let k be the number of roots of H. Observe that Ey[p(H; G, 0)] is the
probability that, after choosing uniformly at random an injective function
6 :{l,....k} — V(G) and a set S C V(G) \ im(0) of size |H| — k, the
flag arising from the subgraph of G induced by # and S is isomorphic to H.
The right hand side computes the same probability in a different way, first
selecting a set T of |H| vertices, then an injective function from {1,...,k}
to T

Next, we consider a combination of flags. Suppose H; and Hy are flags
of the same type, with k roots. For a graph G, and an injective function
0:{1,....,k} = V(G), let us define

p(H, Hy: G, 0) = 15052 S V(@) \m(6) : $101 S = 0, (G[5, Uim(9)], 6) = H for i € {1,2}}]

( e )
|H1|=k,|Ha|=k,|G| | Hi|— | H2 |+

For example, let N} be the flag with one root and the graph consisting of
m isolated vertices. Then

deg(6(1)) - (|G| — 1 — deg(6(1)))
(1G] =D(G] - 2)
)

o deg(8(1)) - (de(8(1)) — 1)
(K2 K G0 = a6~ 2)

p(K3,N3; G, 0) =

We can express this combined probability in terms of larger flags similarly
to Lemma 1. For a type o and integer m, let H, ,, denote the set of all
flags of type o with m vertices. For a flag H, by p(F1,Fs2; H) we mean
p(F1,Fa; H, An).

Lemma 4. Suppose F1 and Fo are flags of the same type o, with k roots,
and let m > |Fy| + |Fy| — k be an integer. Then for any G and 0, we have

p(F1,F2;G,0) = Y p(F1,Fy; H) - p(H; G, 0).

HGHU,m



Proof. On the left-hand side, we calculate the probability that if we choose
disjoint sets S1, Sy C V(G) \im(0) of sizes |Fy| — k and |Fy| — k, respectively,
uniformly at random, then the flag induced by # and S; in GG is isomorphic to
F; for i € {1,2}. On the right-hand side, we compute the same probability
by first selecting a set S C V(G) \ im(0) of size m — k uniformly at random,
then choosing disjoint S, S C S uniformly at random. O

Let us now relate p(Fy,Fa; G, 0) to p(F1;G,0) - p(Fa; G,0). The latter
calculates the probability that, if we choose sets S1, .52 C V(G) \im(0) of the
appropriate size independently uniformly at random, then the flag induced by
6 and S; in G is isomorphic to F; for i € {1,2}. Note that if |G| is large, then
the independently chosen sets S7 and S, will almost surely be disjoint, and
thus this probability will be close to p(F1,F2;G,60). The following lemma
gives this more precisely.

Lemma 5. Suppose F1 and ¥4 are flags of the same type, with k roots. Let
G be a graph with n > |Fy| + |F3| — k vertices and let 0 : {1,... k} — V(G)
be an injective function. Then

Fi||F:
p(Fs, Fa: C.0) — p(Fy; G 0) - p(Fy 0, 0)] < T2
Proof. Let a = p(F1,F3;G,0) and b = p(F1;G,0) - p(Fa;G,0). Let m =
n—k n—k n—k o .
‘Fl|7k7|F2‘7k7n7|F1|7‘F2|+k) and g = (Fak) (|F2Hf)‘ By the definition, am is the
number of pairs of disjoint sets S; and S5 extending € in G to flags isomorphic
to F1 and F, while bq is the same quantity without the constraint that 5;
and S, are disjoint. Moreover, ¢ — m is the number of ways how to choose
a pair of non-disjoint subsets of V(G) \ im(0) of the appropriate size, and

0 <a,b<1. Hence,

amgbqﬁam+q_m
—a(g—m)/g<b—a< (1—a)(g—m)/q
—(g—m)/qg<b—a<(qg—m)/q,

and thus |a — b < (¢ —m)/q. Recall ¢ —m is the number of ways how to
choose a pair of non-disjoint subsets of V(G) \ im(0) of of sizes |Fi| — k and
|| — k, and thus it is upper-bounded by (n — k) (|£Jf;_11) (@Tf;_ll) Hence,

a—m _ (= P(A5) (RS _ (BI= BRI -k _ AR

T (‘}?Jfk) (|£2_\fk) B n—=k = n

as required. O




We now have the tools for the applications of this framework. As a very
simple example, let us prove an asymptotic version of Mantel’s theorem.

Example 6. Let G be a triangle-free graph with n vertices. In the calculation
below, we use the following abbreviations (for flags ¥1,Fo and a graph F):

F,=pF1;G,0)
FIOF2 = (FlaF27G70)
F=p(F;G)

Since G is triangle-free, we have (in this notation) Kz = 0 and for every 0,
K3 = 0. Let K, be the flag with graph Ky and the label 1 on one of the
leaves, and K%y the flag with the same graph and the label 1 on the vertex
of degree two. Let S§ be the flag with graph Ss and the label 1 on one of the
leaves, and S§* the flag with the same graph and the label 1 on the isolated
vertex. By Lemma 4,
K3 o K; = p(K3, K3: N3) - Nj
+p(K3, K3; 87) - 8%
+p(K3, K3;83) - S3
+p(K3, K3 Ki ) - Ki
+ (K3, K3 KT) - K1
+p(Ké, K3 K;3) Kj
=0-N3g+0-S5+0-S5+0-Kj,+1-KP+1-0
- K;_r’lz.

Similarly,
KjoNj = 1S5+ 1K],
N; o N3 = N3 + Sy
Furthermore, using Lemma 3, we have
Eg[Kj 0 K3 = Ep[KT,]
= E@[p(K:rll?z;Kl,%e)] cKip = %Kl,Za
and similarly

Ey[K3 o N3] = 553+ 3 K15
E@[N% o Né] = N3 + %Sg



Using Lemma 5, we have

0 < Ep[(K; — N3)°| = Ep[(K3)?] — 2E5[K; - N3] + Ey[(N3)?]
< Ep[K; 0 K] — 2E5[K3 0 Ny + Ep[N3 o N3 + 12
= 1K1o—2(355+ 3 K1) + (N3 + 355) + 2
:Ng—%S:g—%KLQ—F% (1)

Recall from Exercise 2 that Ky = %Sg + %Klyz. Adding to this half of (1), we
obtain

Ky <INg+ 1S3+ 1K, + 3
<3N+ Ss+ Kig)+ 5 =5+ 5

Hence, we have |G| < (% + %) (Z) < ”I? + 4n for every triangle-free graph on
n vertices. Moreover, note that the inequality could be improved if S5 > 0;
hence, in any extremal graph, the density of Sz must be very close to 0 (and
from this, one can see that the extremal graphs are close to being bipartite).

Let us remark that we can easily improve this bound to the optimal one:
Suppose G is a triangle-free graph with n vertices and cn? edges. Let G’ be
the graph obtained from G by blowing up each vertex into an independent
set of k wvertices (turning edges of G into complete bipartite subgraphs in
G'). Clearly, G' is also triangle-free. Moreover, G' has nk wvertices and
en’k? edges, and using the inequality from the previous paragraph, we have
en?k? < # + 4nk, and thus ¢ < }1 + ﬁ. Since this holds for every k, we
have ¢ < 1/4. Consequently, every triangle-free graph with n vertices has at
most n? /4 edges.

Let us remark that generally, we do not need to care about the lower-
order term O(1/n) arising from the usage of Lemma 5; we can just ignore
it throughout the calculations and add it to the final result. There are two
(basically equivalent) approaches how to deal with this formally.

e Razborov introduced the notion of flag algebras, whose elements are
formal linear combinations of flags and the multiplication is defined
via the identities from Lemma 4 and Lemma 5, factorized by the iden-
tities given by Lemma 1. The elements of the algebra are then given
a semantics (assigning to each flag F the mapping p(F;e)) and it is
argued in the natural way that all true statements in the flag algebra
are asymptotically true in this interpretation.

e Lovész introduced the notion of convergent sequences. A sequence

G =G1,Go,...is convergent if for every graph F, there exists a limit



lim,, o p(F; Gy); we denote this limit by p(F; é) The identities we
obtain in the limit are then exact, i.e., we have p(N3; G) — %p(Sg; G)—
2p(Ki; é) — 0 for any convergent sequence G of triangle-free graphs.

Suppose we in such a way show that for any convergent sequence G of
F-free graphs, we have p(Ky; G) < a. This implies that ex(F;00) < a:
For contradiction assume that for some ¢ > 0, there exist arbitrarily
large graphs G such that p(K3, G) > a+ ¢, and we let Abea sequence
of such graphs with |A;| — oo as i — oo. It is easy to show that from
any infinite sequence of graphs, we can select an infinite convergent
subsequence. Letting G be an infinite convergent subsequence of /T, we

obtain the contradiction.

In the latter approach, we have defined a notion of convergence of a sequence
of graphs. It is natural to ask whether there exists a limit object towards
which the sequence converges. One can indeed define such a natural object,
a graphon (a symmetric measurable function g : [0, 1]* — [0, 1], where g(z, y)
can be intuitively interpreted as the probability that the vertices  and y are
joined by an edge). Thus we can similarly interpret the identities as exact
statements on graphons (with p(F’;g) defined appropriately for a graph F
and a graphon g).



