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It is natural to view the stability results we have seen so far as a kind
of limit statements. For example, the stability version of the Erdős-Stone
theorem can be re-stated as follows. Let F be a graph of chromatic number
r + 1 and consider any sequence G1, G2, . . . of graphs such that for each
i, |Gi| = i and F 6⊆ Gi. If ‖Gn‖/

(
n
2

)
→ 1 − 1/r as n → ∞, then the

sequence “converges to the balanced complete r-partite graph”. We now aim
to develop a theory that will enable us to make such statements precise.

For graphs H and G, let

p(H;G) =
|{S ⊆ V (G) : G[S] ' H}|(|G|

|H|

) .

In other words, p(H;G) is the probability that a subset of |H| vertices of
G chosen uniformly at random induces a subgraph isomorphic to H. For
example, p(K2;G) = ‖G‖/

(|G|
2

)
is the density of G.

Note that if we know p(H;G) for all graphs H with m vertices, we can
also determine it for all graphs with less than m vertices, as follows. Let Hm

denote the set of all pairwise non-isomorpic graphs with m vertices.

Lemma 1. For any graph F with at most m vertices and any graph G, we
have

p(F ;G) =
∑
H∈Hm

p(F ;H) · p(H;G).

Proof. To choose a set S of |F | vertices of G, we can first choose a set S1 of
m vertices, then choose S as a subset of S1. Hence, we have

p(F ;G) = Pr[G[S] ' F ] =
∑
H∈Hm

Pr[G[S] ' F | G[S1] ' H] · Pr[G[S1] ' H]

=
∑
H∈Hm

p(F ;H) · p(H;G).
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This fact (together with the obvious equality
∑

H∈Hm p(H;G) = 1) can
be used to obtain some bounds on the extremal functions (but usually not
tight ones).

Example 2. What can we say about the density of graphs without triangles?
Let G be an n-vertex triangle-free graph (so p(K3;G) = 0). Let N3 denote
the graph consisting of three isolated vertices and S3 the 3-vertex graph with
one edge. We have

‖G‖(
n
2

) = p(K2;G) =
∑
H∈H3

p(K2;H)p(H;G)

= p(K2;N3)p(N3;G) + p(K2;S3)p(S3;G) + p(K2;K1,2)p(K1,2;G) + p(K2;K3)p(K3;G)

= 0 · p(N3;G) + 1
3
p(S3;G) + 2

3
· p(K1,2;G) + 1 · 0

≤ 2
3
(p(N3;G) + p(S3;G) + p(K1,2;G)) = 2

3
.

Recall that Mantel’s theorem gives an asymptotically much better bound ‖G‖ ≤
n2/4 ≈ 1

2

(
n
2

)
.

To get an improvement, we need a more general notion. A flag H with k
roots is a pair (H,λH), where H is a graph and λH : {1, . . . , k} → V (H) is
an injective function; i.e., a flag is a graph with some of its vertices assigned
labels 1, . . . , k, where each label appears on exactly one vertex. We say two
flags H1 and H2 are isomorphic and write H1 ' H2 if they have the same
number k of roots and there exists an isomorphism f of H1 and H2 such
that for i = 1, . . . , k, f(λH1(i)) = λH2(i), i.e., the isomorphism respects the
labels. The type of the flag H is the graph with vertex set {1, . . . , k}, where
ij is an edge iff λH(i)λH(j) ∈ E(H); i.e., the subgraph of H induced by the
labelled vertices. Clearly, two isomorphic flags have the same type.

For a flag H with k roots, a graph G, and an injective function θ :
{1, . . . , k} → V (G), let

p(H;G, θ) =
|{S ⊆ V (G) \ im(θ) : (G[S ∪ im(θ)], θ) ' H}|(|G|−k

|H|−k

) ;

i.e., the probability that a random flag in G with |H| vertices and with labels
on vertices θ(1), . . . , θ(k) in order is isomorphic to H. For example, letting
K1

m be the flag with one root and the graph Km, we have p(K1
2;G, θ) =

deg(θ(1))/(|G| − 1).
Let us note that p(H;G, θ) is related to p(H,G) by averaging. More

precisely, for an expression X(G, θ) depending on a graph G and an injective
function θ : {1, . . . , k} → V (G), we define

Eθ[X(θ)] =

∑
{X(θ) : θ : {1, . . . , k} → V (G) injective}

|G|(|G| − 1) · · · (|G| − k + 1)
.
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For example,

Eθ[p(K
1
2;G, θ)] =

∑
v∈V (G) deg(v)/(|G| − 1)

|G|
,

and thus Eθ[p(K
1
2;G, θ)] · (|G| − 1) is the average degree of G.

Lemma 3. For a flag H, we have Eθ[p(H;G, θ)] = Eθ[p(H;H, θ)]p(H;G).

Proof. Let k be the number of roots of H. Observe that Eθ[p(H;G, θ)] is the
probability that, after choosing uniformly at random an injective function
θ : {1, . . . , k} → V (G) and a set S ⊆ V (G) \ im(θ) of size |H| − k, the
flag arising from the subgraph of G induced by θ and S is isomorphic to H.
The right hand side computes the same probability in a different way, first
selecting a set T of |H| vertices, then an injective function from {1, . . . , k}
to T .

Next, we consider a combination of flags. Suppose H1 and H2 are flags
of the same type, with k roots. For a graph G, and an injective function
θ : {1, . . . , k} → V (G), let us define

p(H1,H2;G, θ) =
|{S1, S2 ⊆ V (G) \ im(θ) : S1 ∩ S2 = ∅, (G[Si ∪ im(θ)], θ) ' Hi for i ∈ {1, 2}}|( |G|−k

|H1|−k,|H2|−k,|G|−|H1|−|H2|+k

) .

For example, let N1
m be the flag with one root and the graph consisting of

m isolated vertices. Then

p(K1
2,N

1
2;G, θ) =

deg(θ(1)) · (|G| − 1− deg(θ(1)))

(|G| − 1)(|G| − 2)

p(K1
2,K

1
2;G, θ) =

deg(θ(1)) · (deg(θ(1))− 1)

(|G| − 1)(|G| − 2)
.

We can express this combined probability in terms of larger flags similarly
to Lemma 1. For a type σ and integer m, let Hσ,m denote the set of all
flags of type σ with m vertices. For a flag H, by p(F1,F2;H) we mean
p(F1,F2;H, λH).

Lemma 4. Suppose F1 and F2 are flags of the same type σ, with k roots,
and let m ≥ |F1|+ |F2| − k be an integer. Then for any G and θ, we have

p(F1,F2;G, θ) =
∑

H∈Hσ,m

p(F1,F2;H) · p(H;G, θ).
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Proof. On the left-hand side, we calculate the probability that if we choose
disjoint sets S1, S2 ⊆ V (G) \ im(θ) of sizes |F1|−k and |F2|−k, respectively,
uniformly at random, then the flag induced by θ and Si in G is isomorphic to
Fi for i ∈ {1, 2}. On the right-hand side, we compute the same probability
by first selecting a set S ⊆ V (G) \ im(θ) of size m− k uniformly at random,
then choosing disjoint S1, S2 ⊆ S uniformly at random.

Let us now relate p(F1,F2;G, θ) to p(F1;G, θ) · p(F2;G, θ). The latter
calculates the probability that, if we choose sets S1, S2 ⊆ V (G)\ im(θ) of the
appropriate size independently uniformly at random, then the flag induced by
θ and Si in G is isomorphic to Fi for i ∈ {1, 2}. Note that if |G| is large, then
the independently chosen sets S1 and S2 will almost surely be disjoint, and
thus this probability will be close to p(F1,F2;G, θ). The following lemma
gives this more precisely.

Lemma 5. Suppose F1 and F2 are flags of the same type, with k roots. Let
G be a graph with n ≥ |F1|+ |F2| − k vertices and let θ : {1, . . . , k} → V (G)
be an injective function. Then

|p(F1,F2;G, θ)− p(F1;G, θ) · p(F2;G, θ)| ≤ |F1||F2|
n

.

Proof. Let a = p(F1,F2;G, θ) and b = p(F1;G, θ) · p(F2;G, θ). Let m =(
n−k

|F1|−k,|F2|−k,n−|F1|−|F2|+k

)
and q =

(
n−k
|F1|−k

)(
n−k
|F2|−k

)
. By the definition, am is the

number of pairs of disjoint sets S1 and S2 extending θ in G to flags isomorphic
to F1 and F2, while bq is the same quantity without the constraint that S1

and S2 are disjoint. Moreover, q −m is the number of ways how to choose
a pair of non-disjoint subsets of V (G) \ im(θ) of the appropriate size, and
0 ≤ a, b ≤ 1. Hence,

am ≤ bq ≤ am+ q −m
−a(q −m)/q ≤ b− a ≤ (1− a)(q −m)/q

−(q −m)/q ≤ b− a ≤ (q −m)/q,

and thus |a − b| ≤ (q −m)/q. Recall q −m is the number of ways how to
choose a pair of non-disjoint subsets of V (G) \ im(θ) of of sizes |F1| − k and
|F2| − k, and thus it is upper-bounded by (n− k)

(
n−k−1
|F1|−k−1

)(
n−k−1
|F2|−k−1

)
. Hence,

q −m
q
≤

(n− k)
(
n−k−1
|F1|−k−1

)(
n−k−1
|F2|−k−1

)(
n−k
|F1|−k

)(
n−k
|F2|−k

) =
(|F1| − k)(|F2| − k)

n− k
≤ |F1||F2|

n
,

as required.
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We now have the tools for the applications of this framework. As a very
simple example, let us prove an asymptotic version of Mantel’s theorem.

Example 6. Let G be a triangle-free graph with n vertices. In the calculation
below, we use the following abbreviations (for flags F1,F2 and a graph F ):

F1 ≡ p(F1;G, θ)

F1 ◦ F2 ≡ p(F1,F2;G, θ)

F ≡ p(F ;G)

Since G is triangle-free, we have (in this notation) K3 = 0 and for every θ,
K1

3 = 0. Let K1
1,2 be the flag with graph K1,2 and the label 1 on one of the

leaves, and Km
1,2 the flag with the same graph and the label 1 on the vertex

of degree two. Let S1
3 be the flag with graph S3 and the label 1 on one of the

leaves, and Sm
3 the flag with the same graph and the label 1 on the isolated

vertex. By Lemma 4,

K1
2 ◦K1

2 = p(K1
2,K

1
2;N1

3) ·N1
3

+ p(K1
2,K

1
2;Sm

3 ) · Sm
3

+ p(K1
2,K

1
2;S1

3) · S1
3

+ p(K1
2,K

1
2;K1

1,2) ·K1
1,2

+ p(K1
2,K

1
2;Km

1,2) ·Km
1,2

+ p(K1
2,K

1
2;K1

3) ·K1
3

= 0 ·N1
3 + 0 · Sm

3 + 0 · S1
3 + 0 ·K1

1,2 + 1 ·Km
1,2 + 1 · 0

= Km
1,2.

Similarly,

K1
2 ◦N1

2 = 1
2
S1
3 + 1

2
K1

1,2

N1
2 ◦N1

2 = N1
3 + Sm

3

Furthermore, using Lemma 3, we have

Eθ[K
1
2 ◦K1

2] = Eθ[K
m
1,2]

= Eθ[p(K
m
1,2;K1,2, θ)] ·K1,2 = 1

3
K1,2,

and similarly

Eθ[K
1
2 ◦N1

2] = 1
3
S3 + 1

3
K1,2

Eθ[N
1
2 ◦N1

2] = N3 + 1
3
S3
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Using Lemma 5, we have

0 ≤ Eθ[(K
1
2 −N1

2)2] = Eθ[(K
1
2)2]− 2Eθ[K

1
2 ·N1

2] + Eθ[(N
1
2)2]

≤ Eθ[K
1
2 ◦K1

2]− 2Eθ[K
1
2 ◦N1

2] + Eθ[N
1
2 ◦N1

2] + 16
n

= 1
3
K1,2 − 2(1

3
S3 + 1

3
K1,2) + (N3 + 1

3
S3) + 16

n

= N3 − 1
3
S3 − 1

3
K1,2 + 16

n
(1)

Recall from Exercise 2 that K2 = 1
3
S3 + 2

3
K1,2. Adding to this half of (1), we

obtain

K2 ≤ 1
2
N3 + 1

6
S3 + 1

2
K1,2 + 8

n

≤ 1
2
(N3 + S3 +K1,2) + 8

n
= 1

2
+ 8

n
.

Hence, we have ‖G‖ ≤
(
1
2

+ 8
n

)(
n
2

)
≤ n2

4
+ 4n for every triangle-free graph on

n vertices. Moreover, note that the inequality could be improved if S3 > 0;
hence, in any extremal graph, the density of S3 must be very close to 0 (and
from this, one can see that the extremal graphs are close to being bipartite).

Let us remark that we can easily improve this bound to the optimal one:
Suppose G is a triangle-free graph with n vertices and cn2 edges. Let G′ be
the graph obtained from G by blowing up each vertex into an independent
set of k vertices (turning edges of G into complete bipartite subgraphs in
G′). Clearly, G′ is also triangle-free. Moreover, G′ has nk vertices and
cn2k2 edges, and using the inequality from the previous paragraph, we have
cn2k2 ≤ n2k2

4
+ 4nk, and thus c ≤ 1

4
+ 4

nk
. Since this holds for every k, we

have c ≤ 1/4. Consequently, every triangle-free graph with n vertices has at
most n2/4 edges.

Let us remark that generally, we do not need to care about the lower-
order term O(1/n) arising from the usage of Lemma 5; we can just ignore
it throughout the calculations and add it to the final result. There are two
(basically equivalent) approaches how to deal with this formally.

• Razborov introduced the notion of flag algebras, whose elements are
formal linear combinations of flags and the multiplication is defined
via the identities from Lemma 4 and Lemma 5, factorized by the iden-
tities given by Lemma 1. The elements of the algebra are then given
a semantics (assigning to each flag F the mapping p(F; •)) and it is
argued in the natural way that all true statements in the flag algebra
are asymptotically true in this interpretation.

• Lovász introduced the notion of convergent sequences. A sequence
~G = G1, G2, . . . is convergent if for every graph F , there exists a limit
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limn→∞ p(F ;Gn); we denote this limit by p(F ; ~G). The identities we

obtain in the limit are then exact, i.e., we have p(N3; ~G)− 1
3
p(S3; ~G)−

2
3
p(K1,2; ~G) = 0 for any convergent sequence ~G of triangle-free graphs.

Suppose we in such a way show that for any convergent sequence ~G of
F -free graphs, we have p(K2; ~G) ≤ a. This implies that ex(F ;∞) ≤ a:
For contradiction assume that for some ε > 0, there exist arbitrarily
large graphs G such that p(K2, G) ≥ a+ ε, and we let ~A be a sequence
of such graphs with |Ai| → ∞ as i→∞. It is easy to show that from
any infinite sequence of graphs, we can select an infinite convergent
subsequence. Letting ~G be an infinite convergent subsequence of ~A, we
obtain the contradiction.

In the latter approach, we have defined a notion of convergence of a sequence
of graphs. It is natural to ask whether there exists a limit object towards
which the sequence converges. One can indeed define such a natural object,
a graphon (a symmetric measurable function g : [0, 1]2 → [0, 1], where g(x, y)
can be intuitively interpreted as the probability that the vertices x and y are
joined by an edge). Thus we can similarly interpret the identities as exact
statements on graphons (with p(F ; g) defined appropriately for a graph F
and a graphon g).
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