Density, convergence and limits

Zdeněk Dvořák

November 27, 2020

It is natural to view the stability results we have seen so far as a kind of limit statements. For example, the stability version of the Erdős-Stone theorem can be re-stated as follows. Let F be a graph of chromatic number $r+1$ and consider any sequence G_{1}, G_{2}, \ldots of graphs such that for each $i,\left|G_{i}\right|=i$ and $F \nsubseteq G_{i}$. If $\left\|G_{n}\right\| /\binom{n}{2} \rightarrow 1-1 / r$ as $n \rightarrow \infty$, then the sequence "converges to the balanced complete r-partite graph". We now aim to develop a theory that will enable us to make such statements precise.

For graphs H and G, let

$$
p(H ; G)=\frac{|\{S \subseteq V(G): G[S] \simeq H\}|}{\binom{|G G|}{|H|}} .
$$

In other words, $p(H ; G)$ is the probability that a subset of $|H|$ vertices of G chosen uniformly at random induces a subgraph isomorphic to H. For example, $p\left(K_{2} ; G\right)=\|G\| /\binom{|G|}{2}$ is the density of G.

Note that if we know $p(H ; G)$ for all graphs H with m vertices, we can also determine it for all graphs with less than m vertices, as follows. Let \mathcal{H}_{m} denote the set of all pairwise non-isomorpic graphs with m vertices.

Lemma 1. For any graph F with at most m vertices and any graph G, we have

$$
p(F ; G)=\sum_{H \in \mathcal{H}_{m}} p(F ; H) \cdot p(H ; G) .
$$

Proof. To choose a set S of $|F|$ vertices of G, we can first choose a set S_{1} of m vertices, then choose S as a subset of S_{1}. Hence, we have

$$
\begin{aligned}
p(F ; G) & =\operatorname{Pr}[G[S] \simeq F]=\sum_{H \in \mathcal{H}_{m}} \operatorname{Pr}\left[G[S] \simeq F \mid G\left[S_{1}\right] \simeq H\right] \cdot \operatorname{Pr}\left[G\left[S_{1}\right] \simeq H\right] \\
& =\sum_{H \in \mathcal{H}_{m}} p(F ; H) \cdot p(H ; G)
\end{aligned}
$$

This fact (together with the obvious equality $\sum_{H \in \mathcal{H}_{m}} p(H ; G)=1$) can be used to obtain some bounds on the extremal functions (but usually not tight ones).
Example 2. What can we say about the density of graphs without triangles? Let G be an n-vertex triangle-free graph (so $p\left(K_{3} ; G\right)=0$). Let N_{3} denote the graph consisting of three isolated vertices and S_{3} the 3-vertex graph with one edge. We have

$$
\begin{aligned}
\frac{\|G\|}{\binom{n}{2}} & =p\left(K_{2} ; G\right)=\sum_{H \in \mathcal{H}_{3}} p\left(K_{2} ; H\right) p(H ; G) \\
& =p\left(K_{2} ; N_{3}\right) p\left(N_{3} ; G\right)+p\left(K_{2} ; S_{3}\right) p\left(S_{3} ; G\right)+p\left(K_{2} ; K_{1,2}\right) p\left(K_{1,2} ; G\right)+p\left(K_{2} ; K_{3}\right) p\left(K_{3} ; G\right) \\
& =0 \cdot p\left(N_{3} ; G\right)+\frac{1}{3} p\left(S_{3} ; G\right)+\frac{2}{3} \cdot p\left(K_{1,2} ; G\right)+1 \cdot 0 \\
& \leq \frac{2}{3}\left(p\left(N_{3} ; G\right)+p\left(S_{3} ; G\right)+p\left(K_{1,2} ; G\right)\right)=\frac{2}{3} .
\end{aligned}
$$

Recall that Mantel's theorem gives an asymptotically much better bound $\|G\| \leq$ $n^{2} / 4 \approx \frac{1}{2}\binom{n}{2}$.

To get an improvement, we need a more general notion. A flag \mathbf{H} with k roots is a pair $\left(H, \lambda_{\mathbf{H}}\right)$, where H is a graph and $\lambda_{\mathbf{H}}:\{1, \ldots, k\} \rightarrow V(H)$ is an injective function; i.e., a flag is a graph with some of its vertices assigned labels $1, \ldots, k$, where each label appears on exactly one vertex. We say two flags $\mathbf{H}_{\mathbf{1}}$ and $\mathbf{H}_{\mathbf{2}}$ are isomorphic and write $\mathbf{H}_{\mathbf{1}} \simeq \mathbf{H}_{\mathbf{2}}$ if they have the same number k of roots and there exists an isomorphism f of H_{1} and H_{2} such that for $i=1, \ldots, k, f\left(\lambda_{\mathbf{H}_{\mathbf{1}}}(i)\right)=\lambda_{\mathbf{H}_{\mathbf{2}}}(i)$, i.e., the isomorphism respects the labels. The type of the flag \mathbf{H} is the graph with vertex set $\{1, \ldots, k\}$, where $i j$ is an edge iff $\lambda_{\mathbf{H}}(i) \lambda_{\mathbf{H}}(j) \in E(H)$; i.e., the subgraph of H induced by the labelled vertices. Clearly, two isomorphic flags have the same type.

For a flag \mathbf{H} with k roots, a graph G, and an injective function θ : $\{1, \ldots, k\} \rightarrow V(G)$, let

$$
p(\mathbf{H} ; G, \theta)=\frac{|\{S \subseteq V(G) \backslash \operatorname{im}(\theta):(G[S \cup \operatorname{im}(\theta)], \theta) \simeq \mathbf{H}\}|}{\binom{|G|-k}{H \mid-k}}
$$

i.e., the probability that a random flag in G with $|H|$ vertices and with labels on vertices $\theta(1), \ldots, \theta(k)$ in order is isomorphic to \mathbf{H}. For example, letting $\mathbf{K}_{\mathbf{m}}^{1}$ be the flag with one root and the graph K_{m}, we have $p\left(\mathbf{K}_{\mathbf{2}}^{1} ; G, \theta\right)=$ $\operatorname{deg}(\theta(1)) /(|G|-1)$.

Let us note that $p(\mathbf{H} ; G, \theta)$ is related to $p(H, G)$ by averaging. More precisely, for an expression $X(G, \theta)$ depending on a graph G and an injective function $\theta:\{1, \ldots, k\} \rightarrow V(G)$, we define

$$
E_{\theta}[X(\theta)]=\frac{\sum\{X(\theta): \theta:\{1, \ldots, k\} \rightarrow V(G) \text { injective }\}}{|G|(|G|-1) \cdots(|G|-k+1)} .
$$

For example,

$$
E_{\theta}\left[p\left(\mathbf{K}_{\mathbf{2}}^{\mathbf{1}} ; G, \theta\right)\right]=\frac{\sum_{v \in V(G)} \operatorname{deg}(v) /(|G|-1)}{|G|}
$$

and thus $E_{\theta}\left[p\left(\mathbf{K}_{\mathbf{2}}^{1} ; G, \theta\right)\right] \cdot(|G|-1)$ is the average degree of G.
Lemma 3. For a flag \mathbf{H}, we have $E_{\theta}[p(\mathbf{H} ; G, \theta)]=E_{\theta}[p(\mathbf{H} ; H, \theta)] p(H ; G)$.
Proof. Let k be the number of roots of \mathbf{H}. Observe that $E_{\theta}[p(\mathbf{H} ; G, \theta)]$ is the probability that, after choosing uniformly at random an injective function $\theta:\{1, \ldots, k\} \rightarrow V(G)$ and a set $S \subseteq V(G) \backslash \operatorname{im}(\theta)$ of size $|H|-k$, the flag arising from the subgraph of G induced by θ and S is isomorphic to \mathbf{H}. The right hand side computes the same probability in a different way, first selecting a set T of $|H|$ vertices, then an injective function from $\{1, \ldots, k\}$ to T.

Next, we consider a combination of flags. Suppose $\mathbf{H}_{\mathbf{1}}$ and $\mathbf{H}_{\mathbf{2}}$ are flags of the same type, with k roots. For a graph G, and an injective function $\theta:\{1, \ldots, k\} \rightarrow V(G)$, let us define

$$
p\left(\mathbf{H}_{\mathbf{1}}, \mathbf{H}_{\mathbf{2}} ; G, \theta\right)=\frac{\mid\left\{S_{1}, S_{2} \subseteq V(G) \backslash \operatorname{im}(\theta): S_{1} \cap S_{2}=\emptyset,\left(G\left[S_{i} \cup \operatorname{im}(\theta)\right], \theta\right) \simeq \mathbf{H}_{\mathbf{i}} \text { for } i \in\{1,2\}\right\} \mid}{(|G|-k} .
$$

For example, let $\mathbf{N}_{\mathbf{m}}^{\mathbf{1}}$ be the flag with one root and the graph consisting of m isolated vertices. Then

$$
\begin{aligned}
& p\left(\mathbf{K}_{\mathbf{2}}^{1}, \mathbf{N}_{\mathbf{2}}^{1} ; G, \theta\right)=\frac{\operatorname{deg}(\theta(1)) \cdot(|G|-1-\operatorname{deg}(\theta(1)))}{(|G|-1)(|G|-2)} \\
& p\left(\mathbf{K}_{\mathbf{2}}^{1}, \mathbf{K}_{\mathbf{2}}^{\mathbf{1}} ; G, \theta\right)=\frac{\operatorname{deg}(\theta(1)) \cdot(\operatorname{deg}(\theta(1))-1)}{(|G|-1)(|G|-2)}
\end{aligned}
$$

We can express this combined probability in terms of larger flags similarly to Lemma 1. For a type σ and integer m, let $\mathcal{H}_{\sigma, m}$ denote the set of all flags of type σ with m vertices. For a flag \mathbf{H}, by $p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; \mathbf{H}\right)$ we mean $p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; H, \lambda_{\mathbf{H}}\right)$.

Lemma 4. Suppose $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ are flags of the same type σ, with k roots, and let $m \geq\left|F_{1}\right|+\left|F_{2}\right|-k$ be an integer. Then for any G and θ, we have

$$
p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; G, \theta\right)=\sum_{\mathbf{H} \in \mathcal{H}_{\sigma, m}} p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; \mathbf{H}\right) \cdot p(\mathbf{H} ; G, \theta) .
$$

Proof. On the left-hand side, we calculate the probability that if we choose disjoint sets $S_{1}, S_{2} \subseteq V(G) \backslash \operatorname{im}(\theta)$ of sizes $\left|F_{1}\right|-k$ and $\left|F_{2}\right|-k$, respectively, uniformly at random, then the flag induced by θ and S_{i} in G is isomorphic to $\mathbf{F}_{\mathbf{i}}$ for $i \in\{1,2\}$. On the right-hand side, we compute the same probability by first selecting a set $S \subseteq V(G) \backslash \operatorname{im}(\theta)$ of size $m-k$ uniformly at random, then choosing disjoint $S_{1}, S_{2} \subseteq S$ uniformly at random.

Let us now relate $p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; G, \theta\right)$ to $p\left(\mathbf{F}_{\mathbf{1}} ; G, \theta\right) \cdot p\left(\mathbf{F}_{\mathbf{2}} ; G, \theta\right)$. The latter calculates the probability that, if we choose sets $S_{1}, S_{2} \subseteq V(G) \backslash \operatorname{im}(\theta)$ of the appropriate size independently uniformly at random, then the flag induced by θ and S_{i} in G is isomorphic to $\mathbf{F}_{\mathbf{i}}$ for $i \in\{1,2\}$. Note that if $|G|$ is large, then the independently chosen sets S_{1} and S_{2} will almost surely be disjoint, and thus this probability will be close to $p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; G, \theta\right)$. The following lemma gives this more precisely.

Lemma 5. Suppose $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$ are flags of the same type, with k roots. Let G be a graph with $n \geq\left|F_{1}\right|+\left|F_{2}\right|-k$ vertices and let $\theta:\{1, \ldots, k\} \rightarrow V(G)$ be an injective function. Then

$$
\left|p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; G, \theta\right)-p\left(\mathbf{F}_{\mathbf{1}} ; G, \theta\right) \cdot p\left(\mathbf{F}_{\mathbf{2}} ; G, \theta\right)\right| \leq \frac{\left|F_{1}\right|\left|F_{2}\right|}{n}
$$

Proof. Let $a=p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; G, \theta\right)$ and $b=p\left(\mathbf{F}_{\mathbf{1}} ; G, \theta\right) \cdot p\left(\mathbf{F}_{\mathbf{2}} ; G, \theta\right)$. Let $m=$ $\binom{n-k}{\left|F_{1}\right|-k,\left|F_{2}\right|-k, n-\left|F_{1}\right|-\left|F_{2}\right|+k}$ and $q=\binom{n-k}{\left|F_{1}\right|-k}\binom{n-k}{\left|F_{2}\right|-k}$. By the definition, am is the number of pairs of disjoint sets S_{1} and S_{2} extending θ in G to flags isomorphic to $\mathbf{F}_{\mathbf{1}}$ and $\mathbf{F}_{\mathbf{2}}$, while $b q$ is the same quantity without the constraint that S_{1} and S_{2} are disjoint. Moreover, $q-m$ is the number of ways how to choose a pair of non-disjoint subsets of $V(G) \backslash \operatorname{im}(\theta)$ of the appropriate size, and $0 \leq a, b \leq 1$. Hence,

$$
\begin{aligned}
a m & \leq b q \leq a m+q-m \\
-a(q-m) / q & \leq b-a \leq(1-a)(q-m) / q \\
-(q-m) / q & \leq b-a \leq(q-m) / q
\end{aligned}
$$

and thus $|a-b| \leq(q-m) / q$. Recall $q-m$ is the number of ways how to choose a pair of non-disjoint subsets of $V(G) \backslash \operatorname{im}(\theta)$ of of sizes $\left|F_{1}\right|-k$ and $\left|F_{2}\right|-k$, and thus it is upper-bounded by $(n-k)\binom{n-k-1}{\left|F_{1}\right|-k-1}\binom{n-k-1}{\left|F_{2}\right|-k-1}$. Hence,

$$
\frac{q-m}{q} \leq \frac{(n-k)\binom{n-k-1}{\left|F_{1}\right|-k-1}\binom{n-k-1}{\left|F_{2}\right|-k-1}}{\binom{n-k}{\left|F_{1}\right|-k}\binom{n-k}{\left|F_{2}\right|-k}}=\frac{\left(\left|F_{1}\right|-k\right)\left(\left|F_{2}\right|-k\right)}{n-k} \leq \frac{\left|F_{1}\right|\left|F_{2}\right|}{n},
$$

as required.

We now have the tools for the applications of this framework. As a very simple example, let us prove an asymptotic version of Mantel's theorem.

Example 6. Let G be a triangle-free graph with n vertices. In the calculation below, we use the following abbreviations (for flags $\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}}$ and a graph F):

$$
\begin{aligned}
\mathbf{F}_{\mathbf{1}} & \equiv p\left(\mathbf{F}_{\mathbf{1}} ; G, \theta\right) \\
\mathbf{F}_{\mathbf{1}} \circ \mathbf{F}_{\mathbf{2}} & \equiv p\left(\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}} ; G, \theta\right) \\
F & \equiv p(F ; G)
\end{aligned}
$$

Since G is triangle-free, we have (in this notation) $K_{3}=0$ and for every θ, $\mathbf{K}_{\mathbf{3}}^{\mathbf{1}}=0$. Let $\mathbf{K}_{\mathbf{1}, \mathbf{2}}^{1}$ be the flag with graph $K_{1,2}$ and the label 1 on one of the leaves, and $\mathbf{K}_{1,2}^{\mathbf{m}}$ the flag with the same graph and the label 1 on the vertex of degree two. Let \mathbf{S}_{3}^{1} be the flag with graph S_{3} and the label 1 on one of the leaves, and $\mathbf{S}_{\mathbf{3}}^{\mathbf{m}}$ the flag with the same graph and the label 1 on the isolated vertex. By Lemma 4,

$$
\begin{aligned}
& \mathbf{K}_{\mathbf{2}}^{\mathbf{1}} \circ \mathbf{K}_{\mathbf{2}}^{\mathbf{1}}=p\left(\mathbf{K}_{\mathbf{2}}^{\mathbf{1}}, \mathbf{K}_{\mathbf{2}}^{\mathbf{1}} ; \mathbf{N}_{\mathbf{3}}^{\mathbf{1}}\right) \cdot \mathbf{N}_{\mathbf{3}}^{1} \\
& +p\left(\mathbf{K}_{2}^{1}, \mathbf{K}_{2}^{1} ; \mathbf{S}_{3}^{\mathrm{m}}\right) \cdot \mathbf{S}_{3}^{\mathrm{m}} \\
& +p\left(\mathbf{K}_{\mathbf{2}}^{\mathbf{1}}, \mathbf{K}_{\mathbf{2}}^{\mathbf{1}} ; \mathbf{S}_{\mathbf{3}}^{\mathbf{1}}\right) \cdot \mathbf{S}_{\mathbf{3}}^{\mathbf{1}} \\
& +p\left(\mathbf{K}_{2}^{1}, \mathbf{K}_{2}^{1} ; \mathbf{K}_{1,2}^{1}\right) \cdot \mathbf{K}_{1,2}^{1} \\
& +p\left(\mathbf{K}_{2}^{1}, \mathbf{K}_{2}^{1} ; \mathbf{K}_{1,2}^{\mathrm{m}}\right) \cdot \mathbf{K}_{1,2}^{\mathrm{m}} \\
& +p\left(\mathbf{K}_{\mathbf{2}}^{1}, \mathbf{K}_{2}^{1} ; \mathbf{K}_{\mathbf{3}}^{1}\right) \cdot \mathbf{K}_{\mathbf{3}}^{\mathbf{1}} \\
& =0 \cdot \mathbf{N}_{\mathbf{3}}^{\mathbf{1}}+0 \cdot \mathbf{S}_{\mathbf{3}}^{\mathbf{m}}+0 \cdot \mathbf{S}_{\mathbf{3}}^{1}+0 \cdot \mathbf{K}_{\mathbf{1}, \mathbf{2}}^{\mathbf{1}}+1 \cdot \mathbf{K}_{\mathbf{1}, \mathbf{2}}^{\mathbf{m}}+1 \cdot 0 \\
& =\mathbf{K}_{1,2}^{\mathrm{m}} \text {. }
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathbf{K}_{2}^{1} \circ \mathbf{N}_{2}^{1}=\frac{1}{2} \mathbf{S}_{3}^{1}+\frac{1}{2} \mathbf{K}_{1,2}^{1} \\
& \mathbf{N}_{2}^{1} \circ \mathbf{N}_{2}^{1}=\mathbf{N}_{3}^{1}+\mathbf{S}_{3}^{\mathrm{m}}
\end{aligned}
$$

Furthermore, using Lemma 3, we have

$$
\begin{aligned}
E_{\theta}\left[\mathbf{K}_{\mathbf{2}}^{\mathbf{1}} \circ \mathbf{K}_{\mathbf{2}}^{\mathbf{1}}\right] & =E_{\theta}\left[\mathbf{K}_{\mathbf{1}, \mathbf{2}}^{\mathbf{m}}\right] \\
& =E_{\theta}\left[p\left(\mathbf{K}_{\mathbf{1}, \mathbf{2}}^{\mathbf{m}} ; K_{1,2}, \theta\right)\right] \cdot K_{1,2}=\frac{1}{3} K_{1,2},
\end{aligned}
$$

and similarly

$$
\begin{aligned}
E_{\theta}\left[\mathbf{K}_{2}^{\mathbf{1}} \circ \mathbf{N}_{\mathbf{2}}^{1}\right] & =\frac{1}{3} S_{3}+\frac{1}{3} K_{1,2} \\
E_{\theta}\left[\mathbf{N}_{\mathbf{2}}^{1} \circ \mathbf{N}_{\mathbf{2}}^{1}\right] & =N_{3}+\frac{1}{3} S_{3}
\end{aligned}
$$

Using Lemma 5, we have

$$
\begin{align*}
0 & \leq E_{\theta}\left[\left(\mathbf{K}_{\mathbf{2}}^{\mathbf{1}}-\mathbf{N}_{\mathbf{2}}^{\mathbf{1}}\right)^{2}\right]=E_{\theta}\left[\left(\mathbf{K}_{\mathbf{2}}^{\mathbf{1}}\right)^{2}\right]-2 E_{\theta}\left[\mathbf{K}_{\mathbf{2}}^{\mathbf{1}} \cdot \mathbf{N}_{\mathbf{2}}^{\mathbf{1}}\right]+E_{\theta}\left[\left(\mathbf{N}_{\mathbf{2}}^{\mathbf{1}}\right)^{2}\right] \\
& \leq E_{\theta}\left[\mathbf{K}_{\mathbf{2}}^{\mathbf{1}} \circ \mathbf{K}_{\mathbf{2}}^{\mathbf{1}}\right]-2 E_{\theta}\left[\mathbf{K}_{\mathbf{2}}^{1} \circ \mathbf{N}_{\mathbf{2}}^{\mathbf{1}}\right]+E_{\theta}\left[\mathbf{N}_{\mathbf{2}}^{\mathbf{1}} \circ \mathbf{N}_{\mathbf{2}}^{\mathbf{1}}\right]+\frac{16}{n} \\
& =\frac{1}{3} K_{1,2}-2\left(\frac{1}{3} S_{3}+\frac{1}{3} K_{1,2}\right)+\left(N_{3}+\frac{1}{3} S_{3}\right)+\frac{16}{n} \\
& =N_{3}-\frac{1}{3} S_{3}-\frac{1}{3} K_{1,2}+\frac{16}{n} \tag{1}
\end{align*}
$$

Recall from Exercise 2 that $K_{2}=\frac{1}{3} S_{3}+\frac{2}{3} K_{1,2}$. Adding to this half of (1), we obtain

$$
\begin{aligned}
K_{2} & \leq \frac{1}{2} N_{3}+\frac{1}{6} S_{3}+\frac{1}{2} K_{1,2}+\frac{8}{n} \\
& \leq \frac{1}{2}\left(N_{3}+S_{3}+K_{1,2}\right)+\frac{8}{n}=\frac{1}{2}+\frac{8}{n} .
\end{aligned}
$$

Hence, we have $\|G\| \leq\left(\frac{1}{2}+\frac{8}{n}\right)\binom{n}{2} \leq \frac{n^{2}}{4}+4 n$ for every triangle-free graph on n vertices. Moreover, note that the inequality could be improved if $S_{3}>0$; hence, in any extremal graph, the density of S_{3} must be very close to 0 (and from this, one can see that the extremal graphs are close to being bipartite).

Let us remark that we can easily improve this bound to the optimal one: Suppose G is a triangle-free graph with n vertices and $c n^{2}$ edges. Let G^{\prime} be the graph obtained from G by blowing up each vertex into an independent set of k vertices (turning edges of G into complete bipartite subgraphs in $\left.G^{\prime}\right)$. Clearly, G^{\prime} is also triangle-free. Moreover, G^{\prime} has $n k$ vertices and $\mathrm{cn}^{2} k^{2}$ edges, and using the inequality from the previous paragraph, we have $c n^{2} k^{2} \leq \frac{n^{2} k^{2}}{4}+4 n k$, and thus $c \leq \frac{1}{4}+\frac{4}{n k}$. Since this holds for every k, we have $c \leq 1 / 4$. Consequently, every triangle-free graph with n vertices has at most $n^{2} / 4$ edges.

Let us remark that generally, we do not need to care about the lowerorder term $O(1 / n)$ arising from the usage of Lemma 5 ; we can just ignore it throughout the calculations and add it to the final result. There are two (basically equivalent) approaches how to deal with this formally.

- Razborov introduced the notion of flag algebras, whose elements are formal linear combinations of flags and the multiplication is defined via the identities from Lemma 4 and Lemma 5 , factorized by the identities given by Lemma 1. The elements of the algebra are then given a semantics (assigning to each flag \mathbf{F} the mapping $p(\mathbf{F} ; \bullet))$ and it is argued in the natural way that all true statements in the flag algebra are asymptotically true in this interpretation.
- Lovász introduced the notion of convergent sequences. A sequence $\vec{G}=G_{1}, G_{2}, \ldots$ is convergent if for every graph F, there exists a limit
$\lim _{n \rightarrow \infty} p\left(F ; G_{n}\right)$; we denote this limit by $p(F ; \vec{G})$. The identities we obtain in the limit are then exact, i.e., we have $p\left(N_{3} ; \vec{G}\right)-\frac{1}{3} p\left(S_{3} ; \vec{G}\right)-$ $\frac{2}{3} p\left(K_{1,2} ; \vec{G}\right)=0$ for any convergent sequence \vec{G} of triangle-free graphs.
Suppose we in such a way show that for any convergent sequence \vec{G} of F-free graphs, we have $p\left(K_{2} ; \vec{G}\right) \leq a$. This implies that $\overline{\mathrm{ex}}(F ; \infty) \leq a$: For contradiction assume that for some $\varepsilon>0$, there exist arbitrarily large graphs G such that $p\left(K_{2}, G\right) \geq a+\varepsilon$, and we let \vec{A} be a sequence of such graphs with $\left|A_{i}\right| \rightarrow \infty$ as $i \rightarrow \infty$. It is easy to show that from any infinite sequence of graphs, we can select an infinite convergent subsequence. Letting \vec{G} be an infinite convergent subsequence of \vec{A}, we obtain the contradiction.

In the latter approach, we have defined a notion of convergence of a sequence of graphs. It is natural to ask whether there exists a limit object towards which the sequence converges. One can indeed define such a natural object, a graphon (a symmetric measurable function $g:[0,1]^{2} \rightarrow[0,1]$, where $g(x, y)$ can be intuitively interpreted as the probability that the vertices x and y are joined by an edge). Thus we can similarly interpret the identities as exact statements on graphons (with $p(F ; g)$ defined appropriately for a graph F and a graphon g).

