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November 20, 2020

A k-uniform hypegraph G is a pair (V,E), where E is a set of k-element
subsets of V , called hyperedges. Notation: |G| number of vertices of G, ‖G‖
number of hyperedges of G. Similarly to the graph case (see Lesson 1), we
have

Definition 1. Let F1, . . . , Fm be k-uniform hypergraphs. Maximum number
of edges of a k-uniform hypergraph with n vertices that does not contain any
subhypergraph isomorphic to F1, . . . , Fm:

ex(n;F1, . . . , Fm).

Density version:

ex(n;F1, . . . , Fm) =
ex(n;F1, . . . , Fm)(

n
k

) .

Asymptotic density:

ex(∞;F1, . . . , Fm) = inf{ex(n;F1, . . . , Fm) : n ∈ N}.

Lemma 2. If n1 ≥ n2, then ex(n1;F1, . . . , Fm) ≤ ex(n2;F1, . . . , Fm).

Corollary 3.

ex(∞;F1, . . . , Fm) = lim
n→∞

ex(n;F1, . . . , Fm),

and for every n0 we have

ex(∞;F1, . . . , Fm) ≤ ex(n0;F1, . . . , Fm).

Asymptotically, for n→∞, we have

ex(n;F1, . . . , Fm) = (ex(∞;F1, . . . , Fm) + o(1))
n2

k
.
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In general, the extremal theory for hypergraphs is much more challeng-
ing than for graphs. For example, we do not even know ex(∞;K

(3)
4 ) for the

complete 3-uniform hypergraph K
(3)
4 with four vertices. We will need the

following simple (non-tight bound) following straightforwardly from Corol-
lary 3.

Example 4. Every 4-vertex 3-uniform hypergraph not containing K
(3)
4 has

at most three edges, i.e. ex(4;K
(3)
4 ) = 3/4. Consequently, we also have

ex(4;K
(3)
4 ) ≤ 3/4, and thus ex(5;K

(3)
4 ) ≤ 3

4

(
5
3

)
= 7.5. Since ex(5;K

(3)
4 ) is

an integer, we have ex(5;K
(3)
4 ) ≤ 7, and thus ex(5;K

(3)
4 ) ≤ 7/10. Therefore,

ex(n;K
(3)
4 ) ≤ 7

10

(
n
3

)
for every n ≥ 5 and ex(∞;K

(3)
4 ) ≤ 7/10.

Our goal now is to investigate the extremal function for the Fano hypergraph
Fano, whose vertex set is formed by vectors 001, 010, . . . , 111 and {x, y, z} is
a hyperedge iff x+y+z = 0 holds in Z3

2 (equivalently, Fano is the hypegraph
whose vertices are the points and edges are the lines of the Fano plane, the
finite projective plane of order two). A short case analysis shows that for
any assignment of colors 1 and 2 to the vertices of of Fano, there exists a
monochromatic hyperedge. Hence, Fano is not a subgraph of the hypergraph
B

(3)
n whose vertex set consists of two parts A and B such that |A| = bn/2c

and |B| = dn/2e and the edges are all triples intersecting both A and B.

Theorem 5. For sufficiently large n, we have ex(n; Fano) = ‖B(3)
n ‖, and

B
(3)
n is the only n-vertex 3-uniform hypergraph with this many hyperedges not

containing Fano as a subhypergraph.

To prove Theorem 5, we need a couple of auxiliary results.

Lemma 6. Let G be a multigraph with n ≥ 3 vertices. If any three vertices
induce a submultigraph with at most 10 edges, then ‖G‖ ≤ 3

(
n
2

)
+ n− 2.

Proof. We prove the claim by induction on n. The claim clearly holds for
n = 3, and thus we can assume n ≥ 4. If all edges have multiplicity at
most 3, then ‖G‖ ≤ 3

(
n
2

)
. Otherwise, consider vertices u and v joined by an

edge of multiplicity m ≥ 4. The number of edges between {u, v} and any
other vertex is at most 10−m by the assumptions, and thus the number of
edges between {u, v} and the rest of the graph is at most (10 −m)(n − 2).
Hence, deg u + deg v ≤ (10 − m)(n − 2) + 2m, and by symmetry we can
assume deg v ≤ (10 − m)(n − 2)/2 + m. By the induction hypothesis, we
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have ‖G− v‖ ≤ 3
(
n−1
2

)
+ n− 3, and thus

‖G‖ ≤ 3

(
n− 1

2

)
+ n− 3 + (10−m)(n− 2)/2 +m

≤ 3

(
n− 1

2

)
+ n+ 3(n− 2) + 1 = 3

(
n

2

)
+ n− 2.

A similar argument gives the following.

Lemma 7. Let G be a multigraph with n ≥ 4 vertices. If any four vertices
induce a submultigraph with at most 20 edges, then ‖G‖ ≤ 3

(
n
2

)
+(4n−10)/3.

Proof. We prove the claim by induction on n. The claim clearly holds for
n = 4, and thus we can assume n ≥ 5. If any three vertices induce a
submultigraph with at most 10 edges, then the claim follows from Lemma 6.
Hence, suppose that the submultigraph induced by {u, v, w} has m ≥ 11
edges. he number of edges between {u, v, w} and any other vertex is at most
20−m by the assumptions, and thus deg u+ deg v + degw ≤ (20−m)(n−
3) + 2m. By symmetry, we can assume deg v ≤ ((20 −m)(n − 3) + 2m)/3.
By the induction hypothesis, we have ‖G− v‖ ≤ 3

(
n−1
2

)
+ 4n/3− 14/3, and

thus

‖G‖ ≤ 3

(
n− 1

2

)
+ 4n/3− 14/3 + ((20−m)(n− 3) + 2m)/3

≤ 3

(
n− 1

2

)
+ 13(n− 23)/3 = 3

(
n

2

)
+ (4n− 10)/3.

For a 3-uniform hypergraph G and a set S ⊆ V (G), the link multigraph
of S in G is the multigraph with vertex set V (G) \ S, where each pair xy of
vertices is an edge whose multiplicity is the number of vertices z ∈ S such
that {x, y, z} is a hyperedge of G. For z ∈ S, let L(z) denote the set of edges
of this link graph such that the corresponding hyperedge contains S.

Lemma 8. Let G be a 3-uniform hypergraph and let S be a set of four
vertices such that G[S] is complete. Let L be the link multigraph of S in G.
If some four vertices of L induce a submultigraph with at least 21 edges, then
Fano ⊆ G.

3



Proof. Let S = {v1, v2, v3, v4}. Suppose ‖L[{x1, x2, x3, x4}]‖ ≥ 21. For
i ∈ {1, 2, 3}, let Mi be the perfect matching on {x1, . . . , x4} containing
the edge x1xi+1. We can assume |L(v1)| ≥ . . . ≥ |L(v4)|. Since 21 ≤
‖L[{x1, x2, x3, x4}]‖ = ||L(v1)|+· · ·+|L(v4)|, we have |L(v2)|, |L(v3)| ≥ 5, and
thus we can by symmetry assume M2 ⊆ L(v2) and M3 ⊆ L(v3). Moreover,
we have |L(v1)| ≥ 6, and thus M1 ⊆ L(v1). Then the hyperedges {vi, x, y}
for i ∈ {1, 2, 3} and xy ∈ Mi together with the hyperedge {v1, v2, v3} form
Fano.

We are now ready to prove the asymptotic form of Theorem 5.

Theorem 9.
ex(∞; Fano) = 3/4.

Proof. Recall that Fano 6⊆ B
(3)
n , and observe that limn→∞

‖B(3)
n ‖

(n
3)

= 3/4.

Hence, ex(∞; Fano) ≥ 3/4.
We now aim to prove that ex(∞; Fano) ≤ 3/4. To this end, we need

to prove that for every ε > 0 and sufficiently large n, if G is a 3-uniform
n-vertex hypergraph with at least (3/4 + ε)n3/6 hyperedges, then Fano ⊆
G. First, as long as G contains a vertex incident with less than (3/4 +
ε/2)n2/2 hyperedges, keep deleting such vertices. We end up with an n0-
vertex hypergraph G0 of minimum degree at least (3/4 + ε/2)n2

0/2, and as
usual, it is easy to argue that n0 = Ω(ε1/3n).

Since ‖G0‖ ≥ (3/4 + ε/2)n3
0/6, Example 4 implies that K

(3)
4 ⊆ G0. Let S

be the vertex set of this K
(3)
4 and L the corresponding link multigraph. Since

G0 has minimum degree at least (3/4+ε/2)n2
0/2, each vertex of S contributes

at least (3/4+ε/2)n2
0/2−3n0 ≥ (3/4+ε/4)

(
n0

2

)
, and thus ‖L‖ ≥ (3+ε)

(
n0

2

)
.

By Lemma 7, this implies there exists a set of four vertices of L inducing
more than 20 edges. By Lemma 8, this implies Fano ⊆ G.

Next, we need the corresponding stability result, showing that near-
extremal graphs are close to B

(3)
n .

Theorem 10. For every ε > 0, there exists γ > 0 and n0 such that for every
3-uniform hypergraph G with n ≥ n0 vertices and at least (3/4 − γ)n3/6
hyperedges, if Fano 6⊆ G, then there exists a partition of V (G) to parts A and
B such that ‖G[A]‖+ ‖G[B]‖ ≤ εn3.

The proof of Theorem 10 follows an idea similar to the one of the proof
of Theorem 9, but is somewhat more lengthy; if you are interested, see [1,
Theorem 1.2]. We now need one more simple claim. Let µ(G) denote the
maximum size of a matching in a graph G.
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Lemma 11. For every n-vertex graph G, we have ‖G‖ ≤ 2µ(G)n.

Proof. Let M be a largest matching in G. Then every edge is incident with
at least one vertex of V (M) and |V (M)| = 2µ(G).

Next, let us prove the weaker variant of Theorem 5 for graphs of bounded
minimum degree.

Lemma 12. There exists n0 such that the following holds. Let G be a 3-
uniform hypergraph with n ≥ n0 vertices and ex(n; Fano) hyperedges. If

Fano 6⊆ G and δ(G) ≥ δ(B
(3)
n ), then ‖G‖ ≤ ‖B(3)

n ‖, with equality iff G = B
(3)
n .

Proof. Choose sufficiently small ε > 0 and sufficiently large n0. Let A and B
form a partition of V (G) minimizing ‖G[A]‖ + ‖G[B]‖; by Theorem 10, we

have ‖G[A]‖ + ‖G[B]‖ ≤ εn3. Note that for x ∈ A, we have
∣∣∣L(x) ∩

(
A
2

)∣∣∣ ≤∣∣∣L(x) ∩
(
B
2

)∣∣∣, as otherwise moving x to B would decrease the number of

hyperedges within the parts. Symmetrically,
∣∣∣L(y) ∩

(
B
2

)∣∣∣ ≤ ∣∣∣L(y) ∩
(
A
2

)∣∣∣ for

every y ∈ B.
Let q denote the number of triples intersecting both A and B that are not

hyperedges of G. Let ∆ = ||A| − n/2| = ||B| − n/2|. Since δ(G) ≥ δ(B
(3)
n ) ≥

(3/8− 3ε)n2, we have

(1/8− ε)n3 ≤ ‖G‖ =

(
|A|
2

)
|B|+

(
|B|
2

)
|A| − q + ‖G[A]‖+ ‖G[B]‖

≤ |A||B|n/2− q + εn3 = (1/8 + ε)n3 −∆2n/2− q.

Hence, we have q ≤ 2εn3 and ∆ ≤ 2ε1/2n.

Suppose next that there exists x ∈ A such that
∣∣∣L(x) ∩

(
A
2

)∣∣∣ > 4ε1/3n2,

and thus also
∣∣∣L(x) ∩

(
B
2

)∣∣∣ > 4ε1/3n2. By Lemma 11, there exist matchings

MA ⊆ L(x) ∩
(
A
2

)
and MB ⊆ L(x) ∩

(
B
2

)
of size at least 2ε1/3n. If there

existed an edge a1a2 ∈ MA and distinct edges b1b2, c1c2 ∈ MB such that
{ai, bj, cj} ∈ E(G) for all i, j, k ∈ {1, 2}, then we would have Fano ⊆ G.
Hence, this is not the case, and thus for each edge of MA and a pair of
distinct edges of MB, there exists a non-hyperedge of G intersecting all of
them. Consequently, q ≥ |MA|

(|MB |
2

)
≥ 8εn3/3, which is a contradiction.

Therefore, we have
∣∣∣L(x)∩

(
A
2

)∣∣∣ ≤ 4ε1/3n2 for every x ∈ A, and symmetri-

cally,
∣∣∣L(y) ∩

(
B
2

)∣∣∣ ≤ 4ε1/3n2 for every y ∈ B. Suppose now that there exists
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a hyperedge {x1, x2, x3} ∈ E(G[A]). For i ∈ {1, 2, 3}, we have∣∣∣L(xi) ∩
(
B

2

)∣∣∣ ≥ deg x−
∣∣∣L(x) ∩

(
A

2

)∣∣∣− |A||B|
≥ (3/8− ε)n2 − 4ε1/3n2 − n2/4 + ∆2

≥ (1/8− 9ε1/3)n2.

Since
(|B|

2

)
≤ (n/2 + ∆)2/2 ≤ (1/8 + 2ε1/2)n2, L(xi) has at most 11ε1/3n2

non-edges in
(
B
2

)
. Consequently, all but at most 33ε1/3n2 pairs of vertices in(

B
2

)
are joined by a triple edge in (L(x1) ∪ L(x2) ∪ L(x3)) ∩

(
B
2

)
. By Turán’s

theorem, there exist four vertices y1, . . . , y4 ∈ B such that any pair of them
is joined by a triple edge in L(x1) ∪ L(x2) ∪ L(x3). However, this implies
Fano ⊆ G, which is a contradiction.

Therefore, E(G[A]) = ∅, and by symmetry, E(G[B]) = ∅. It follows that

‖G‖ ≤ ‖B(3)
n ‖, with equality only if G = B

(3)
n .

We are now ready to finish the argument.

Proof of Theorem 5. Let n1 = 8n3
0, where n0 is the constant from Lemma 12.

For a 3-uniform hypergraph H, let m(H) = ‖H‖ − ‖B(3)
|H|‖. Let G be a 3-

uniform hypergraph with n ≥ n1 vertices and ex(n; Fano) hyperedges such

that Fano 6⊆ G. Since Fano 6⊆ B
(3)
n , we have m(G) ≥ 0.

Let G0 = G. For i ≥ 0, as long as Gi contains a vertex v of degree less
than δ(B

(3)
|Gi|), we let Gi+1 = Gi− v. Note that B

(3)
|Gi|−1 is obtained from B

(3)
|Gi|

by deleting a vertex of minimum degree, and thus m(Gi+1) ≥ m(Gi)+1. Let
Gk be the last member of this sequence; we have m(Gk) ≥ k. On the other
hand, m(Gk) ≤ ‖Gk‖ ≤ (n− k)3, and thus k + k1/3 ≤ n and k ≤ n− n1/3/2.
Consequently, |Gk| = n− k ≥ n1/3/2 ≥ n0.

By the choice of Gk, we have δ(Gk) ≥ δ(B
(3)
|Gk|), and thus Lemma 12

implies m(Gk) = 0 (and thus k = 0 and Gk = G) and Gk = B
(3)
n .
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