Extremal theory of hypergraphs; Density of
hypergraphs avoiding the Fano plane

Zdenék Dvorak
November 20, 2020

A k-uniform hypegraph G is a pair (V, E), where E is a set of k-element
subsets of V, called hyperedges. Notation: |G| number of vertices of G, ||G||
number of hyperedges of G. Similarly to the graph case (see Lesson 1), we
have

Definition 1. Let Fy, ..., F,, be k-uniform hypergraphs. Mazximum number
of edges of a k-uniform hypergraph with n vertices that does not contain any
subhypergraph isomorphic to Fy, ..., Fy,:

ex(n; F,..., Fy).

Density version:

e_X(n,Fl,,Fm) =

Asymptotic density:
ex(o0; F1, ..., Fy) = inf{ex(n; F1,..., F,) :n € N}
Lemma 2. If ny > ng, then eX(ny; F1, ..., Fy) < e&X(ng; Fi, ..., Fp).
Corollary 3.
ex(oo; Fy, ..., Fy) = Jgrgoﬁ(n, Fi,....F,),
and for every ng we have
ex(o0; Fi, ..., Fy) <&(no; Fi,..., Fn).

Asymptotically, for n — oo, we have

ex(n; F1,..., Fy) = (&X(oco; Fi, ..., F) + 0(1»%'
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In general, the extremal theory for hypergraphs is much more challeng-
ing than for graphs. For example, we do not even know &x(oo; K. f’)) for the
complete 3-uniform hypergraph K f)) with four vertices. We will need the
following simple (non-tight bound) following straightforwardly from Corol-
lary 3.

Example 4. Fvery 4-vertex 3-uniform hypergraph not containing Kf’) has

at most three edges, i.e. €x(4; Kf’)) = 3/4. Consequently, we also have

ox(4; KY) < 3/4, and thus ex(5; KY) < 3(3) = 7.5. Since ex(5; KyV) is
an integer, we have ex(5; Kf)) <7, and thus ex(5; Kf)) < 7/10. Therefore,

ex(n;Kf)) < &(%) for everyn >5 and e_X(oo;Kf)) < 7/10.

Our goal now is to investigate the extremal function for the Fano hypergraph

Fano, whose vertex set is formed by vectors 001, 010, ..., 111 and {z,y, 2} is
a hyperedge iff z +y+ 2 = 0 holds in Z3 (equivalently, Fano is the hypegraph
whose vertices are the points and edges are the lines of the Fano plane, the
finite projective plane of order two). A short case analysis shows that for
any assignment of colors 1 and 2 to the vertices of of Fano, there exists a
monochromatic hyperedge. Hence, Fano is not a subgraph of the hypergraph
BY) whose vertex set consists of two parts A and B such that |A| = [n/2]
and |B| = [n/2] and the edges are all triples intersecting both A and B.

Theorem 5. For sufficiently large n, we have ex(n;Fano) = ||qu3)||, and

BY is the only n-vertex 3-uniform hypergraph with this many hyperedges not
containing Fano as a subhypergraph.

To prove Theorem 5, we need a couple of auxiliary results.

Lemma 6. Let G be a multigraph with n > 3 vertices. If any three vertices
induce a submultigraph with at most 10 edges, then ||G|| < 3(3) +n — 2.

Proof. We prove the claim by induction on n. The claim clearly holds for
n = 3, and thus we can assume n > 4. If all edges have multiplicity at
most 3, then [|G| < 3(}). Otherwise, consider vertices u and v joined by an
edge of multiplicity m > 4. The number of edges between {u,v} and any
other vertex is at most 10 — m by the assumptions, and thus the number of
edges between {u,v} and the rest of the graph is at most (10 — m)(n — 2).
Hence, degu + degv < (10 — m)(n — 2) 4+ 2m, and by symmetry we can
assume degv < (10 — m)(n — 2)/2 + m. By the induction hypothesis, we



have |G — v|| < 3(",") +n — 3, and thus
n—1
1G]l §3( 9 )+n—3—|—(10—m)(n—2)/2+m

1
§3(n2 )+n+3(n—2)+1=3<;)+n—2.

A similar argument gives the following.

Lemma 7. Let G be a multigraph with n > 4 vertices. If any four vertices
induce a submultigraph with at most 20 edges, then ||G|| < 3(})+(4n—10)/3.

Proof. We prove the claim by induction on n. The claim clearly holds for
n = 4, and thus we can assume n > 5. If any three vertices induce a
submultigraph with at most 10 edges, then the claim follows from Lemma 6.
Hence, suppose that the submultigraph induced by {u,v,w} has m > 11
edges. he number of edges between {u, v, w} and any other vertex is at most
20 — m by the assumptions, and thus degu + degv + degw < (20 — m)(n —
3) + 2m. By symmetry, we can assume degv < ((20 — m)(n — 3) + 2m)/3.
By the induction hypothesis, we have |G —v| < 3(",') +4n/3 — 14/3, and
thus

G| < 3(” ) 1) +4n/3 —14/3 + (20 — m)(n — 3) + 2m)/3

< 3(";1) +13(n — 23)/3 = 3(2) + (4n — 10)/3.

]

For a 3-uniform hypergraph G and a set S C V(G), the link multigraph
of S in G is the multigraph with vertex set V(G) \ S, where each pair zy of
vertices is an edge whose multiplicity is the number of vertices z € S such
that {x,y, 2z} is a hyperedge of G. For z € S5, let L(z) denote the set of edges
of this link graph such that the corresponding hyperedge contains S.

Lemma 8. Let G be a 3-uniform hypergraph and let S be a set of four
vertices such that G[S] is complete. Let L be the link multigraph of S in G.
If some four vertices of L induce a submultigraph with at least 21 edges, then
Fano C G.



Proof. Let S = {wvy,v2,v5,v4}. Suppose ||L[{z1,z2, 23, 24}]]] > 21. For
i € {1,2,3}, let M; be the perfect matching on {zy,...,24} containing
the edge x1z;41. We can assume |L(vy)| > ... > |L(vy)]. Since 21 <
I L[{1, 22, w3, wa}]l] = [|L(02) |4+ - 4| L(va)|, we have | L(vy)], | L(vs)| = 5, and
thus we can by symmetry assume My C L(vy) and M3 C L(vs). Moreover,
we have |L(vq)| > 6, and thus M; C L(vy). Then the hyperedges {v;,z,y}
for i € {1,2,3} and xy € M; together with the hyperedge {v;, v, v3} form
Fano. [l

We are now ready to prove the asymptotic form of Theorem 5.

Theorem 9.
ex(o00; Fano) = 3/4.

(3)
Proof. Recall that Fano ¢ BS}), and observe that lim, HOOM = 3/4.

Hence, ex(oo; Fano) > 3/4. &

We now aim to prove that ex(oo; Fano) < 3/4. To this end, we need
to prove that for every ¢ > 0 and sufficiently large n, if G is a 3-uniform
n-vertex hypergraph with at least (3/4 + €)n®/6 hyperedges, then Fano C
G. First, as long as G contains a vertex incident with less than (3/4 +
e/2)n?/2 hyperedges, keep deleting such vertices. We end up with an ng-
vertex hypergraph Gy of minimum degree at least (3/4 + /2)n2/2, and as
usual, it is easy to argue that ng = Q(c'/3n).

Since ||Go|| > (3/4 +¢/2)n3 /6, Example 4 implies that K C Gy Let S
be the vertex set of this K f) and L the corresponding link multigraph. Since
Gy has minimum degree at least (3/4+¢/2)n3 /2, each vertex of S contributes
at least (3/4+¢/2)nf/2—3ng > (3/4+¢/4)("?), and thus ||L| > (3+¢) ().
By Lemma 7, this implies there exists a set of four vertices of L inducing
more than 20 edges. By Lemma 8, this implies Fano C G. O

Next, we need the corresponding stability result, showing that near-
extremal graphs are close to BY.

Theorem 10. For every ¢ > 0, there exists v > 0 and ng such that for every
3-uniform hypergraph G with n > ngy vertices and at least (3/4 — v)n®/6
hyperedges, if Fano G, then there ezists a partition of V(G) to parts A and
B such that |G[A]|| + [|G[B]]|| < en?.

The proof of Theorem 10 follows an idea similar to the one of the proof
of Theorem 9, but is somewhat more lengthy; if you are interested, see |1,
Theorem 1.2]. We now need one more simple claim. Let p(G) denote the
maximum size of a matching in a graph G.



Lemma 11. For every n-vertex graph G, we have ||G|| < 2u(G)n.

Proof. Let M be a largest matching in G. Then every edge is incident with
at least one vertex of V(M) and |V (M)| = 2u(G). O

Next, let us prove the weaker variant of Theorem 5 for graphs of bounded
minimum degree.

Lemma 12. There exists ng such that the following holds. Let G be a 3-
uniform hypergraph with n > ngy vertices and ex(n;Fano) hyperedges. If

Fano & G and 6(G) > 5(31(@3)), then |G| < ||B,(13)||, with equality iff G = B .

Proof. Choose sufficiently small € > 0 and sufficiently large ny. Let A and B
form a partition of V(G) minimizing ||G[A]| + ||G[B]||; by Theorem 10, we

have |G[A]|| + ||G[B]|| < en®. Note that for x € A, we have ’L(x) N (‘;‘) <
L@@) n (5)

hyperedges within the parts. Symmetrically,

, as otherwise moving x to B would decrease the number of

L(y)N (]23)’ < ‘L(y) N (;‘)’ for

every y € B.

Let ¢ denote the number of triples intersecting both A and B that are not
hyperedges of G. Let A = [|A| —n/2| = ||B| — n/2|. Since 6(G) > §(BY) >
(3/8 — 3¢)n?, we have

s - <6l = (15 )51+ (15141 - g+ 16111 + 615

<|A||B|n/2 — q+en® = (1/8 + &)n® — A’n/2 —q.

Hence, we have ¢ < 2en® and A < 2¢Y/2n.
Suppose next that there exists € A such that ‘L(:c) N (‘3)‘ > 4e'/3p2,

and thus also ‘L(a:) N (g)) > 4¢'/3p2. By Lemma 11, there exist matchings

My C L(z) N (5) and Mp C L(z) N (5) of size at least 2c¥/°n. If there
existed an edge aja; € M, and distinct edges b1by, cico € Mp such that
{ai,bj,c;} € E(G) for all 7,5,k € {1,2}, then we would have Fano C G.
Hence, this is not the case, and thus for each edge of M, and a pair of
distinct edges of Mp, there exists a non-hyperedge of G intersecting all of

them. Consequently, ¢ > |M4| (IJ\423 |) > 8en?/3, which is a contradiction.
Therefore, we have ‘L(x) N (’3)‘ < 4e/3n? for every © € A, and symmetri-

cally, )L(y) N (5)| < 4eY%n? for every y € B. Suppose now that there exists




a hyperedge {x,z2, 23} € E(G[A]). For i € {1,2,3}, we have

B A
2w ()| 2 dego - |20 ()] - 1415
> (3/8 — e)n? — 4e'Pn? — n?/4 4+ A?
> (1/8 — 9e1/3)n?.
Since (I5') < (n/2+ A)?/2 < (1/8 + 2¢V/?)n?, L(x;) has at most 11e/%n?
non-edges in (4). Consequently, all but at most 33¢'/°n? pairs of vertices in
() are joined by a triple edge in (L(z1) U L(x2) U L(z3)) N (5). By Turdn’s
theorem, there exist four vertices y1,...,ys € B such that any pair of them
is joined by a triple edge in L(x1) U L(x2) U L(x3). However, this implies

Fano C G, which is a contradiction.
Therefore, E(G[A]) = 0, and by symmetry, E(G[B]) = 0. It follows that

IG|| < ||BSY|, with equality only if G = BY. 0
We are now ready to finish the argument.

Proof of Theorem 5. Let ny = 8n3, where ng is the constant from Lemma 12.
For a 3-uniform hypergraph H, let m(H) = || H|| — HB%H. Let G be a 3-
uniform hypergraph with n > n; vertices and ex(n; Fano) hyperedges such
that Fano ¢ G. Since Fano ¢ BYY, we have m(G) > 0.

Let Go = G. For @ > 0, as long as (G; contains a vertex v of degree less
than 5(Bl(é)¢\)’ we let G; 1 = G; —v. Note that B\(éikl is obtained from Bfé)i‘
by deleting a vertex of minimum degree, and thus m(G;,1) > m(G;)+1. Let
G}, be the last member of this sequence; we have m(Gy) > k. On the other
hand, m(Gy) < ||Gi]| < (n — k)3, and thus k + k2 <n and k < n —n'/3/2.
Consequently, |G| =n —k > n'/3/2 > ny.

By the choice of Gy, we have §(Gy) > 5(B‘(g)k|), and thus Lemma 12

implies m(Gy) = 0 (and thus k£ = 0 and G, = G) and Gy, = BY O
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