Extremal theory of hypergraphs; Density of hypergraphs avoiding the Fano plane

Zdeněk Dvořák

November 20, 2020

A k-uniform hypegraph G is a pair (V, E), where E is a set of k-element subsets of V, called hyperedges. Notation: $|G|$ number of vertices of $G,\|G\|$ number of hyperedges of G. Similarly to the graph case (see Lesson 1), we have

Definition 1. Let F_{1}, \ldots, F_{m} be k-uniform hypergraphs. Maximum number of edges of a k-uniform hypergraph with n vertices that does not contain any subhypergraph isomorphic to F_{1}, \ldots, F_{m} :

$$
\operatorname{ex}\left(n ; F_{1}, \ldots, F_{m}\right)
$$

Density version:

$$
\overline{\operatorname{ex}}\left(n ; F_{1}, \ldots, F_{m}\right)=\frac{\operatorname{ex}\left(n ; F_{1}, \ldots, F_{m}\right)}{\binom{n}{k}}
$$

Asymptotic density:

$$
\overline{\operatorname{ex}}\left(\infty ; F_{1}, \ldots, F_{m}\right)=\inf \left\{\overline{\operatorname{ex}}\left(n ; F_{1}, \ldots, F_{m}\right): n \in \mathbb{N}\right\}
$$

Lemma 2. If $n_{1} \geq n_{2}$, then $\overline{\operatorname{ex}}\left(n_{1} ; F_{1}, \ldots, F_{m}\right) \leq \overline{\operatorname{ex}}\left(n_{2} ; F_{1}, \ldots, F_{m}\right)$.

Corollary 3.

$$
\overline{\mathrm{ex}}\left(\infty ; F_{1}, \ldots, F_{m}\right)=\lim _{n \rightarrow \infty} \overline{\operatorname{ex}}\left(n ; F_{1}, \ldots, F_{m}\right)
$$

and for every n_{0} we have

$$
\overline{\mathrm{ex}}\left(\infty ; F_{1}, \ldots, F_{m}\right) \leq \overline{\mathrm{ex}}\left(n_{0} ; F_{1}, \ldots, F_{m}\right) .
$$

Asymptotically, for $n \rightarrow \infty$, we have

$$
\operatorname{ex}\left(n ; F_{1}, \ldots, F_{m}\right)=\left(\overline{\operatorname{ex}}\left(\infty ; F_{1}, \ldots, F_{m}\right)+o(1)\right) \frac{n^{2}}{k}
$$

In general, the extremal theory for hypergraphs is much more challenging than for graphs. For example, we do not even know $\overline{\operatorname{ex}}\left(\infty ; K_{4}^{(3)}\right)$ for the complete 3 -uniform hypergraph $K_{4}^{(3)}$ with four vertices. We will need the following simple (non-tight bound) following straightforwardly from Corollary 3.

Example 4. Every 4-vertex 3-uniform hypergraph not containing $K_{4}^{(3)}$ has at most three edges, i.e. $\overline{\operatorname{ex}}\left(4 ; K_{4}^{(3)}\right)=3 / 4$. Consequently, we also have $\overline{\operatorname{ex}}\left(4 ; K_{4}^{(3)}\right) \leq 3 / 4$, and thus $\operatorname{ex}\left(5 ; K_{4}^{(3)}\right) \leq \frac{3}{4}\binom{5}{3}=7.5$. Since $\operatorname{ex}\left(5 ; K_{4}^{(3)}\right)$ is an integer, we have $\operatorname{ex}\left(5 ; K_{4}^{(3)}\right) \leq 7$, and thus $\overline{\operatorname{ex}}\left(5 ; K_{4}^{(3)}\right) \leq 7 / 10$. Therefore, $\operatorname{ex}\left(n ; K_{4}^{(3)}\right) \leq \frac{7}{10}\binom{n}{3}$ for every $n \geq 5$ and $\overline{\mathrm{ex}}\left(\infty ; K_{4}^{(3)}\right) \leq 7 / 10$.

Our goal now is to investigate the extremal function for the Fano hypergraph Fano, whose vertex set is formed by vectors $001,010, \ldots, 111$ and $\{x, y, z\}$ is a hyperedge iff $x+y+z=0$ holds in \mathbb{Z}_{2}^{3} (equivalently, Fano is the hypegraph whose vertices are the points and edges are the lines of the Fano plane, the finite projective plane of order two). A short case analysis shows that for any assignment of colors 1 and 2 to the vertices of of Fano, there exists a monochromatic hyperedge. Hence, Fano is not a subgraph of the hypergraph $B_{n}^{(3)}$ whose vertex set consists of two parts A and B such that $|A|=\lfloor n / 2\rfloor$ and $|B|=\lceil n / 2\rceil$ and the edges are all triples intersecting both A and B.

Theorem 5. For sufficiently large n, we have $\operatorname{ex}(n ;$ Fano $)=\left\|B_{n}^{(3)}\right\|$, and $B_{n}^{(3)}$ is the only n-vertex 3-uniform hypergraph with this many hyperedges not containing Fano as a subhypergraph.

To prove Theorem 5, we need a couple of auxiliary results.
Lemma 6. Let G be a multigraph with $n \geq 3$ vertices. If any three vertices induce a submultigraph with at most 10 edges, then $\|G\| \leq 3\binom{n}{2}+n-2$.

Proof. We prove the claim by induction on n. The claim clearly holds for $n=3$, and thus we can assume $n \geq 4$. If all edges have multiplicity at most 3 , then $\|G\| \leq 3\binom{n}{2}$. Otherwise, consider vertices u and v joined by an edge of multiplicity $m \geq 4$. The number of edges between $\{u, v\}$ and any other vertex is at most $10-m$ by the assumptions, and thus the number of edges between $\{u, v\}$ and the rest of the graph is at most $(10-m)(n-2)$. Hence, $\operatorname{deg} u+\operatorname{deg} v \leq(10-m)(n-2)+2 m$, and by symmetry we can assume $\operatorname{deg} v \leq(10-m)(n-2) / 2+m$. By the induction hypothesis, we
have $\|G-v\| \leq 3\binom{n-1}{2}+n-3$, and thus

$$
\begin{aligned}
\|G\| & \leq 3\binom{n-1}{2}+n-3+(10-m)(n-2) / 2+m \\
& \leq 3\binom{n-1}{2}+n+3(n-2)+1=3\binom{n}{2}+n-2 .
\end{aligned}
$$

A similar argument gives the following.
Lemma 7. Let G be a multigraph with $n \geq 4$ vertices. If any four vertices induce a submultigraph with at most 20 edges, then $\|G\| \leq 3\binom{n}{2}+(4 n-10) / 3$.

Proof. We prove the claim by induction on n. The claim clearly holds for $n=4$, and thus we can assume $n \geq 5$. If any three vertices induce a submultigraph with at most 10 edges, then the claim follows from Lemma 6. Hence, suppose that the submultigraph induced by $\{u, v, w\}$ has $m \geq 11$ edges. he number of edges between $\{u, v, w\}$ and any other vertex is at most $20-m$ by the assumptions, and thus $\operatorname{deg} u+\operatorname{deg} v+\operatorname{deg} w \leq(20-m)(n-$ $3)+2 m$. By symmetry, we can assume $\operatorname{deg} v \leq((20-m)(n-3)+2 m) / 3$. By the induction hypothesis, we have $\|G-v\| \leq 3\binom{n-1}{2}+4 n / 3-14 / 3$, and thus

$$
\begin{aligned}
\|G\| & \leq 3\binom{n-1}{2}+4 n / 3-14 / 3+((20-m)(n-3)+2 m) / 3 \\
& \leq 3\binom{n-1}{2}+13(n-23) / 3=3\binom{n}{2}+(4 n-10) / 3 .
\end{aligned}
$$

For a 3-uniform hypergraph G and a set $S \subseteq V(G)$, the link multigraph of S in G is the multigraph with vertex set $V(G) \backslash S$, where each pair $x y$ of vertices is an edge whose multiplicity is the number of vertices $z \in S$ such that $\{x, y, z\}$ is a hyperedge of G. For $z \in S$, let $L(z)$ denote the set of edges of this link graph such that the corresponding hyperedge contains S.

Lemma 8. Let G be a 3-uniform hypergraph and let S be a set of four vertices such that $G[S]$ is complete. Let L be the link multigraph of S in G. If some four vertices of L induce a submultigraph with at least 21 edges, then Fano $\subseteq G$.

Proof. Let $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Suppose $\left\|L\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]\right\| \geq 21$. For $i \in\{1,2,3\}$, let M_{i} be the perfect matching on $\left\{x_{1}, \ldots, x_{4}\right\}$ containing the edge $x_{1} x_{i+1}$. We can assume $\left|L\left(v_{1}\right)\right| \geq \ldots \geq\left|L\left(v_{4}\right)\right|$. Since $21 \leq$ $\left\|L\left[\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}\right]\right\|=\| L\left(v_{1}\right)\left|+\cdots+\left|L\left(v_{4}\right)\right|\right.$, we have $| L\left(v_{2}\right)\left|,\left|L\left(v_{3}\right)\right| \geq 5\right.$, and thus we can by symmetry assume $M_{2} \subseteq L\left(v_{2}\right)$ and $M_{3} \subseteq L\left(v_{3}\right)$. Moreover, we have $\left|L\left(v_{1}\right)\right| \geq 6$, and thus $M_{1} \subseteq L\left(v_{1}\right)$. Then the hyperedges $\left\{v_{i}, x, y\right\}$ for $i \in\{1,2,3\}$ and $x y \in M_{i}$ together with the hyperedge $\left\{v_{1}, v_{2}, v_{3}\right\}$ form Fano.

We are now ready to prove the asymptotic form of Theorem 5 .

Theorem 9.

$$
\overline{\mathrm{ex}}(\infty ; \text { Fano })=3 / 4
$$

Proof. Recall that Fano $\nsubseteq B_{n}^{(3)}$, and observe that $\lim _{n \rightarrow \infty} \frac{\left\|B_{n}^{(3)}\right\|}{\binom{n}{3}}=3 / 4$. Hence, $\overline{\operatorname{ex}}(\infty ;$ Fano $) \geq 3 / 4$.

We now aim to prove that $\overline{\mathrm{ex}}(\infty ;$ Fano $) \leq 3 / 4$. To this end, we need to prove that for every $\varepsilon>0$ and sufficiently large n, if G is a 3 -uniform n-vertex hypergraph with at least $(3 / 4+\varepsilon) n^{3} / 6$ hyperedges, then Fano \subseteq G. First, as long as G contains a vertex incident with less than $(3 / 4+$ $\varepsilon / 2) n^{2} / 2$ hyperedges, keep deleting such vertices. We end up with an $n_{0}-$ vertex hypergraph G_{0} of minimum degree at least $(3 / 4+\varepsilon / 2) n_{0}^{2} / 2$, and as usual, it is easy to argue that $n_{0}=\Omega\left(\varepsilon^{1 / 3} n\right)$.

Since $\left\|G_{0}\right\| \geq(3 / 4+\varepsilon / 2) n_{0}^{3} / 6$, Example 4 implies that $K_{4}^{(3)} \subseteq G_{0}$. Let S be the vertex set of this $K_{4}^{(3)}$ and L the corresponding link multigraph. Since G_{0} has minimum degree at least $(3 / 4+\varepsilon / 2) n_{0}^{2} / 2$, each vertex of S contributes at least $(3 / 4+\varepsilon / 2) n_{0}^{2} / 2-3 n_{0} \geq(3 / 4+\varepsilon / 4)\binom{n_{0}}{2}$, and thus $\|L\| \geq(3+\varepsilon)\binom{n_{0}}{2}$. By Lemma 7, this implies there exists a set of four vertices of L inducing more than 20 edges. By Lemma 8, this implies Fano $\subseteq G$.

Next, we need the corresponding stability result, showing that nearextremal graphs are close to $B_{n}^{(3)}$.

Theorem 10. For every $\varepsilon>0$, there exists $\gamma>0$ and n_{0} such that for every 3-uniform hypergraph G with $n \geq n_{0}$ vertices and at least $(3 / 4-\gamma) n^{3} / 6$ hyperedges, if Fano $\nsubseteq G$, then there exists a partition of $V(G)$ to parts A and B such that $\|G[A]\|+\|G[B]\| \leq \varepsilon n^{3}$.

The proof of Theorem 10 follows an idea similar to the one of the proof of Theorem 9, but is somewhat more lengthy; if you are interested, see [1, Theorem 1.2]. We now need one more simple claim. Let $\mu(G)$ denote the maximum size of a matching in a graph G.

Lemma 11. For every n-vertex graph G, we have $\|G\| \leq 2 \mu(G) n$.
Proof. Let M be a largest matching in G. Then every edge is incident with at least one vertex of $V(M)$ and $|V(M)|=2 \mu(G)$.

Next, let us prove the weaker variant of Theorem 5 for graphs of bounded minimum degree.

Lemma 12. There exists n_{0} such that the following holds. Let G be a 3uniform hypergraph with $n \geq n_{0}$ vertices and $\operatorname{ex}(n$; Fano) hyperedges. If Fano $\nsubseteq G$ and $\delta(G) \geq \delta\left(B_{n}^{(3)}\right)$, then $\|G\| \leq\left\|B_{n}^{(3)}\right\|$, with equality iff $G=B_{n}^{(3)}$.

Proof. Choose sufficiently small $\varepsilon>0$ and sufficiently large n_{0}. Let A and B form a partition of $V(G)$ minimizing $\|G[A]\|+\|G[B]\|$; by Theorem 10, we have $\|G[A]\|+\|G[B]\| \leq \varepsilon n^{3}$. Note that for $x \in A$, we have $\left|L(x) \cap\binom{A}{2}\right| \leq$ $\left|L(x) \cap\binom{B}{2}\right|$, as otherwise moving x to B would decrease the number of hyperedges within the parts. Symmetrically, $\left|L(y) \cap\binom{B}{2}\right| \leq\left|L(y) \cap\binom{A}{2}\right|$ for every $y \in B$.

Let q denote the number of triples intersecting both A and B that are not hyperedges of G. Let $\Delta=||A|-n / 2|=||B|-n / 2|$. Since $\delta(G) \geq \delta\left(B_{n}^{(3)}\right) \geq$ $(3 / 8-3 \varepsilon) n^{2}$, we have

$$
\begin{aligned}
(1 / 8-\varepsilon) n^{3} & \leq\|G\|=\binom{|A|}{2}|B|+\binom{|B|}{2}|A|-q+\|G[A]\|+\|G[B]\| \\
& \leq|A||B| n / 2-q+\varepsilon n^{3}=(1 / 8+\varepsilon) n^{3}-\Delta^{2} n / 2-q .
\end{aligned}
$$

Hence, we have $q \leq 2 \varepsilon n^{3}$ and $\Delta \leq 2 \varepsilon^{1 / 2} n$.
Suppose next that there exists $x \in A$ such that $\left|L(x) \cap\binom{A}{2}\right|>4 \varepsilon^{1 / 3} n^{2}$, and thus also $\left|L(x) \cap\binom{B}{2}\right|>4 \varepsilon^{1 / 3} n^{2}$. By Lemma 11, there exist matchings $M_{A} \subseteq L(x) \cap\binom{A}{2}$ and $M_{B} \subseteq L(x) \cap\binom{B}{2}$ of size at least $2 \varepsilon^{1 / 3} n$. If there existed an edge $a_{1} a_{2} \in M_{A}$ and distinct edges $b_{1} b_{2}, c_{1} c_{2} \in M_{B}$ such that $\left\{a_{i}, b_{j}, c_{j}\right\} \in E(G)$ for all $i, j, k \in\{1,2\}$, then we would have Fano $\subseteq G$. Hence, this is not the case, and thus for each edge of M_{A} and a pair of distinct edges of M_{B}, there exists a non-hyperedge of G intersecting all of them. Consequently, $q \geq\left|M_{A}\right|\binom{\left|M_{B}\right|}{2} \geq 8 \varepsilon n^{3} / 3$, which is a contradiction.

Therefore, we have $\left|L(x) \cap\binom{A}{2}\right| \leq 4 \varepsilon^{1 / 3} n^{2}$ for every $x \in A$, and symmetrically, $\left|L(y) \cap\binom{B}{2}\right| \leq 4 \varepsilon^{1 / 3} n^{2}$ for every $y \in B$. Suppose now that there exists
a hyperedge $\left\{x_{1}, x_{2}, x_{3}\right\} \in E(G[A])$. For $i \in\{1,2,3\}$, we have

$$
\begin{aligned}
\left|L\left(x_{i}\right) \cap\binom{B}{2}\right| & \geq \operatorname{deg} x-\left|L(x) \cap\binom{A}{2}\right|-|A||B| \\
& \geq(3 / 8-\varepsilon) n^{2}-4 \varepsilon^{1 / 3} n^{2}-n^{2} / 4+\Delta^{2} \\
& \geq\left(1 / 8-9 \varepsilon^{1 / 3}\right) n^{2} .
\end{aligned}
$$

Since $\binom{|B|}{2} \leq(n / 2+\Delta)^{2} / 2 \leq\left(1 / 8+2 \varepsilon^{1 / 2}\right) n^{2}, L\left(x_{i}\right)$ has at most $11 \varepsilon^{1 / 3} n^{2}$ non-edges in $\binom{B}{2}$. Consequently, all but at most $33 \varepsilon^{1 / 3} n^{2}$ pairs of vertices in $\binom{B}{2}$ are joined by a triple edge in $\left(L\left(x_{1}\right) \cup L\left(x_{2}\right) \cup L\left(x_{3}\right)\right) \cap\binom{B}{2}$. By Turán's theorem, there exist four vertices $y_{1}, \ldots, y_{4} \in B$ such that any pair of them is joined by a triple edge in $L\left(x_{1}\right) \cup L\left(x_{2}\right) \cup L\left(x_{3}\right)$. However, this implies Fano $\subseteq G$, which is a contradiction.

Therefore, $E(G[A])=\emptyset$, and by symmetry, $E(G[B])=\emptyset$. It follows that $\|G\| \leq\left\|B_{n}^{(3)}\right\|$, with equality only if $G=B_{n}^{(3)}$.

We are now ready to finish the argument.
Proof of Theorem 5. Let $n_{1}=8 n_{0}^{3}$, where n_{0} is the constant from Lemma 12. For a 3-uniform hypergraph H, let $m(H)=\|H\|-\left\|B_{|H|}^{(3)}\right\|$. Let G be a 3uniform hypergraph with $n \geq n_{1}$ vertices and ex $(n$; Fano) hyperedges such that Fano $\nsubseteq G$. Since Fano $\nsubseteq B_{n}^{(3)}$, we have $m(G) \geq 0$.

Let $G_{0}=G$. For $i \geq 0$, as long as G_{i} contains a vertex v of degree less than $\delta\left(B_{\left|G_{i}\right|}^{(3)}\right)$, we let $G_{i+1}=G_{i}-v$. Note that $B_{\left|G_{i}\right|-1}^{(3)}$ is obtained from $B_{\left|G_{i}\right|}^{(3)}$ by deleting a vertex of minimum degree, and thus $m\left(G_{i+1}\right) \geq m\left(G_{i}\right)+1$. Let G_{k} be the last member of this sequence; we have $m\left(G_{k}\right) \geq k$. On the other hand, $m\left(G_{k}\right) \leq\left\|G_{k}\right\| \leq(n-k)^{3}$, and thus $k+k^{1 / 3} \leq n$ and $k \leq n-n^{1 / 3} / 2$. Consequently, $\left|G_{k}\right|=n-k \geq n^{1 / 3} / 2 \geq n_{0}$.

By the choice of G_{k}, we have $\delta\left(G_{k}\right) \geq \delta\left(B_{\left|G_{k}\right|}^{(3)}\right)$, and thus Lemma 12 implies $m\left(G_{k}\right)=0$ (and thus $k=0$ and $G_{k}=G$) and $G_{k}=B_{n}^{(3)}$.

References

[1] Peter Keevash, Benny Sudakov: The Turán number of the Fano plane, Combinatorica 25 (2005), 561-574.

