Applications of stability

Zdeněk Dvořák

November 12, 2020

From the last lecture:
Theorem 1. Let F be a graph of chromatic number $r+1$, where $r \geq 1$. For every $\varepsilon>0$ there exists $\beta>0$ such that for sufficiently large n, if G is an n vertex graph with at least $(1-1 / r-\beta) n^{2} / 2$ edges and $F \nsubseteq G$, then there exists a partition of $V(G)$ to parts A_{1}, \ldots, A_{r} satisfying

$$
\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\| \leq \varepsilon n^{2} .
$$

Corollary 2. Let F be a graph of chromatic number $r+1$, where $r \geq 1$, and let γ be a positive real number. Let G be an n-vertex graph with $\operatorname{ex}(n ; F)$ edges such that $F \nsubseteq G$. If n is sufficiently large, then G has minimum degree at least $(1-1 / r-\gamma) n$.

Observation 3. Let G be the complete r-partite n-vertex graph with parts A_{1}, \ldots, A_{r}. Then

$$
\|G\|=\left(1-1 / r-\sum_{i=1}^{r}\left(1 / r-\left|A_{i}\right| / n\right)^{2}\right) \frac{n^{2}}{2} .
$$

Corollary 4. Let r be a positive integer. Let G be an n-vertex graph with at least $(1-1 / r-\varepsilon) n^{2} / 2$ edges, and let A_{1}, \ldots, A_{r} be a partition of $V(G)$ to parts such that

$$
\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\| \leq \varepsilon n^{2}
$$

Then $\left|A_{i}-n / r\right| \leq \sqrt{3} n$ for every i and G contains at most $\frac{3}{2} \varepsilon n^{2}$ non-edges with ends in distinct parts.

Proof. Suppose G contains μn^{2} non-edges with ends in different parts. By Observation 3 we have

$$
\begin{aligned}
(1-1 / r-\varepsilon) \frac{n^{2}}{2} & \leq\|G\| \leq \varepsilon n^{2}-\mu n^{2}+\left(1-1 / r-\sum_{i=1}^{r}\left(1 / r-\left|A_{i}\right| / n\right)^{2}\right) \frac{n^{2}}{2} \\
& =(1-1 / r-\varepsilon) \frac{n^{2}}{2}+\left(3 \varepsilon-2 \mu-\sum_{i=1}^{r}\left(1 / r-\left|A_{i}\right| / n\right)^{2}\right) \frac{n^{2}}{2}
\end{aligned}
$$

and thus

$$
2 \mu+\sum_{i=1}^{r}\left(1 / r-\left|A_{i}\right| / n\right)^{2} \leq 3 \varepsilon
$$

This implies the inequalities from the statement.
An edge $e \in E(F)$ is critical if $\chi(F-e)<\chi(F)$. For example, all edges of an odd cycle are critical.
Theorem 5. Let F be a graph of chromatic number $r+1$, where $r \geq 1$. If F has a critical edge, then for sufficiently large n we have $\operatorname{ex}(n ; F)=t_{r}(n)$ and $T_{r}(n)$ is the only n-vertex graph with ex $(n ; F)$ edges not containing F as a subgraph.

Proof. Let $k=|F|, \beta=\frac{1}{3 k r^{2}}$ and $\varepsilon=\beta^{2} / 3$. Let G be an n-vertex such that $F \nsubseteq G$ and $\|G\|=\operatorname{ex}(n ; F)$. Let A_{1}, \ldots, A_{r} be a partition of $V(G)$ such that

$$
m=\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\|
$$

is minimum. Let e be a critical edge of F and let w be a vertex of F incident with e.

By Theorem 1 and Corollaries 2 and 4 , for sufficiently large n we have that $m \leq \varepsilon n^{2}$, the minimum degree of G is at least $(1-1 / r-\varepsilon) n,\left|A_{i}-n / r\right| \leq \varepsilon n$ for each i, and G contains at most εn^{2} non-edges with ends in different parts.

Suppose first that there exists i such that $\Delta\left(G\left[A_{i}\right]\right) \geq \beta n$. Let $v \in A_{i}$ be a vertex with at least βn neighbors in A_{i}. The minimality of m implies that moving v to any other part does not decrease the number of edges within the parts, and thus v has at least βn neighbors in each part. Let N_{1}, \ldots, N_{r} be sets of neighbors of v in A_{1}, \ldots, A_{r} such that $\left|N_{1}\right|=\ldots=\left|N_{r}\right| \geq \beta n$ and let $s=\left|N_{1} \cup \ldots \cup N_{r}\right| \geq \beta r n$. The subgraph $G\left[N_{1} \ldots N_{r}\right]$ has at least

$$
\begin{aligned}
\left(1-\frac{1}{r}\right) \frac{s^{2}}{2}-\varepsilon n^{2} & \geq\left(1-\frac{1}{r}\right) \frac{s^{2}}{2}-\frac{\varepsilon}{\beta^{2} r^{2}} s^{2} \\
& =\left(1-\frac{1}{r}-\frac{2 \varepsilon}{\beta^{2} r^{2}}\right) \frac{s^{2}}{2} \geq\left(1-\frac{1}{r-1}+\varepsilon\right) \frac{s^{2}}{2}
\end{aligned}
$$

edges. The chromatic number of $F-w$ is r, and for sufficiently large n (and thus also large s), Erdős-Stone theorem implies $F-w \subseteq G\left[N_{1} \ldots N_{r}\right]$. Using v to represent w gives $F \subseteq G$, which is a contradiction.

Therefore, we can assume $\Delta\left(G\left[A_{i}\right]\right) \leq \beta n$ for every i. Consider a vertex $v \in A_{i}$. Since $\Delta\left(G\left[A_{i}\right]\right) \leq \beta n$ and $\left|A_{i}\right| \geq n / r-\varepsilon n, v$ has at least $n / r-(\varepsilon+\beta) n$ non-neighbors in A_{i}. Since $\operatorname{deg}(v) \geq(1-1 / r-\varepsilon) n$, v has at most $(2 \varepsilon+\beta) n$ non-neighbors in any other part.

Suppose now that any of the subgraphs $G\left[A_{i}\right]$ (say for $i=1$) has at least one edge e^{\prime}. Select $B_{1} \subset A_{1}$ of size k such that both ends of e^{\prime} belong to B_{1} arbitrarily. For $j=2, \ldots, r$, choose $B_{j} \subset A_{j}$ of size k so that every vertex of B_{j} is adjacent to all vertices of $B_{1} \cup \ldots \cup B_{j-1}$; this is possible, since there are at most $k(r-1)(2 \varepsilon+\beta) n \leq n / r-\varepsilon n-k \leq\left|A_{j}\right|-k$ non-edges between $B_{1} \cup \ldots \cup B_{j-1}$ and A_{j}. Then $G\left[B_{1} \cup \ldots \cup B_{r}\right]$ is a complete r-partitite graph with parts of size k plus one edge, and thus it contains F as a subgraph, which is a contradiction.

It follows that G is an r-partite graph with parts A_{1}, \ldots, A_{r}. No r-partite graph contains F as as subgraph, and since G has the largest number of edges among the graphs with this property, we conclude $G=T_{r}(n)$.

Next, let us consider the extremal number for the graph $k K_{r+1}$, that is, k disjoint cliques of size $r+1$.

Theorem 6. Let G be an n-vertex graph such that $k K_{r+1} \nsubseteq G$ and $\|G\|=$ $\operatorname{ex}\left(n ; k K_{r+1}\right)$. For sufficiently large n, G is the graph obtained from $T_{r}(n-$ $k+1$) by adding $k-1$ universal vertices, and thus

$$
\operatorname{ex}\left(n ; k K_{r+1}\right)=t_{r}(n-k+1)+(k-1)(n-k+1)+\binom{k-1}{2} .
$$

Proof. Let $\beta=\frac{1}{3 r^{2}}$ a $\varepsilon=\beta^{2} / 8$. Let A_{1}, \ldots, A_{r} be a partition of $V(G)$ such that

$$
m=\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\|
$$

is minimum. By Theorem 1 and Corollaries 2 and 4 , for sufficiently large n we have $m \leq \varepsilon n^{2}, G$ has minimum degree at least $(1-1 / r-\varepsilon) n,\left|A_{i}-n / r\right| \leq \varepsilon n$ for each i, and G contains at most εn^{2} non-edges with ends in different parts. For every $v \in V(G)$, let $i(v)$ denote the index i such that $v \in A_{i}$.

Let us start with an observation that we will use several times later. Consider any disjoint sets $U, Z \subseteq V(G)$ such that $|U| \leq k,|Z| \leq k(r+1)$ and every vertex $u \in U$ has at least βn neighbors in $A_{i(u)}$. The minimality of m implies that u has at least βn neighbors in each part. Therefore, we can
choose pairwise disjoint sets $N_{u, t} \subseteq A_{t} \backslash(U \cup Z)$ for $u \in U$ and $1 \leq t \leq r$ such that u is adjacent to all vertices of $N_{u, t}$ and all these parts have the same size greater or equal to $(\beta n-k(r+2)) / k \geq \beta n / 2$. Let $s=\left|N_{u, 1} \cup \ldots \cup N_{u, r}\right| \geq$ $\beta r n / 2$. The subgraph $G\left[N_{u, 1} \ldots N_{u, r}\right]$ has at least

$$
\begin{aligned}
\left(1-\frac{1}{r}\right) \frac{s^{2}}{2}-\varepsilon n^{2} & \geq\left(1-\frac{1}{r}\right) \frac{s^{2}}{2}-\frac{4 \varepsilon}{\beta^{2} r^{2}} s^{2} \\
& =\left(1-\frac{1}{r}-\frac{8 \varepsilon}{\beta^{2} r^{2}}\right) \frac{s^{2}}{2}>\left(1-\frac{1}{r-1}\right) \frac{s^{2}}{2}
\end{aligned}
$$

edges. Turán's theorem implies $K_{r} \subseteq G\left[N_{u, 1} \ldots N_{u, r}\right]$. Adding u gives a clique of size $r+1$ in G, and for disjoint $u \in U$ these cliques are pairwise disjoint. Moreover, these cliques are also disjoint from Z.

Let $U \subseteq V(G)$ be the set of all vertices $u \in V(G)$ such that u has at least βn neighbors in $A_{i(u)}$. Since $k K_{r+1} \nsubseteq G$, the previous paragraph implies $|U| \leq k-1$. Every vertex $v \in V(G) \backslash U$ has at most βn neighbors in $A_{i(v)}$. Since $\left|A_{i(v)}\right| \geq n / r-\varepsilon n, v$ has at least $n / r-(\varepsilon+\beta) n$ non-neighbors in $A_{i(v)}$. Since $\operatorname{deg}(v) \geq(1-1 / r-\varepsilon) n, v$ has at most $(2 \varepsilon+\beta) n$ non-neighbors in any other parts.

Suppose now that for some i (say $i=1$), the graph $G\left[A_{i} \backslash U\right]$ contains a matching M of size $k-|U|$. For $j=2, \ldots, r$, from $A_{j} \backslash U$ choose for each edge $e \in M$ a vertex $v_{e, j}$ such that $v_{e, j}$ is adjacent to both ends of e and to the vertices $v_{e, 2}, \ldots, v_{e, j-1}$, and moreover the vertices $v_{e, j}$ and $v_{e^{\prime}, j}$ for distinct edges $e, e^{\prime} \in E(M)$ are distinct. This is possible, since $r(2 \varepsilon+\beta) n+k \leq$ $n / r-\varepsilon n \leq\left|A_{j}\right|$ for every j. This gives $k-|U|$ disjoint cliques of size $r+1$. Now we apply the claim from the second paragraph with Z being the union of these cliques. This gives $|U|$ additional cliques of size K_{r+1} disjoint from Z, and thus $k K_{r+1} \subseteq G$, a contradiction.

Therefore, every matching in $G\left[A_{i} \backslash U\right]$ for $i=1, \ldots, r$ has size at most $k-1-|U|$. Let X be a set such that $A_{i} \cap X$ is the vertex set of a largest matching in $G\left[A_{i} \backslash U\right]$ for every i. Then $|X| \leq 2(k-1-|U|) r$ and $A_{i} \backslash(U \cup X)$ is an independent set in G for every i. Consequently

$$
\begin{aligned}
\|G\| & \leq t_{r}(n-|U|)+2(k-1-|U|) r \beta n+|U|(n-|U|)+\binom{|U|}{2} \\
& \leq t_{r}(n-k+1)+(k-1)(n-k+1)+\binom{k-1}{2}
\end{aligned}
$$

where the equality holds iff $|U|=k-1, G-U$ is $T_{r}(n-k+1)$ and each vertex of U is adjacent to all other vertices of G.

