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From the last lecture:

Theorem 1. Let F be a graph of chromatic number r+ 1, where r ≥ 1. For
every ε > 0 there exists β > 0 such that for sufficiently large n, if G is an
n vertex graph with at least (1− 1/r − β)n2/2 edges and F 6⊆ G, then there
exists a partition of V (G) to parts A1, . . . , Ar satisfying

r∑
i=1

‖G[Ai]‖ ≤ εn2.

Corollary 2. Let F be a graph of chromatic number r + 1, where r ≥ 1,
and let γ be a positive real number. Let G be an n-vertex graph with ex(n;F )
edges such that F 6⊆ G. If n is sufficiently large, then G has minimum degree
at least (1− 1/r − γ)n.

Observation 3. Let G be the complete r-partite n-vertex graph with parts
A1, . . . , Ar. Then

‖G‖ =
(

1− 1/r −
r∑

i=1

(1/r − |Ai|/n)2
)n2

2
.

Corollary 4. Let r be a positive integer. Let G be an n-vertex graph with at
least (1 − 1/r − ε)n2/2 edges, and let A1, . . . , Ar be a partition of V (G) to
parts such that

r∑
i=1

‖G[Ai]‖ ≤ εn2.

Then |Ai − n/r| ≤
√

3εn for every i and G contains at most 3
2
εn2 non-edges

with ends in distinct parts.
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Proof. Suppose G contains µn2 non-edges with ends in different parts. By
Observation 3 we have

(1− 1/r − ε)n
2

2
≤ ‖G‖ ≤ εn2 − µn2 +

(
1− 1/r −

r∑
i=1

(1/r − |Ai|/n)2
)n2

2

= (1− 1/r − ε)n
2

2
+
(

3ε− 2µ−
r∑

i=1

(1/r − |Ai|/n)2
)n2

2
,

and thus

2µ+
r∑

i=1

(1/r − |Ai|/n)2 ≤ 3ε.

This implies the inequalities from the statement.

An edge e ∈ E(F ) is critical if χ(F − e) < χ(F ). For example, all edges
of an odd cycle are critical.

Theorem 5. Let F be a graph of chromatic number r + 1, where r ≥ 1. If
F has a critical edge, then for sufficiently large n we have ex(n;F ) = tr(n)
and Tr(n) is the only n-vertex graph with ex(n;F ) edges not containing F as
a subgraph.

Proof. Let k = |F |, β = 1
3kr2

and ε = β2/3. Let G be an n-vertex such that
F 6⊆ G and ‖G‖ = ex(n;F ). Let A1, . . . , Ar be a partition of V (G) such
that

m =
r∑

i=1

‖G[Ai]‖

is minimum. Let e be a critical edge of F and let w be a vertex of F incident
with e.

By Theorem 1 and Corollaries 2 and 4, for sufficiently large n we have that
m ≤ εn2, the minimum degree of G is at least (1−1/r−ε)n, |Ai−n/r| ≤ εn
for each i, and G contains at most εn2 non-edges with ends in different parts.

Suppose first that there exists i such that ∆(G[Ai]) ≥ βn. Let v ∈ Ai be
a vertex with at least βn neighbors in Ai. The minimality of m implies that
moving v to any other part does not decrease the number of edges within the
parts, and thus v has at least βn neighbors in each part. Let N1, . . . , Nr be
sets of neighbors of v in A1, . . . , Ar such that |N1| = . . . = |Nr| ≥ βn and
let s = |N1 ∪ . . . ∪Nr| ≥ βrn. The subgraph G[N1 . . . Nr] has at least(

1− 1

r

)s2
2
− εn2 ≥

(
1− 1

r

)s2
2
− ε

β2r2
s2

=
(
1− 1

r
− 2ε

β2r2
)s2

2
≥
(
1− 1

r − 1
+ ε
)s2

2
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edges. The chromatic number of F −w is r, and for sufficiently large n (and
thus also large s), Erdős-Stone theorem implies F −w ⊆ G[N1 . . . Nr]. Using
v to represent w gives F ⊆ G, which is a contradiction.

Therefore, we can assume ∆(G[Ai]) ≤ βn for every i. Consider a vertex
v ∈ Ai. Since ∆(G[Ai]) ≤ βn and |Ai| ≥ n/r−εn, v has at least n/r−(ε+β)n
non-neighbors in Ai. Since deg(v) ≥ (1− 1/r− ε)n, v has at most (2ε+ β)n
non-neighbors in any other part.

Suppose now that any of the subgraphs G[Ai] (say for i = 1) has at least
one edge e′. Select B1 ⊂ A1 of size k such that both ends of e′ belong to B1

arbitrarily. For j = 2, . . . , r, choose Bj ⊂ Aj of size k so that every vertex of
Bj is adjacent to all vertices of B1 ∪ . . . ∪ Bj−1; this is possible, since there
are at most k(r− 1)(2ε+ β)n ≤ n/r− εn− k ≤ |Aj| − k non-edges between
B1∪ . . .∪Bj−1 and Aj. Then G[B1∪ . . .∪Br] is a complete r-partitite graph
with parts of size k plus one edge, and thus it contains F as a subgraph,
which is a contradiction.

It follows that G is an r-partite graph with parts A1, . . . , Ar. No r-partite
graph contains F as as subgraph, and since G has the largest number of edges
among the graphs with this property, we conclude G = Tr(n).

Next, let us consider the extremal number for the graph kKr+1, that is,
k disjoint cliques of size r + 1.

Theorem 6. Let G be an n-vertex graph such that kKr+1 6⊆ G and ‖G‖ =
ex(n; kKr+1). For sufficiently large n, G is the graph obtained from Tr(n −
k + 1) by adding k − 1 universal vertices, and thus

ex(n; kKr+1) = tr(n− k + 1) + (k − 1)(n− k + 1) +

(
k − 1

2

)
.

Proof. Let β = 1
3r2

a ε = β2/8. Let A1, . . . , Ar be a partition of V (G) such
that

m =
r∑

i=1

‖G[Ai]‖

is minimum. By Theorem 1 and Corollaries 2 and 4, for sufficiently large n we
have m ≤ εn2, G has minimum degree at least (1−1/r−ε)n, |Ai−n/r| ≤ εn
for each i, and G contains at most εn2 non-edges with ends in different parts.
For every v ∈ V (G), let i(v) denote the index i such that v ∈ Ai.

Let us start with an observation that we will use several times later.
Consider any disjoint sets U,Z ⊆ V (G) such that |U | ≤ k, |Z| ≤ k(r + 1)
and every vertex u ∈ U has at least βn neighbors in Ai(u). The minimality of
m implies that u has at least βn neighbors in each part. Therefore, we can
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choose pairwise disjoint sets Nu,t ⊆ At\(U ∪Z) for u ∈ U and 1 ≤ t ≤ r such
that u is adjacent to all vertices of Nu,t and all these parts have the same size
greater or equal to (βn− k(r + 2))/k ≥ βn/2. Let s = |Nu,1 ∪ . . . ∪Nu,r| ≥
βrn/2. The subgraph G[Nu,1 . . . Nu,r] has at least

(
1− 1

r

)s2
2
− εn2 ≥

(
1− 1

r

)s2
2
− 4ε

β2r2
s2

=
(
1− 1

r
− 8ε

β2r2
)s2

2
>
(
1− 1

r − 1

)s2
2

edges. Turán’s theorem implies Kr ⊆ G[Nu,1 . . . Nu,r]. Adding u gives a
clique of size r + 1 in G, and for disjoint u ∈ U these cliques are pairwise
disjoint. Moreover, these cliques are also disjoint from Z.

Let U ⊆ V (G) be the set of all vertices u ∈ V (G) such that u has at least
βn neighbors in Ai(u). Since kKr+1 6⊆ G, the previous paragraph implies
|U | ≤ k − 1. Every vertex v ∈ V (G) \ U has at most βn neighbors in Ai(v).
Since |Ai(v)| ≥ n/r− εn, v has at least n/r− (ε+β)n non-neighbors in Ai(v).
Since deg(v) ≥ (1− 1/r− ε)n, v has at most (2ε+ β)n non-neighbors in any
other parts.

Suppose now that for some i (say i = 1), the graph G[Ai \ U ] contains a
matching M of size k−|U |. For j = 2, . . . , r, from Aj \U choose for each edge
e ∈ M a vertex ve,j such that ve,j is adjacent to both ends of e and to the
vertices ve,2, . . . , ve,j−1, and moreover the vertices ve,j and ve′,j for distinct
edges e, e′ ∈ E(M) are distinct. This is possible, since r(2ε + β)n + k ≤
n/r − εn ≤ |Aj| for every j. This gives k − |U | disjoint cliques of size r + 1.
Now we apply the claim from the second paragraph with Z being the union
of these cliques. This gives |U | additional cliques of size Kr+1 disjoint from
Z, and thus kKr+1 ⊆ G, a contradiction.

Therefore, every matching in G[Ai \ U ] for i = 1, . . . , r has size at most
k − 1 − |U |. Let X be a set such that Ai ∩ X is the vertex set of a largest
matching in G[Ai\U ] for every i. Then |X| ≤ 2(k−1−|U |)r and Ai\(U∪X)
is an independent set in G for every i. Consequently

‖G‖ ≤ tr(n− |U |) + 2(k − 1− |U |)rβn+ |U |(n− |U |) +

(
|U |
2

)
≤ tr(n− k + 1) + (k − 1)(n− k + 1) +

(
k − 1

2

)
,

where the equality holds iff |U | = k − 1, G − U is Tr(n − k + 1) and each
vertex of U is adjacent to all other vertices of G.
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