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From the last lecture:

Theorem 1. Let F' be a graph of chromatic number r + 1, where r > 1. For
every € > 0 there exists B > 0 such that for sufficiently large n, if G is an
n vertex graph with at least (1 — 1/r — B)n?*/2 edges and F € G, then there
exists a partition of V(G) to parts Ay, ..., A, satisfying

Corollary 2. Let F' be a graph of chromatic number r + 1, where r > 1,
and let y be a positive real number. Let G be an n-vertex graph with ex(n; F)
edges such that F' € G. If n is sufficiently large, then G has minimum degree
at least (1 —1/r — ~)n.

Observation 3. Let G be the complete r-partite n-vertex graph with parts
Ay, ..., A.. Then
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Corollary 4. Let r be a positive integer. Let G be an n-vertex graph with at
least (1 —1/r —€)n?/2 edges, and let Ay, ..., A, be a partition of V(G) to
parts such that
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Then |A; — n/r| < V/3en for every i and G contains at most 3en® non-edges
with ends in distinct parts.



Proof. Suppose G contains pn? non-edges with ends in different parts. By
Observation 3 we have
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This implies the inequalities from the statement. O

An edge e € E(F) is critical if x(F —e) < x(F). For example, all edges
of an odd cycle are critical.

Theorem 5. Let F' be a graph of chromatic number r + 1, where r > 1. If
F has a critical edge, then for sufficiently large n we have ex(n; F') = t,.(n)
and T,(n) is the only n-vertex graph with ex(n; F') edges not containing F' as
a subgraph.

Proof. Let k = |F|, 8 = 51 and € = #?/3. Let G be an n-vertex such that

F ¢ G and ||G|| = ex(n; F'). Let Ay, ..., A, be a partition of V(G) such
that
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is minimum. Let e be a critical edge of F' and let w be a vertex of F' incident
with e.

By Theorem 1 and Corollaries 2 and 4, for sufficiently large n we have that
m < en?, the minimum degree of G is at least (1—1/r —¢)n, |A;—n/r| <en
for each 7, and G contains at most en? non-edges with ends in different parts.

Suppose first that there exists i such that A(G[4;]) > fn. Let v € A; be
a vertex with at least Sn neighbors in A;. The minimality of m implies that
moving v to any other part does not decrease the number of edges within the

parts, and thus v has at least Sn neighbors in each part. Let Ny, ..., N, be
sets of neighbors of v in Ay, ..., A, such that |[N;| = ... = |N,| > fn and
let s =|NyU...UN,| > frn. The subgraph G[N; ... N,| has at least
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edges. The chromatic number of F' — w is r, and for sufficiently large n (and
thus also large s), Erdés-Stone theorem implies F'—w C G[N; ... N,]. Using
v to represent w gives F' C (G, which is a contradiction.

Therefore, we can assume A(G[A;]) < fBn for every i. Consider a vertex
v € A;. Since A(G[A;]) < Bnand |A;| > n/r—en, v has at least n/r—(e+0)n
non-neighbors in A;. Since deg(v) > (1 —1/r —e)n, v has at most (2¢ + 5)n
non-neighbors in any other part.

Suppose now that any of the subgraphs G[A;] (say for ¢ = 1) has at least
one edge €'. Select By C Ay of size k such that both ends of ¢’ belong to B;
arbitrarily. For j = 2,...,r, choose B; C A; of size k so that every vertex of
B; is adjacent to all vertices of By U...U Bj_y; this is possible, since there
are at most k(r —1)(2e + f)n < n/r —en —k < |A;| — k non-edges between
ByU...UBj_1 and A;. Then G[B;U...UB,] is a complete r-partitite graph
with parts of size k plus one edge, and thus it contains F' as a subgraph,
which is a contradiction.

It follows that G is an r-partite graph with parts Ay, ..., A,. No r-partite
graph contains F' as as subgraph, and since G has the largest number of edges
among the graphs with this property, we conclude G = T,.(n). ]

Next, let us consider the extremal number for the graph kK, ., that is,
k disjoint cliques of size r + 1.

Theorem 6. Let G be an n-vertex graph such that kK,1 € G and |G| =
ex(n; kK,y1). For sufficiently large n, G is the graph obtained from T,.(n —
k+1) by adding k — 1 universal vertices, and thus

ex(ns kK o) = to(n—k + 1) + (k= 1)(n—k+1) + (k;1>

Proof. Let 8 = 555 ae = 3%/8. Let Ay, ..., A, be a partition of V(G) such
that
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is minimum. By Theorem 1 and Corollaries 2 and 4, for sufficiently large n we
have m < en?, G has minimum degree at least (1—1/r—&)n, |4;—n/r| <en
for each i, and G contains at most en? non-edges with ends in different parts.
For every v € V(G), let i(v) denote the index i such that v € A;.

Let us start with an observation that we will use several times later.
Consider any disjoint sets U, Z C V(G) such that |U| < k, |Z] < k(r + 1)
and every vertex u € U has at least 3n neighbors in A;(,). The minimality of
m implies that u has at least fn neighbors in each part. Therefore, we can



choose pairwise disjoint sets N, ; C A\ (UUZ) for u € U and 1 < ¢ < r such
that u is adjacent to all vertices of N, ; and all these parts have the same size
greater or equal to (fn — k(r +2))/k > pn/2. Let s = [N,; U...UN,,| >
prn/2. The subgraph G[N, ;... N,,] has at least
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edges. Turan’s theorem implies K, C G[Ny;...N,,|. Adding u gives a
clique of size r + 1 in G, and for disjoint © € U these cliques are pairwise
disjoint. Moreover, these cliques are also disjoint from Z.

Let U C V(G) be the set of all vertices u € V(G) such that u has at least
pn neighbors in Aj;yy. Since kK, ; € G, the previous paragraph implies
\U| <k — 1. Every vertex v € V(G) \ U has at most n neighbors in Aj;,.
Since |A;y)| > n/r —en, v has at least n/r — (¢ + §)n non-neighbors in A;,).
Since deg(v) > (1 —1/r —e)n, v has at most (2¢ + )n non-neighbors in any
other parts.

Suppose now that for some i (say ¢ = 1), the graph G[A; \ U] contains a
matching M of size k—|U|. For j = 2,...,r, from A;\U choose for each edge
e € M a vertex v.; such that v, ; is adjacent to both ends of e and to the
vertices ey, ...,V j—1, and moreover the vertices v.; and v ; for distinct
edges e, e’ € E(M) are distinct. This is possible, since r(2e + f)n + k <
n/r —en < |A;| for every j. This gives k — |U| disjoint cliques of size r + 1.
Now we apply the claim from the second paragraph with Z being the union
of these cliques. This gives |U| additional cliques of size K, disjoint from
7, and thus kK, C G, a contradiction.

Therefore, every matching in G[A; \ U] for ¢ = 1,...,r has size at most
k—1—|U|. Let X be a set such that A; N X is the vertex set of a largest
matching in G[A;\ U] for every i. Then |X| <2(k—1—|U|)r and A;\(UUX)

is an independent set in GG for every i. Consequently

|G|l < t-(n—|U|)+2(k—1—|U|)rBn+ |U|(n— |U|) + (|(2]|)

gtr(n—k:+1)+(k:—1)(n—k+1)+(kgl),

where the equality holds iff |[U| = k—1, G — U is T,(n — k + 1) and each
vertex of U is adjacent to all other vertices of G. [



