Applications of stability

Zdeněk Dvořák

November 12, 2020

From the last lecture:

Theorem 1. Let F be a graph of chromatic number r + 1, where $r \ge 1$. For every $\varepsilon > 0$ there exists $\beta > 0$ such that for sufficiently large n, if G is an n vertex graph with at least $(1 - 1/r - \beta)n^2/2$ edges and $F \not\subseteq G$, then there exists a partition of V(G) to parts A_1, \ldots, A_r satisfying

$$\sum_{i=1}^{\prime} \|G[A_i]\| \le \varepsilon n^2.$$

Corollary 2. Let F be a graph of chromatic number r + 1, where $r \ge 1$, and let γ be a positive real number. Let G be an n-vertex graph with ex(n; F)edges such that $F \not\subseteq G$. If n is sufficiently large, then G has minimum degree at least $(1 - 1/r - \gamma)n$.

Observation 3. Let G be the complete r-partite n-vertex graph with parts A_1, \ldots, A_r . Then

$$||G|| = \left(1 - \frac{1}{r} - \sum_{i=1}^{r} (\frac{1}{r} - |A_i|/n)^2\right) \frac{n^2}{2}.$$

Corollary 4. Let r be a positive integer. Let G be an n-vertex graph with at least $(1 - 1/r - \varepsilon)n^2/2$ edges, and let A_1, \ldots, A_r be a partition of V(G) to parts such that

$$\sum_{i=1}^{r} \|G[A_i]\| \le \varepsilon n^2.$$

Then $|A_i - n/r| \leq \sqrt{3\varepsilon}n$ for every *i* and *G* contains at most $\frac{3}{2}\varepsilon n^2$ non-edges with ends in distinct parts.

Proof. Suppose G contains μn^2 non-edges with ends in different parts. By Observation 3 we have

$$(1 - 1/r - \varepsilon)\frac{n^2}{2} \le ||G|| \le \varepsilon n^2 - \mu n^2 + \left(1 - 1/r - \sum_{i=1}^r (1/r - |A_i|/n)^2\right)\frac{n^2}{2}$$
$$= (1 - 1/r - \varepsilon)\frac{n^2}{2} + \left(3\varepsilon - 2\mu - \sum_{i=1}^r (1/r - |A_i|/n)^2\right)\frac{n^2}{2},$$

and thus

$$2\mu + \sum_{i=1}^{r} (1/r - |A_i|/n)^2 \le 3\varepsilon.$$

This implies the inequalities from the statement.

An edge $e \in E(F)$ is <u>critical</u> if $\chi(F - e) < \chi(F)$. For example, all edges of an odd cycle are critical.

Theorem 5. Let F be a graph of chromatic number r + 1, where $r \ge 1$. If F has a critical edge, then for sufficiently large n we have $ex(n; F) = t_r(n)$ and $T_r(n)$ is the only n-vertex graph with ex(n; F) edges not containing F as a subgraph.

Proof. Let k = |F|, $\beta = \frac{1}{3kr^2}$ and $\varepsilon = \beta^2/3$. Let G be an n-vertex such that $F \not\subseteq G$ and $||G|| = \exp(n; F)$. Let A_1, \ldots, A_r be a partition of V(G) such that

$$m = \sum_{i=1}^{r} \|G[A_i]\|$$

is minimum. Let e be a critical edge of F and let w be a vertex of F incident with e.

By Theorem 1 and Corollaries 2 and 4, for sufficiently large n we have that $m \leq \varepsilon n^2$, the minimum degree of G is at least $(1 - 1/r - \varepsilon)n$, $|A_i - n/r| \leq \varepsilon n$ for each i, and G contains at most εn^2 non-edges with ends in different parts.

Suppose first that there exists *i* such that $\Delta(G[A_i]) \geq \beta n$. Let $v \in A_i$ be a vertex with at least βn neighbors in A_i . The minimality of *m* implies that moving *v* to any other part does not decrease the number of edges within the parts, and thus *v* has at least βn neighbors in each part. Let N_1, \ldots, N_r be sets of neighbors of *v* in A_1, \ldots, A_r such that $|N_1| = \ldots = |N_r| \geq \beta n$ and let $s = |N_1 \cup \ldots \cup N_r| \geq \beta r n$. The subgraph $G[N_1 \ldots N_r]$ has at least

$$(1 - \frac{1}{r})\frac{s^2}{2} - \varepsilon n^2 \ge (1 - \frac{1}{r})\frac{s^2}{2} - \frac{\varepsilon}{\beta^2 r^2}s^2$$
$$= (1 - \frac{1}{r} - \frac{2\varepsilon}{\beta^2 r^2})\frac{s^2}{2} \ge (1 - \frac{1}{r-1} + \varepsilon)\frac{s^2}{2}$$

edges. The chromatic number of F - w is r, and for sufficiently large n (and thus also large s), Erdős-Stone theorem implies $F - w \subseteq G[N_1 \dots N_r]$. Using v to represent w gives $F \subseteq G$, which is a contradiction.

Therefore, we can assume $\Delta(G[A_i]) \leq \beta n$ for every *i*. Consider a vertex $v \in A_i$. Since $\Delta(G[A_i]) \leq \beta n$ and $|A_i| \geq n/r - \varepsilon n$, *v* has at least $n/r - (\varepsilon + \beta)n$ non-neighbors in A_i . Since $\deg(v) \geq (1 - 1/r - \varepsilon)n$, *v* has at most $(2\varepsilon + \beta)n$ non-neighbors in any other part.

Suppose now that any of the subgraphs $G[A_i]$ (say for i = 1) has at least one edge e'. Select $B_1 \subset A_1$ of size k such that both ends of e' belong to B_1 arbitrarily. For $j = 2, \ldots, r$, choose $B_j \subset A_j$ of size k so that every vertex of B_j is adjacent to all vertices of $B_1 \cup \ldots \cup B_{j-1}$; this is possible, since there are at most $k(r-1)(2\varepsilon + \beta)n \leq n/r - \varepsilon n - k \leq |A_j| - k$ non-edges between $B_1 \cup \ldots \cup B_{j-1}$ and A_j . Then $G[B_1 \cup \ldots \cup B_r]$ is a complete r-partitute graph with parts of size k plus one edge, and thus it contains F as a subgraph, which is a contradiction.

It follows that G is an r-partite graph with parts A_1, \ldots, A_r . No r-partite graph contains F as as subgraph, and since G has the largest number of edges among the graphs with this property, we conclude $G = T_r(n)$.

Next, let us consider the extremal number for the graph kK_{r+1} , that is, k disjoint cliques of size r + 1.

Theorem 6. Let G be an n-vertex graph such that $kK_{r+1} \not\subseteq G$ and $||G|| = \exp(n; kK_{r+1})$. For sufficiently large n, G is the graph obtained from $T_r(n - k + 1)$ by adding k - 1 universal vertices, and thus

$$ex(n; kK_{r+1}) = t_r(n-k+1) + (k-1)(n-k+1) + \binom{k-1}{2}.$$

Proof. Let $\beta = \frac{1}{3r^2}$ a $\varepsilon = \beta^2/8$. Let A_1, \ldots, A_r be a partition of V(G) such that

$$m = \sum_{i=1}^{r} \|G[A_i]\|$$

is minimum. By Theorem 1 and Corollaries 2 and 4, for sufficiently large n we have $m \leq \varepsilon n^2$, G has minimum degree at least $(1-1/r-\varepsilon)n$, $|A_i-n/r| \leq \varepsilon n$ for each i, and G contains at most εn^2 non-edges with ends in different parts. For every $v \in V(G)$, let i(v) denote the index i such that $v \in A_i$.

Let us start with an observation that we will use several times later. Consider any disjoint sets $U, Z \subseteq V(G)$ such that $|U| \leq k$, $|Z| \leq k(r+1)$ and every vertex $u \in U$ has at least βn neighbors in $A_{i(u)}$. The minimality of m implies that u has at least βn neighbors in each part. Therefore, we can choose pairwise disjoint sets $N_{u,t} \subseteq A_t \setminus (U \cup Z)$ for $u \in U$ and $1 \leq t \leq r$ such that u is adjacent to all vertices of $N_{u,t}$ and all these parts have the same size greater or equal to $(\beta n - k(r+2))/k \geq \beta n/2$. Let $s = |N_{u,1} \cup \ldots \cup N_{u,r}| \geq \beta rn/2$. The subgraph $G[N_{u,1} \ldots N_{u,r}]$ has at least

$$(1 - \frac{1}{r})\frac{s^2}{2} - \varepsilon n^2 \ge (1 - \frac{1}{r})\frac{s^2}{2} - \frac{4\varepsilon}{\beta^2 r^2}s^2$$
$$= (1 - \frac{1}{r} - \frac{8\varepsilon}{\beta^2 r^2})\frac{s^2}{2} > (1 - \frac{1}{r-1})\frac{s^2}{2}$$

edges. Turán's theorem implies $K_r \subseteq G[N_{u,1} \dots N_{u,r}]$. Adding u gives a clique of size r + 1 in G, and for disjoint $u \in U$ these cliques are pairwise disjoint. Moreover, these cliques are also disjoint from Z.

Let $U \subseteq V(G)$ be the set of all vertices $u \in V(G)$ such that u has at least βn neighbors in $A_{i(u)}$. Since $kK_{r+1} \not\subseteq G$, the previous paragraph implies $|U| \leq k - 1$. Every vertex $v \in V(G) \setminus U$ has at most βn neighbors in $A_{i(v)}$. Since $|A_{i(v)}| \geq n/r - \varepsilon n$, v has at least $n/r - (\varepsilon + \beta)n$ non-neighbors in $A_{i(v)}$. Since $\deg(v) \geq (1 - 1/r - \varepsilon)n$, v has at most $(2\varepsilon + \beta)n$ non-neighbors in any other parts.

Suppose now that for some i (say i = 1), the graph $G[A_i \setminus U]$ contains a matching M of size k - |U|. For j = 2, ..., r, from $A_j \setminus U$ choose for each edge $e \in M$ a vertex $v_{e,j}$ such that $v_{e,j}$ is adjacent to both ends of e and to the vertices $v_{e,2}, ..., v_{e,j-1}$, and moreover the vertices $v_{e,j}$ and $v_{e',j}$ for distinct edges $e, e' \in E(M)$ are distinct. This is possible, since $r(2\varepsilon + \beta)n + k \leq n/r - \varepsilon n \leq |A_j|$ for every j. This gives k - |U| disjoint cliques of size r + 1. Now we apply the claim from the second paragraph with Z being the union of these cliques. This gives |U| additional cliques of size K_{r+1} disjoint from Z, and thus $kK_{r+1} \subseteq G$, a contradiction.

Therefore, every matching in $G[A_i \setminus U]$ for i = 1, ..., r has size at most k - 1 - |U|. Let X be a set such that $A_i \cap X$ is the vertex set of a largest matching in $G[A_i \setminus U]$ for every i. Then $|X| \leq 2(k-1-|U|)r$ and $A_i \setminus (U \cup X)$ is an independent set in G for every i. Consequently

$$||G|| \le t_r(n-|U|) + 2(k-1-|U|)r\beta n + |U|(n-|U|) + \binom{|U|}{2} \le t_r(n-k+1) + (k-1)(n-k+1) + \binom{k-1}{2},$$

where the equality holds iff |U| = k - 1, G - U is $T_r(n - k + 1)$ and each vertex of U is adjacent to all other vertices of G.