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Theorem 1 (Erdős-Stone). Let F be a graph of chromatic number r + 1.
For every ε > 0, there exists n0 such that every graph with n ≥ n0 vertices
and at least (1− 1/r + ε)n

2

2
edges contains F as a subgraph.

The complete multipartite graph Tr(n) does not contain F as a subgraph
and has about (1− 1/r)n

2

2
edges. By stability for Theorem 1, we mean that

even the graphs without F that have only slightly fewer edges than that have
a structure resembling Tr(n).

Lemma 2. Let F be a graph of chromatic number r + 1. For every ε > 0
there exists β > 0 such that the following claim holds for every sufficiently
large n. If G is an n-vertex graph of minimum degree at least (1− 1/r− β)n
not containing F as a subgraph, then there exists a partition of V (G) to parts
A1, . . . , Ar such that

r∑
i=1

‖G[Ai]‖ ≤ εn2.

Proof. Let t = |F |, s = d32
ε
t2e + t and β = min

(
t
rs
, 1
2r(r−1)

)
. Since β <

1
r−1 −

1
r
, Theorem 1 for sufficiently large n implies that G contains Tr(rs)

as a subgraph. Let B1, . . . , Br ⊆ V (G) be disjoint sets of size s such that
G contains all edges between these sets, and let B = B1 ∪ . . . ∪ Br. For
sufficiently large n, we have |B| ≤ t

rs
n ≤ ε

4
n.

Let us partition V (G) \B into parts T , A′1, . . . , A′r, and S such that

• T contains the vertices that have at least t neighbors in each of B1, . . . ,
Br, and

• A′i for i = 1, . . . , r contains the vertices, that have less than t neighbors
in Bi and at least s− 16

ε
t neighbors in every other part.
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Note that |T | < t
(
s
t

)r
, since otherwiseG ⊇ Tr+1((r+1)t) ⊇ F . For sufficiently

large n, this implies |T | ≤ t
rs
n ≤ ε

4
n.

Since G has minimum degree at least (1−1/r−β)n, the number of edges
between B and A′1 ∪ . . .∪A′r ∪ S is at least ((1− 1/r− β)n− |B| − |T |)rs ≥
(r−1)sn−3tn. On the other hand, the vertices in S have less than t neighbors
in one of the parts and less than s− 16

ε
t neighbors in another part, and thus

(r−1)sn−3tn ≤ (n−|S|)((r−1)s+t)+|S|((r−1)s+t−16t/ε) = (r−1)sn+tn−16t|S|/ε.

Consequently, |S| ≤ ε
4
n.

If there exists i ∈ {1, . . . , r} such that ‖G[A′i]‖ ≥ ε
4r
n2, then for sufficiently

large n, Theorem 1 implies that G[A′i] contains Kt,t as a subgraph. The
vertices of this Kt,t have at least s − 2t16

ε
t ≥ t common neighbors in each

part Bj such that j 6= i, and thus G would contain Tr+1((r + 1)t) ⊇ F as a
subgraph, which is a contradiction. Therefore, we have ‖G[A′i]‖ ≤ ε

4r
n2 for

each i.
Let Ai = A′i for i = 1, . . . , r − 1 and Ar = A′r ∪ (B ∪ T ∪ S). Then

r∑
i=1

‖G[Ai]‖ ≤ r ε
4r
n2 + 3ε

4
n2 = εn2.

For a graph G, let mr(G) = ‖G‖ − (1− 1/r)|G|2/2.

Observation 3. Let G be a graph, r and integer, and β a positive real
number. If v is a vertex of G of degree less than (1 − 1/r − β)|G|, then
mr(G− v) > mr(G) + β|G| − 1.

Proof. We have

mr(G− v)−mr(G) = (1− 1/r)
[
|G|2 − (|G| − 1)2

]
/2− (‖G‖ − ‖G− v‖)

> (1− 1/r)(|G| − 1/2)− (1− 1/r − β)|G| > β|G| − 1.

We are now ready to prove the stability version of Erdős-Stone theorem.

Theorem 4. Let F be a graph of chromatic number r + 1. For every ε > 0,
there exists β′ > 0 such that for sufficiently large n, if G is an n-vertex graph
with at least (1−1/r−β′)n2/2 edges and F 6⊆ G, then there exists a partition
of V (G) into parts A1, . . . , Ar such that

r∑
i=1

‖G[Ai]‖ ≤ εn2.
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Proof. We can assume ε < 1/2, as otherwise the claim trivially holds. Let β
be the constant from Lemma 2 for ε/2. Let β′ = βε/7. Repeatedly remove
from G vertices of degree less than (1 − 1/r − β) times the current number
of vertices, as long as such vertices exist or until we removed at least εn/2
vertices, and let G′ be the resulting graph. If we deleted at least dεn/2e
vertices, then Observation 3 implies

mr(G
′) ≥ mr(G) + (β|G′| − 1)dεn/2e
≥ mr(G) + βε

6
n2 ≥ (βε/6− β′)n2

≥ (βε/6− β′)|G′|2 = β′

6
|G′|2.

By Theorem 1, if n (and thus also |G′| ≥ n−dεn/2e ≥ b3n/4c) is sufficiently
large, then F ⊆ G′, which is a contradiction. Therefore, |G| − |G′| < εn/2,
and G′ has minimum degree at least (1 − 1/r − β)|G′|. Let A′1, . . . , A′r be
the partition of V (G′) obtained by Lemma 2 for ε/2. Suppose Ai = A′i for
i = 1, . . . , r − 1 and Ar = A′r ∪ (V (G) \ V (G′)). Then

r∑
i=1

‖G[Ai]‖ ≤ ε
2
n2 +

r∑
i=1

‖G[A′i]‖ ≤ εn2.

Observation 5. Let G be the complete r-partite graph with n vertices and
parts A1, . . . , Ar. Then

‖G‖ =
(

1− 1/r −
r∑
i=1

(1/r − |Ai|/n)2
)
n2/2.

Proof. For i = 1, . . . , r, let di = |Ai| − n/r; we have
∑r

i=1 di = 0. Note that

‖G‖ =
1

2

r∑
i=1

|Ai|(n− |Ai|) =
(

1−
r∑
i=1

(|Ai|/n)2
)
n2/2

and
r∑
i=1

|Ai|2 =
r∑
i=1

(di + n/r)2 =
r∑
i=1

d2i + n2/r.

We now give our first application of Theorem 4.

Corollary 6. Let F be a graph of chromatic number r + 1, and let γ be
a positive real number. Let G be an n-vertex graph with exactly ex(n;F )
edges not containing F as a subgraph. If n is sufficiently large, then G has
minimum degree at least (1− 1/r − γ)n.
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Proof. Let t = |F |, ε = min
(

1
8r2
, γ
5rt

)
and let β′ be the constant from Theo-

rem 4 for ε/2; without loss of generality, we can assume β′ ≤ ε.
For sufficiently large n, we have ex(n;F ) ≥ tr(n) ≥ (1 − 1/r − β′)n2/2,

and thus Theorem 4 implies that there exists a partition V (G) to parts A1,
. . . , Ar such that

∑r
i=1 ‖G[Ai]‖ ≤ εn2/2. Denoting by q the number of edges

of the complete r-partite graph with parts A1, . . . , Ar, Observation 5 gives

‖G‖ ≤ q + εn2/2 =
(

1− 1/r + ε−
r∑
i=1

(1/r − |Ai|/n)2
)
n2/2,

and since ‖G‖ = ex(n;F ) ≥ (1 − 1/r − β′)n2/2, it follows that
∑r

i=1(1/r −
|Ai|/n)2 ≤ β′ + ε ≤ 2ε. Hence, for each i we have ||Ai| − n/r| ≤

√
2εn ≤ n

2r

and |Ai| ≥ n
2r

. Similarly, the total number of non-edges between different
parts of the partition is at most (β′ + ε)n2/2 ≤ εn2, and thus G contains
at most n

4r
vertices incident with more that 4rεn such non-edges. Let A1

be the smallest part of the partition. For sufficiently large n, there exist t
vertices x1, . . . , xt ∈ A1 incident together with at most 4rtεn non-edges to
other parts. The set S of their common neighbors therefore has size at least
n− |A1| − 4rtεn ≥ (1− 1/r − γ)n+ 1.

If G contains a vertex v of degree less than (1− 1/r − γ)n, consider the
graph G′ obtained from G−v by adding a vertex u adjacent exactly to S−v.
Then ‖G′‖ > ‖G‖ = ex(n;F ), and thus G′ contains F as a subgraph. Clearly,
u belongs to this subgraph. However, at least one of x1, . . . , xt, say x1, does
not belong to this subgraph, and replacing u by x1 gives us a subgraph of
F in G. This is a contradiction, and thus G has minimum degree at least
(1− 1/r − γ)n.
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