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Theorem 1 (Erdds-Stone). Let F' be a graph of chromatic number r + 1.

For every € > 0, there exists ng such that every graph with n > ngy vertices
2 .

and at least (1 — 1/r 4 €)% edges contains F' as a subgraph.

The complete multipartite graph 7,.(n) does not contain F' as a subgraph
and has about (1 —1/ 7’)”—22 edges. By stability for Theorem 1, we mean that
even the graphs without F' that have only slightly fewer edges than that have
a structure resembling 7,.(n).

Lemma 2. Let F' be a graph of chromatic number r + 1. For every € > 0
there exists B > 0 such that the following claim holds for every sufficiently
large n. If G is an n-vertex graph of minimum degree at least (1 —1/r — B)n
not containing F' as a subgraph, then there exists a partition of V(G) to parts

Ay, ..., A, such that
ZHG Al < en?

Proof. Let t = |F|, s = [2*] + ¢t and f = min(L, 57—). Since g <

rs? 2r(r—1)
— — 1 Theorem 1 for sufficiently large n implies that G contains T} (rs)
as a subgraph Let By,...,B, C V(G) be disjoint sets of size s such that
G contains all edges between these sets, and let B = B; U...U B,. For
sufficiently large n, we have |B| < tn < £n.
Let us partition V(G) \ B into parts T, A}, ..., A, and S such that

e T contains the vertices that have at least ¢ neighbors in each of By, ...,
B,, and

o Al fori=1,...,r contains the vertices, that have less than ¢ neighbors
in B; and at least s — %t neighbors in every other part.



Note that [T'| < ¢(3)", since otherwise G 2 T,1((r+1)t) 2 F. For sufficiently
large n, this implies [T < Ln < 2n.

Since G has minimum degree at least (1 —1/r — §)n, the number of edges
between B and A|U...UAL US is at least (1 —1/r—p)n—|B|—|T|)rs >
(r—1)sn—3tn. On the other hand, the vertices in S have less than ¢ neighbors
in one of the parts and less than s — %t neighbors in another part, and thus

(r—1)sn—3tn < (n—|S|)((r—1)s+t)+|S|((r—1)s+t—16t/c) = (r—1)sn+tn—16t|S|/e.

Consequently, || < §n.

If there exists ¢ € {1,...,r} such that [|G[A}]|| > £n?, then for sufficiently
large n, Theorem 1 implies that G[A]] contains K;; as a subgraph. The
vertices of this K, have at least s — 27516—675 > t common neighbors in each
part B; such that j # ¢, and thus G would contain T, ((r + 1)t) D F as a
subgraph, which is a contradiction. Therefore, we have ||G[A]]|| < £n® for
each 1.

Let A;=Ajfori=1,...,r—1and A, = A U(BUTUYS). Then

ZHG A < ren® + En® = en’.

For a graph G, let m,(G) = |G| — (1 — 1/7)|G|*/2.

Observation 3. Let G be a graph, r and integer, and 3 a positive real
number. If v is a vertex of G of degree less than (1 — 1/r — B)|G|, then
m(G —v) >m,(G) + 5G| — 1.

Proof. We have
my(G —v) =m(G) = (1= 1/n)[|GI* = (1G] = 1)*} /2 = (IG]| = |G —vl])
> (1 =1/r)(G]=1/2) = (1 =1/r = §)IG] > BIG| - 1.
O
We are now ready to prove the stability version of Erdés-Stone theorem.

Theorem 4. Let F' be a graph of chromatic number r + 1. For every ¢ > 0,
there exists 3 > 0 such that for sufficiently large n, if G is an n-vertex graph
with at least (1—1/r—3)n?/2 edges and F € G, then there exists a partition
of V(G) into parts Ay, ..., A, such that

ZHG Il < en.



Proof. We can assume ¢ < 1/2, as otherwise the claim trivially holds. Let (
be the constant from Lemma 2 for /2. Let 5/ = /7. Repeatedly remove
from G vertices of degree less than (1 — 1/r — ) times the current number
of vertices, as long as such vertices exist or until we removed at least en/2
vertices, and let G’ be the resulting graph. If we deleted at least [en/2]
vertices, then Observation 3 implies

my(G) = mi(G) + (|G| = 1)[en/2]
> m,(G) + f§n? > (Be/6 — §')n
> (Be/6—p )|G'|2 FlaP.
By Theorem 1, if n (and thus also |G| > n— [en/2] > |3n/4]) is sufficiently
large, then I C G’, which is a contradiction. Therefore, |G| — |G’| < en/2,
and G’ has minimum degree at least (1 — 1/r — 8)|G’|. Let A}, ..., Al be

the partition of V(G’) obtained by Lemma 2 for £/2. Suppose A; = A} for
i=1,...,r—1land A, = A U ((V(G)\ V(G")). Then

ZHG \<5n2+ZHGA’ | < en?.

=1

]

Observation 5. Let G be the complete r-partite graph with n vertices and
parts A1, ..., A,.. Then

161 = (1= 1/r = S (1/r = |Ail/)?)n?/2.

=1

Proof. Fori=1,...,r,let d; = |A;| —n/r; we have >";_ d; = 0. Note that

161 = 5 D7 14t~ 14d) = (1= D214 /m)?)n?/2

i=1 i=1

and
.

Z|Ai|2:id+n/r Zd2+n
i=1

=1

We now give our first application of Theorem 4.

Corollary 6. Let F' be a graph of chromatic number r + 1, and let v be
a positive real number. Let G be an n-vertexr graph with exactly ex(n; F')
edges not containing F' as a subgraph. If n is sufficiently large, then G has
minimum degree at least (1 —1/r —y)n.
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Proof. Let t = |F|, e = min(gk, z) and let 3’ be the constant from Theo-
rem 4 for £/2; without loss of generality, we can assume (' < ¢.

For sufficiently large n, we have ex(n; F) > t,.(n) > (1 —1/r — 3')n?/2,
and thus Theorem 4 implies that there exists a partition V(G) to parts Aj,
..., A, such that i, [|G[A]]| < en?/2. Denoting by ¢ the number of edges

of the complete r-partite graph with parts Ay, ..., A,, Observation 5 gives

r

IG|| < q+en?/2 = (1 e > (1)r - |Ai\/n)2)n2/2,

=1

and since ||G| = ex(n; F) > (1 — 1/r — ')n?/2, it follows that Y ;_ (1/r —
|A;|/n)? < B+ ¢ < 2¢. Hence, for each i we have ||4;] —n/r| < V2en < &
and |A;| > 3-. Similarly, the total number of non-edges between different
parts of the partition is at most (8 + ¢)n?/2 < en?, and thus G contains
at most ;- vertices incident with more that 4ren such non-edges. Let A,
be the smallest part of the partition. For sufficiently large n, there exist ¢
vertices x1,...,7; € Ap incident together with at most 4rten non-edges to
other parts. The set S of their common neighbors therefore has size at least
n—|A| —4rten > (1 = 1/r —y)n+ 1.

If G contains a vertex v of degree less than (1 — 1/r — «)n, consider the
graph G’ obtained from G — v by adding a vertex u adjacent exactly to S —wv.
Then ||G’'|| > |G| = ex(n; F'), and thus G’ contains F' as a subgraph. Clearly,
u belongs to this subgraph. However, at least one of z1, ..., x;, say x1, does
not belong to this subgraph, and replacing u by z; gives us a subgraph of
F in G. This is a contradiction, and thus G has minimum degree at least
(1—=1/r —~)n. O



