Stability for Erdős-Stone theorem

Zdeněk Dvořák

November 6, 2020

Theorem 1 (Erdős-Stone). Let F be a graph of chromatic number $r+1$. For every $\varepsilon>0$, there exists n_{0} such that every graph with $n \geq n_{0}$ vertices and at least $(1-1 / r+\varepsilon) \frac{n^{2}}{2}$ edges contains F as a subgraph.

The complete multipartite graph $T_{r}(n)$ does not contain F as a subgraph and has about $(1-1 / r) \frac{n^{2}}{2}$ edges. By stability for Theorem 1, we mean that even the graphs without F that have only slightly fewer edges than that have a structure resembling $T_{r}(n)$.

Lemma 2. Let F be a graph of chromatic number $r+1$. For every $\varepsilon>0$ there exists $\beta>0$ such that the following claim holds for every sufficiently large n. If G is an n-vertex graph of minimum degree at least $(1-1 / r-\beta) n$ not containing F as a subgraph, then there exists a partition of $V(G)$ to parts A_{1}, \ldots, A_{r} such that

$$
\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\| \leq \varepsilon n^{2}
$$

Proof. Let $t=|F|, s=\left\lceil\frac{32}{\varepsilon} t^{2}\right\rceil+t$ and $\beta=\min \left(\frac{t}{r s}, \frac{1}{2 r(r-1)}\right)$. Since $\beta<$ $\frac{1}{r-1}-\frac{1}{r}$, Theorem 1 for sufficiently large n implies that G contains $T_{r}(r s)$ as a subgraph. Let $B_{1}, \ldots, B_{r} \subseteq V(G)$ be disjoint sets of size s such that G contains all edges between these sets, and let $B=B_{1} \cup \ldots \cup B_{r}$. For sufficiently large n, we have $|B| \leq \frac{t}{r s} n \leq \frac{\varepsilon}{4} n$.

Let us partition $V(G) \backslash B$ into parts $T, A_{1}^{\prime}, \ldots, A_{r}^{\prime}$, and S such that

- T contains the vertices that have at least t neighbors in each of B_{1}, \ldots, B_{r}, and
- A_{i}^{\prime} for $i=1, \ldots, r$ contains the vertices, that have less than t neighbors in B_{i} and at least $s-\frac{16}{\varepsilon} t$ neighbors in every other part.

Note that $|T|<t\binom{s}{t}^{r}$, since otherwise $G \supseteq T_{r+1}((r+1) t) \supseteq F$. For sufficiently large n, this implies $|T| \leq \frac{t}{r s} n \leq \frac{\varepsilon}{4} n$.

Since G has minimum degree at least $(1-1 / r-\beta) n$, the number of edges between B and $A_{1}^{\prime} \cup \ldots \cup A_{r}^{\prime} \cup S$ is at least $((1-1 / r-\beta) n-|B|-|T|) r s \geq$ $(r-1) s n-3 t n$. On the other hand, the vertices in S have less than t neighbors in one of the parts and less than $s-\frac{16}{\varepsilon} t$ neighbors in another part, and thus $(r-1) s n-3 t n \leq(n-|S|)((r-1) s+t)+|S|((r-1) s+t-16 t / \varepsilon)=(r-1) s n+t n-16 t|S| / \varepsilon$. Consequently, $|S| \leq \frac{\varepsilon}{4} n$.

If there exists $i \in\{1, \ldots, r\}$ such that $\left\|G\left[A_{i}^{\prime}\right]\right\| \geq \frac{\varepsilon}{4 r} n^{2}$, then for sufficiently large n, Theorem 1 implies that $G\left[A_{i}^{\prime}\right]$ contains $K_{t, t}$ as a subgraph. The vertices of this $K_{t, t}$ have at least $s-2 t \frac{16}{\varepsilon} t \geq t$ common neighbors in each part B_{j} such that $j \neq i$, and thus G would contain $T_{r+1}((r+1) t) \supseteq F$ as a subgraph, which is a contradiction. Therefore, we have $\left\|G\left[A_{i}^{\prime}\right]\right\| \leq \frac{\varepsilon}{4 r} n^{2}$ for each i.

Let $A_{i}=A_{i}^{\prime}$ for $i=1, \ldots, r-1$ and $A_{r}=A_{r}^{\prime} \cup(B \cup T \cup S)$. Then

$$
\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\| \leq r \frac{\varepsilon}{4 r} n^{2}+\frac{3 \varepsilon}{4} n^{2}=\varepsilon n^{2}
$$

For a graph G, let $m_{r}(G)=\|G\|-(1-1 / r)|G|^{2} / 2$.
Observation 3. Let G be a graph, r and integer, and β a positive real number. If v is a vertex of G of degree less than $(1-1 / r-\beta)|G|$, then $m_{r}(G-v)>m_{r}(G)+\beta|G|-1$.

Proof. We have

$$
\begin{aligned}
m_{r}(G-v)-m_{r}(G) & =(1-1 / r)\left[|G|^{2}-(|G|-1)^{2}\right] / 2-(\|G\|-\|G-v\|) \\
& >(1-1 / r)(|G|-1 / 2)-(1-1 / r-\beta)|G|>\beta|G|-1
\end{aligned}
$$

We are now ready to prove the stability version of Erdős-Stone theorem.
Theorem 4. Let F be a graph of chromatic number $r+1$. For every $\varepsilon>0$, there exists $\beta^{\prime}>0$ such that for sufficiently large n, if G is an n-vertex graph with at least $\left(1-1 / r-\beta^{\prime}\right) n^{2} / 2$ edges and $F \nsubseteq G$, then there exists a partition of $V(G)$ into parts A_{1}, \ldots, A_{r} such that

$$
\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\| \leq \varepsilon n^{2}
$$

Proof. We can assume $\varepsilon<1 / 2$, as otherwise the claim trivially holds. Let β be the constant from Lemma 2 for $\varepsilon / 2$. Let $\beta^{\prime}=\beta \varepsilon / 7$. Repeatedly remove from G vertices of degree less than $(1-1 / r-\beta)$ times the current number of vertices, as long as such vertices exist or until we removed at least $\varepsilon n / 2$ vertices, and let G^{\prime} be the resulting graph. If we deleted at least $\lceil\varepsilon n / 2\rceil$ vertices, then Observation 3 implies

$$
\begin{aligned}
m_{r}\left(G^{\prime}\right) & \geq m_{r}(G)+\left(\beta\left|G^{\prime}\right|-1\right)\lceil\varepsilon n / 2\rceil \\
& \geq m_{r}(G)+\frac{\beta \varepsilon}{6} n^{2} \geq\left(\beta \varepsilon / 6-\beta^{\prime}\right) n^{2} \\
& \geq\left(\beta \varepsilon / 6-\beta^{\prime}\right)\left|G^{\prime}\right|^{2}=\frac{\beta^{\prime}}{6}\left|G^{\prime}\right|^{2} .
\end{aligned}
$$

By Theorem 1, if n (and thus also $\left|G^{\prime}\right| \geq n-\lceil\varepsilon n / 2\rceil \geq\lfloor 3 n / 4\rfloor$) is sufficiently large, then $F \subseteq G^{\prime}$, which is a contradiction. Therefore, $|G|-\left|G^{\prime}\right|<\varepsilon n / 2$, and G^{\prime} has minimum degree at least $(1-1 / r-\beta)\left|G^{\prime}\right|$. Let $A_{1}^{\prime}, \ldots, A_{r}^{\prime}$ be the partition of $V\left(G^{\prime}\right)$ obtained by Lemma 2 for $\varepsilon / 2$. Suppose $A_{i}=A_{i}^{\prime}$ for $i=1, \ldots, r-1$ and $A_{r}=A_{r}^{\prime} \cup\left(V(G) \backslash V\left(G^{\prime}\right)\right)$. Then

$$
\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\| \leq \frac{\varepsilon}{2} n^{2}+\sum_{i=1}^{r}\left\|G\left[A_{i}^{\prime}\right]\right\| \leq \varepsilon n^{2}
$$

Observation 5. Let G be the complete r-partite graph with n vertices and parts A_{1}, \ldots, A_{r}. Then

$$
\|G\|=\left(1-1 / r-\sum_{i=1}^{r}\left(1 / r-\left|A_{i}\right| / n\right)^{2}\right) n^{2} / 2 .
$$

Proof. For $i=1, \ldots, r$, let $d_{i}=\left|A_{i}\right|-n / r$; we have $\sum_{i=1}^{r} d_{i}=0$. Note that

$$
\|G\|=\frac{1}{2} \sum_{i=1}^{r}\left|A_{i}\right|\left(n-\left|A_{i}\right|\right)=\left(1-\sum_{i=1}^{r}\left(\left|A_{i}\right| / n\right)^{2}\right) n^{2} / 2
$$

and

$$
\sum_{i=1}^{r}\left|A_{i}\right|^{2}=\sum_{i=1}^{r}\left(d_{i}+n / r\right)^{2}=\sum_{i=1}^{r} d_{i}^{2}+n^{2} / r .
$$

We now give our first application of Theorem 4.
Corollary 6. Let F be a graph of chromatic number $r+1$, and let γ be a positive real number. Let G be an n-vertex graph with exactly $\operatorname{ex}(n ; F)$ edges not containing F as a subgraph. If n is sufficiently large, then G has minimum degree at least $(1-1 / r-\gamma) n$.

Proof. Let $t=|F|, \varepsilon=\min \left(\frac{1}{8 r^{2}}, \frac{\gamma}{5 r t}\right)$ and let β^{\prime} be the constant from Theorem 4 for $\varepsilon / 2$; without loss of generality, we can assume $\beta^{\prime} \leq \varepsilon$.

For sufficiently large n, we have $\operatorname{ex}(n ; F) \geq t_{r}(n) \geq\left(1-1 / r-\beta^{\prime}\right) n^{2} / 2$, and thus Theorem 4 implies that there exists a partition $V(G)$ to parts A_{1}, \ldots, A_{r} such that $\sum_{i=1}^{r}\left\|G\left[A_{i}\right]\right\| \leq \varepsilon n^{2} / 2$. Denoting by q the number of edges of the complete r-partite graph with parts A_{1}, \ldots, A_{r}, Observation 5 gives

$$
\|G\| \leq q+\varepsilon n^{2} / 2=\left(1-1 / r+\varepsilon-\sum_{i=1}^{r}\left(1 / r-\left|A_{i}\right| / n\right)^{2}\right) n^{2} / 2
$$

and since $\|G\|=\operatorname{ex}(n ; F) \geq\left(1-1 / r-\beta^{\prime}\right) n^{2} / 2$, it follows that $\sum_{i=1}^{r}(1 / r-$ $\left.\left|A_{i}\right| / n\right)^{2} \leq \beta^{\prime}+\varepsilon \leq 2 \varepsilon$. Hence, for each i we have $\left|\left|A_{i}\right|-n / r\right| \leq \sqrt{2 \varepsilon n} \leq \frac{n}{2 r}$ and $\left|A_{i}\right| \geq \frac{n}{2 r}$. Similarly, the total number of non-edges between different parts of the partition is at most $\left(\beta^{\prime}+\varepsilon\right) n^{2} / 2 \leq \varepsilon n^{2}$, and thus G contains at most $\frac{n}{4 r}$ vertices incident with more that $4 r \varepsilon n$ such non-edges. Let A_{1} be the smallest part of the partition. For sufficiently large n, there exist t vertices $x_{1}, \ldots, x_{t} \in A_{1}$ incident together with at most $4 r$ ren non-edges to other parts. The set S of their common neighbors therefore has size at least $n-\left|A_{1}\right|-4 r t \varepsilon n \geq(1-1 / r-\gamma) n+1$.

If G contains a vertex v of degree less than $(1-1 / r-\gamma) n$, consider the graph G^{\prime} obtained from $G-v$ by adding a vertex u adjacent exactly to $S-v$. Then $\left\|G^{\prime}\right\|>\|G\|=\operatorname{ex}(n ; F)$, and thus G^{\prime} contains F as a subgraph. Clearly, u belongs to this subgraph. However, at least one of x_{1}, \ldots, x_{t}, say x_{1}, does not belong to this subgraph, and replacing u by x_{1} gives us a subgraph of F in G. This is a contradiction, and thus G has minimum degree at least $(1-1 / r-\gamma) n$.

